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Out-of-plane permittivity of confined water
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The dielectric properties of confined water is of fundamental interest and is still controversial. For water
confined in channels with height smaller than h = 8 Å, we found a commensurability effect and an extraordinary
decrease in the out-of-plane dielectric constant down to the limit of the dielectric constant of optical water. Spatial
resolved polarization density data obtained from molecular dynamics simulations are found to be antisymmetric
across the channel and are used as input in a mean-field model for the dielectric constant as a function of the
height of the channel for h > 15 Å. Our results are in excellent agreement with a recent experiment [L. Fumagalli
et al., Science 360, 1339 (2018)].
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I. INTRODUCTION

Water adsorbed in nanopores exhibits anomalous prop-
erties including fast flow in nanochannels, distinct melting
points, structural phase transitions, layering, and ultralow
dielectric constant [1–5]. In confining geometries, the polar-
ization of water is different from bulk water which affects
the water-mediated intermolecular forces and consequently
changes hydration and solvation, as well as molecular trans-
port properties. In the past few decades, the main theoretical
method for studying dynamical and structural properties of
confined water was based on molecular dynamics simulations
(MDS). A large variety of classical force fields has been
applied to describe water-water and water-interface interac-
tions under both normal and critical conditions [6–17]. For
instance, the variation of the dielectric constant with temper-
ature and pressure for ices Ih, III, V, VI, and VII was studied
by Aragones et al. [17]. In addition to MDS, mean-field theory
(such as Kirkwood’s theory) was also used and yields valuable
insights into the H-bonding effects on the dielectric constant
of water [18,19].

By using electrostatic force detection with an atomic force
microscope (AFM), unexpected variation in the dielectric con-
stant of confined water between graphene (GE) and hexagonal
boron nitride (h-BN) was observed recently as a function
of the thickness of the channels [20]. A small out-of-plane
dielectric constant of about �2.1 for nanoconfined water
in channels with heights h ∼ 10 Å was reported [20], but
the underlying physics is not understood. Beyond ∼15 Å a
nonlinear increase in the dielectric constant was found and a
phenomenological capacitance model was used to interpolate
the dielectric constant of nanoconfined water and bulk water.
Here we show that a fundamental ingredient was missing in
the phenomenological model: the wall-induced dipole in the
water surface layers which turns out to have a considerable
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effect on the dielectric properties of confined water. When
including this effect, we find an almost perfect agreement with
experiment.

In this paper, polarization density obtained from rigorous
MDS is used as input for a mean-field model providing the di-
electric properties of confined water without fitting parameter.
In particular, we found the perpendicular component of the
dielectric constant (ε⊥) of confined water for channels with
height ranging from angstrom up to micrometer. Moreover,
for channels with height h ≈ 7.5 ± 0.5 Å, we predict an
extraordinary decrease in ε⊥ which is due to an increase in
the number of H bonds in the system and a phase transition to
dense amorphous ice. We further link the capacitance model
(C model) [20,21] to the microscopic details of confined water
and determine the wall-induced dipoles and corresponding
dielectric constant. For the ice phase of water, the number
of hydrogen bonds is slightly larger than for liquid. The
pronounced peak in the inset of Fig. 1(b) is due to the
formation of an amorphous phase of ice in the channels when
h ≈ 7.5 ± 0.5 Å.

II. MODEL AND METHOD

We performed MDS of nanoconfined water between two
parallel graphene and hexagonal boron nitride sheets using
the LAMMPS package [22]. We used the SPC/E [23] potential.
Simulations were carried out in the NVT ensemble at T =
300 K. The area of the computational unit cell was taken
as A = 422 Å2 (for more details, see Supplemental Material
and Fig. S1 therein [24]). The cell length along the z axis
was changed by subangstrom steps of about 0.2 Å for h < 10
and 1 Å beyond h = 10 Å. Note that in all plots “h” is the
distance between the center of two C atoms of top and bottom
graphene layers; however, for the calculation of density, out-
of-plane permittivity, etc., we used the effective height (as
shown in the left-hand side of Supplemental Material Fig.
S1 [24]), i.e., heff = h − σ where σ is the length parameter
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FIG. 1. The variation of ε⊥ with respect to the height of the
channel for nanoconfined water between two graphene sheets which
are separated by distance h. The shaded area denotes the error
bar of the experimental data of Ref. [20]. The bottom dashed line
refers to ε⊥ = n2, which is the dielectric constant of water at optical
frequencies where n = 1.33 is the refractive index. The inset shows
the formation of surface water layers close to the graphene sheets
for h = 7.5 Å, h = 10 Å, and h = 15 Å. When h = 15 Å other
water molecules are intercalated between those water surface layers
resulting in the growth of the middle bulklike region. (b) The in-plane
diffusion coefficient of confined water as a function of the size of the
channel. The inset shows the variation of the corresponding number
of H bonds.

in the Lennard-Jone potential. In this way we included the
excluded volume because of the finite size of both carbon
atoms (confining walls) and water molecules. Taking the
carbon-carbon distance (h) for the volume estimation causes
an underestimation of the density of intercalated water.

III. DENSITY PROFILE

In the inset of Fig. 1(a) we depict the variation of the
mass density (ρz) across the channel for three different h, i.e.,
h = 7.5, 10, and 15 Å. In the channel with height h = 7.5 Å
two distinguishable large peaks appear [this is related to the
nucleation of the surface water layers (SLs) [15,16,25]]. Note
that the density at the peaks is ρz � 5.5 g cm−3, which is
substantially larger than the bulk density ρB = 1 g cm−3 and
the density between two peaks is ρz � 3ρB. By increasing

the height of the channel up to h = 10 Å, two layers (having
smaller peaks and an almost empty middle part with ρz � ρB)
are formed: i.e., bilayer ice [7,26]. By increasing the channel
size further, the height of the peaks remain constant (see
density for h = 15 Å). For h = 10 Å the two surface water
layers are well separated and consequently we can define the
thickness of the surface water layer as D ≈ (10.0 − σ )/2 ∼=
3.4 Å where σ

2 is the thickness of the exclusion area at the
graphene-water interface [4,27]. This number is close to the
one reported by Cicero et al. [27], i.e., D ≈ 3.0 Å, and is
within the range reported by Zhang [21], i.e., 1.5–4.5 Å. For
the larger channels (e.g., h = 15 Å) other smaller density
peaks appear between the two layers. In fact, for the larger
channels, more water molecules intercalate between the SLs
and consequently a large flat region between two SLs starts to
develop [highlighted by the arrow in the inset of Fig. 1(a)].

IV. DIELECTRIC CONSTANT: ANGSTROM THIN
CHANNELS (h < 15 Å)

We performed extensive MDS by including microscopic
details of nanoconfined water in channels with h < 15 Å. In
fact, when a water slab is subjected to a weak electric field
the local perpendicular component of the dielectric constant
at distance z can be calculated by using [15,16]

ε−1
⊥ (z) = 1 − δ2

⊥(z)

ε0kBT + δ2
⊥/V

, (1)

where ε0 is the vacuum permittivity, V = Ah is the volume
of the simulation box, δ2

⊥(z) = 〈m⊥(z)M⊥〉 − 〈m⊥(z)〉〈M⊥〉
with m⊥(z) the spatial resolved microscopic polarization den-
sity, and M⊥ = A

∫
m⊥(z)dz the total dipole moment of the

system. In Eq. (1) �2
⊥ = A

∫
δ2
⊥(z)dz and the perpendicular

polarization density profile m⊥(z) is calculated using the
integral of the local electron distribution �(z), i.e., m⊥(z) =
− ∫ z

−h/2 �(z′)dz′. Note that we found that �2
⊥ ∼= δ2V , which

can be due to the in-plane homogeneous mass density dis-
tribution within each SL. This is an important finding which
substantially decreases the simulation time.

The averaging and correlations were taken over more than
10 ns after ε⊥(z) was converged. In Fig. S2 of the Supplemen-
tal Material [24] we show the results (time series) obtained
from MDS using Eq. (1) for a channel with height h = 10 Å.
The result converges to εSL = 2.102(2). Consequently, the
effective dielectric constant (ε⊥) can be obtained using

1

ε⊥
= 1

heff

∫ heff/2

−heff/2

dz

ε⊥(z)
, (2)

where heff = h − σ is the effective height of the channel. In
Fig. 1(a), we depict the variation of ε⊥ with channel height
for h < 15 Å. It is seen that for channels with height 6.7 Å <

h < 8 Å there is a deep local minimum. Beyond h = 8 Å, the
dielectric constant, as shown in Fig. 1, approaches εSL = 2.1.
Our results are in good agreement with experiments [20],
which were done for h > 8 Å [shaded area in Fig. 1(a)].

To obtain further insights, we evaluated the in-plane com-
ponent of the diffusion coefficient [D f = (Dxx + Dyy)/2] of
systems with different channel heights using the mean-square
displacement method [28]. The results are shown in Fig. 1(b).
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A significant decrease in the diffusion coefficient is found
which is an independent check for the presence of a phase
transition from liquid water to amorphous ice. Such a phase
transition is known and was already reported by Zangi et al.
[29]. It is related to commensurability effects in confined
water [6]. Moreover, we calculated the number of hydrogen
bonds (H bonds) for different channel heights [see inset
of Fig. 1(b)]. There is a significant peak within the range
h = 6.7–8 Å which is a consequence of the aforementioned
structural transition of liquid water to amorphous ice. We
found a direct correlation, i.e., r = +0.91 (anticorrelation,
r = −0.89) between ε⊥ and D f (number of hydrogen bonds).
Note that both ε⊥ and D f exhibit an oscillatory behavior
which is a consequence of the commensurability effect be-
yond 6 Å, i.e., optimal layering of water.

V. DIELECTRIC CONSTANT: FROM NANOMETER TO
BULK THICK CHANNELS

Here we explain the C model that was used in Ref. [20]
to explain the experimental data for ε⊥ for channels with
h � 20 Å. They modeled the system as consisting of three
capacitors in series and the total capacitance is given by
[20] C−1

T = C−1
L + C−1

m + C−1
R . It was assumed that the ca-

pacitance of the surface water layer (called “dead layer” in
Ref. [20]) was taken as CL = CR, which indicates that the
two near-surface layers (SLs) have the same capacitance and
consequently equal dielectric constant [20].

Thus, in order to interpolate the perpendicular component
of the dielectric constant from the angstrom regime to bulk
water, we introduce an imposed C model [20,21]. Confined
water is divided into three parts, i.e., two SLs (formed near
the confining walls) with dielectric constant εL and εR, and the
middle region having dielectric constant εm. We use symbol
“L” (“R”) for the left (right) SL and assume that the external
electric field is along the +z axis, i.e., from the bottom to the
top. It is known that [21]

ε−1
⊥ = D

h
ε−1

SL + h − 2D

h
ε−1

m , (3)

where ε−1
SL = 1

2 (ε−1
L + ε−1

R ). In order to calculate ε⊥ for a
given channel, we found the local polarization density (LPD).
In the absence of an external electric field, the z component of
the LPD was calculated p⊥(z, E0 = 0) = δP/δV , where δP
is the net dipole moment of volume δV . By dividing h into
N small slabs with thickness δz (h = Nδz), we find the LPD
[p⊥(z, 0)] as shown in Fig. 2 (dots) for h = 7.5 Å (the surface
area of the computational unit cell along the confining walls
was taken A = 422 Å2). There are peaks at z0 ≈ ±0.6 Å in the
p⊥(z, 0) profile which are related to the net dipole of each SL
and correspond with the maximum in the density profile [see
inset of Fig. 1(a)]. For channel h = 10 Å the result is shown
in the inset where a small flat region appears between the two
peaks [p⊥(z, 0) of the two SLs], which is highlighted by the
arrow in the inset. The polarization of SLs (when E0 = 0)
with opposite directions are due to the exerted van der Waals
torque on the water molecules close to the confining walls
[7]. The flat region with small LPD between the two peaks
is due to the random orientation of water molecules in the
semibulk.

FIG. 2. The variation of local polarization density across a chan-
nel with h = 7.5 and 10 Å (see inset) filled by water. The orientation
of the water molecules close to the graphene sheets is shown in the
inset.

VI. THE POLARIZATION DENSITY AND DIELECTRIC
CONSTANT OF THE “SURFACE WATER LAYERS”

In order to find the out-of-plane dielectric constant of both
SLs, we focus on the channel with height h = 10 Å where
the two SLs are most clearly defined. We find the best fits
(solid line in the inset of Fig. 2) of the p⊥(z, 0) data with the
following equations:

pL(z < 0, E0 = 0) � A1e−(z+z0 )2/2σ 2
0 , (4a)

pR(z > 0, E0 = 0) � −A2e−(z−z0 )2/2σ 2
0 , (4b)

where pL (pR) are the LPD of the left (right) SL with ampli-
tude A1 (A2). In fact, these two variables are LPD of SLs in
the absence of external electric field. Obviously, because of
the geometrical symmetry pL(z, 0) = −pR(−z, 0) (see solid
curves in Fig. 2). Using a mean-field approach in the presence
of external electric field E0, the local dielectric constant for
each SL is given by [16,19,30,31]

ε−1
L,R(z, E0) = 1 − 	pL,R(z, E0)/ε0E0, (5)

where the induced macroscopic polarization density due to the
applied field is 	pL,R = pL,R(z, E0) − pL,R(z, 0). We found
that 	pL,R(z, E0) are two symmetric functions of z and
pL,R(z, E0) > pL,R(z, 0).

