toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Michel, K.H.; Neek-Amal, M.; Peeters, F.M. pdf  doi
openurl 
  Title Static flexural modes and piezoelectricity in 2D and layered crystals Type A1 Journal article
  Year (down) 2016 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 253 Issue 253 Pages 2311-2315  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Piezo- and flexoelectricity are manifestations of electromechanical coupling in solids with potential applications in nanoscale materials. Naumov etal. [Phys. Rev. Lett. 102, 217601 (2009)] have shown by first principles calculations that a monolayer BN sheet becomes macroscopically polarized in-plane when in a corrugated state. Here, we investigate the interplay of layer corrugation and in-plane polarization by atomistic lattice dynamics. We treat the coupling between static flexural modes and in-plane atomic ion displacements as an anharmonic effect, similar to the membrane effect that is at the origin of negative thermal expansion in layered crystals. We have derived analytical expressions for the corrugation-induced static in-plane strains and the optical displacements with the resulting polarization response functions. Beyond h-BN, the theory applies to transition metal dichalcogenides and dioxides. Numerical calculations show that the effects are considerably stronger for 2D h-BN than for 2H-MoS2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000390339000002 Publication Date 2016-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 5 Open Access  
  Notes ; The authors acknowledge useful discussions with L. Wirtz, A. Molina-Sanchez, and C. Sevik. This work was supported by the ESF-Eurographene project CONGRAN, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.674  
  Call Number UA @ lucian @ c:irua:140309 Serial 4462  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: