|
Record |
Links |
|
Author |
Faraji, F.; Neek-Amal, M.; Neyts, E.C.; Peeters, F.M. |
|
|
Title |
Cation-controlled permeation of charged polymers through nanocapillaries |
Type |
A1 Journal article |
|
Year |
2023 |
Publication |
Physical review E |
Abbreviated Journal |
Phys Rev E |
|
|
Volume |
107 |
Issue |
3 |
Pages |
034501-34510 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Molecular dynamics simulations are used to study the effects of different cations on the permeation of charged polymers through flat capillaries with heights below 2 nm. Interestingly, we found that, despite being monovalent, Li+ , Na+ , and K+ cations have different effects on polymer permeation, which consequently affects their transmission speed throughout those capillaries. We attribute this phenomenon to the interplay of the cations' hydration free energies and the hydrodynamic drag in front of the polymer when it enters the capillary. Different alkali cations exhibit different surface versus bulk preferences in small clusters of water under the influence of an external electric field. This paper presents a tool to control the speed of charged polymers in confined spaces using cations. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000955986000006 |
Publication Date |
2023-03-17 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2470-0053 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.4 |
Times cited |
1 |
Open Access |
Not_Open_Access |
|
|
Notes |
|
Approved |
Most recent IF: 2.4; 2023 IF: 2.366 |
|
|
Call Number |
UA @ admin @ c:irua:196089 |
Serial |
7586 |
|
Permanent link to this record |