The MDS results for the local polarization density and
	p⊥(z, E0) are shown in Fig. 3 for h = 100 Å (and
in the inset for h = 10 Å) when E0 = 0 and E0 = 0.1 V Å−1.
The symmetrical properties are independent of the thickness
of the channel. The corresponding 	p⊥(z, E0) are shown
by black curves. Though the LPDs are antisymmetric [see
Eqs. (4)], 	p⊥(z, E0) are symmetric. This will result in εR =
εL. On the other hand, in order to find 〈	p⊥(E0, h)〉, we
performed five additional MDS for channels with height h =
13, 24, 44, and 83 Å and bulk water. By applying a weak
electric field of E0 = 0.01 V Å−1, we calculated 	p⊥(E0, h)
and found that it could be fitted to pBe−D/h with pB = 8.75 ×
10−4 C m−2 and D = 3.4 Å (see Supplemental Material Fig.
S3 [24]). Notice that in general pB is a function of E0. The
exponential increase of the macroscopic polarization of the
middle region is an indication of the importance of corre-
lations between the SLs and water molecules outside of the
SLs. In the Supplemental Material Fig. S4 [24] we depict the
variation of εm with channels height when E0 = 0.01 V Å−1
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FIG. 3. The local polarization density across the channel [p⊥(z, E0) for an applied electric field of E0 = 0 and E0 = 0.1 V Å−1] for channel
height h = 100 Å and h = 10 Å (inset) in the absence (presence) of electric field is shown by blue dots (red curve). The differences between
these two data are shown by the black curve.

which confirms the large height limit of εm � 80. For instance,
in Fig. S3 of the Supplemental Material [24], we show MDS
results of the LPD and 	p⊥ for h = 10 Å and h = 100 Å
when E = 0.0 and E0 = 0.1 V Å−1. The blue dotted curve
is the results for p⊥(z, 0) and the red curve is the LPD data
in the presence of E0 = 0.1 V Å−1. Interestingly the results
for 	p⊥ are symmetric confirming that the latter symmetrical
effect is independent of the thickness of the channel. The
absence of perfect symmetry in the polarization for chan-
nels with height h = 100 Å is due to the smaller statics of
MD simulations as compared to the statics for h = 10 Å.
The large number of water molecules in the system when
h = 100 Å makes the simulations time-consuming. Eventu-
ally, the corresponding effective dielectric constant of SLs is
obtained from

ε−1
L,R = 1

D

∫
L,R

dz

εL,R(z, E0)
. (6)

Notice that εL = εR. The effective dielectric constant of the
SL when h = 10 Å and E0 = 0.1 V Å−1 is found to be εL,R

∼=
1.98. The latter number is close to our obtained value for
εSL � 2.1 using MDS.

VII. THE EFFECT OF DENSITY OF WATER INSIDE
THE CHANNELS

In order to determine the number of water molecules inside
a channel with height h, we connect the channels to two
reservoirs (as we discussed in detail in Refs. [4,32]). The
density of water in the reservoirs is kept constant at the bulk
density with P0 = 1 atm (e.g., by using two moving walls;
see Refs. [4,32]). The density of water molecules inside the
channel can be determined by counting the number of water
molecules inside the channel divided by the effective volume
[4,33]. The ratio between the chemical potential of water
outside and inside the channel is proportional to the minus
of the ratio between the corresponding pressures [4,34]. We
found that the density of water inside channels with h <

15 Å can be slightly larger than the density of bulk, and
beyond h = 15 Å the density approaches the bulk density. In
order to show the effects of density we plot in Supplemental

Material Fig. S5 [24] the dielectric constant ε⊥ as a function of
density.

VIII. COMPARISON WITH EXPERIMENT

The capacitance of the middle region is determined by
performing additional MDS. The polarization density of the
middle region is averaged over z and approaches the po-
larization density of bulk water in the presence of E0, i.e.,
pB = 〈	p⊥(E0, h → ∞)〉. For intermediate values of h this
polarization density is influenced by the dipoles of the surface
water layers and by the spatial density oscillations [see curve
for h = 15 Å in Fig. 1(b)]. However, from MDS we found
that it can be approximated by 〈	p⊥(E0, h)〉 ≈ pBe−D/h.
Accordingly the dielectric constant of the middle region is
given by

1

εm(h, E0)
= 1 − pB

ε0E0
e−D/h. (7)

For h � 15 Å, one naturally expects to recover the dielectric
constant of bulk water. The obtained pB = 8.75 × 10−4 C m−2

and D = 3.4 Å for E0 = 0.01 V/Å (see Supplemental Mate-
rial Fig. S4 [24]) guarantees that εm(h → ∞, E0) � 80 ± 5.

Using Eqs. (3) and (7), the effective dielectric constant
of a slab of water confined between two graphene sheets
can be calculated. The obtained ε⊥ for h � 15 Å are shown
by the solid curve in Fig. 4 for D = 3.4 Å. The results are
compared with the C model of Ref. [20] where the thickness
of the surface layer was used as a fitting parameter (D =
7.4 Å). Notice that D = 7.4 Å is almost twice the thickness
D = 3.4 Å of the surface water layer as determined micro-
scopically. Notice that the present approach does not involve
any fitting parameter and gives much better agreement with
experiment (red dots). We also compared our results with
those of Refs. [30,31], which overestimate ε⊥ when com-
pared with experiment and our results (see square symbols
in Fig. 4).

It is worthwhile to mention that we repeated all the cal-
culations for channels made of h-BN using the water-hBN
potential introduced by Wu et al. [35], and found similar
results for h < 15 Å. Therefore, we conclude that confinement
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FIG. 4. The dielectric constant of confined water in channels
having size h � 15 Å. The experimental data are shown by orange
dots. The dashed lines are the results of the capacitance model used in
Ref. [20] with D = 3.4 Å (blue) and D = 7.4 Å (green). The results
of Refs. [30,31] are depicted by square symbols.

is the main origin of the found interesting behavior of ε⊥
with h. In our previous paper [36], we showed that the
electronic contribution to the dielectric constant of confined
two-dimensional ice is within the range 1.4–2.0 at 0 K.
At room temperature, the electronic dielectric constant of
confined water at angstrom scale slits should be smaller,
i.e., 1.2. We found that the charge density of water in two-
dimensional space is suppressed by the confinement along
the z axis. The latter effect makes the electronic contribu-
tion smaller (than what is expected from bulk water) and
negligible. Nevertheless, what we report in this study is
the dipolar contribution which is straightforwardly obtained
using Eq. (2).

IX. CONCLUSION

In summary, our imposed C model is based on a mean-
field approach that is based on MDS data which includes
the asymmetry of the induced dipole of the water molecules
near the confinement walls. This turns out to be essential in
order to explain quantitatively the recent experimental data
[20] for h � 15 Å. It resulted in different quantitative results
(as compared to the former C model) for one of the key
parameters of the C model (i.e., SL thickness). For channels
with thickness h < 15 Å, the mean-field approach is no longer
applicable and we have to include the microscopic details
of water. We obtained small values for ε⊥, which are due
to the suppression of the fluctuation of the z component of
the water dipoles resulting in an order of magnitude decrease
of ε⊥, as compared to the bulk value (�80). Therefore,
there is a significant difference between fluctuations in m⊥(z)
for channels with height h < 15 Å and that of bulk water.
We found that while the diffusion coefficient recovers its
bulk value for channels of size h � 15 Å, there is a long-
range effect on the fluctuation of Mz due to confinement.
Furthermore, notice that the obtained ε⊥ ∼= 2.1 for height
10 Å < h < 15 Å is much smaller than that of bulk water
(≈80), proton-disordered ice phases, e.g., ice Ih (≈99) [17],
low-temperature proton-ordered ices (≈3-4), and many other
phases of ice [20]. Although confined water (in channels with
height h < 15 Å) can be categorized as a random phase of
ice, it nevertheless exhibits smaller (larger) dielectric constant
(density ρz) than all previously known ices. Our modeling
and simulations bridge the microscopic theory and continuum
mean-field approach (established by Debye, Onsager, and
Krikwood [18]) and elucidate the microscopic mechanisms
that determine the dielectric properties of confined water.
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