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Nanoengineered nonuniform strain in graphene using nanopillars
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Recent experiments showed that nonuniform strain can be produced by depositing graphene over pillars.
We employed atomistic calculations to study the nonuniform strain and the induced pseudomagnetic field in
graphene on top of nanopillars. By decreasing the distance between the nanopillars a complex distribution for
the pseudomagnetic field can be generated. Furthermore, we performed tight-binding calculations of the local
density of states (LDOS) by using the relaxed graphene configuration obtained from atomistic calculations. We
find that the quasiparticle LDOS are strongly modified near the pillars, both at low energies showing sublattice
polarization and at high energies showing shifts of the van Hove singularity. Our study shows that changing the
specific pattern of the nanopillars allows us to create a desired shape of the pseudomagnetic field profile while
the LDOS maps provide an input for experimental verification by scanning tunneling microscopy.
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Graphene is a newly discovered atomic thin two-
dimensional honeycomb lattice consisting of carbon atoms.'
It is a zero gap semimetal with a conical band structure where
the conduction and valence bands touch each other at the
Dirac point.> Nanoengineered nonuniform strain distribution
in graphene is a promising road to generate a band gap and a
large pseudomagnetic field. Scanning tunneling microscopy
(STM) measurements have shown strain-induced Landau
levels® which correspond to a huge pseudomagnetic field on
the order of 300 T. Shear strain is essential and neither uniaxial
nor isotropic strain produces a strong uniform pseudomagnetic
field.*

Graphene’s high responses to external forces result in
mechanical deformations. Over the past few years there have
been several efforts to control graphene’s electronic properties
by strain.’>”’ Elastic deformations create a pseudomagnetic
field which acts on graphene’s massless charge carriers.>*%?
The resulting variation of the hopping energies can be viewed
as an induced pseudomagnetic field which enters in the
Dirac equation. Engineering of the right topology of the
induced pseudomagnetic field provides symmetrical magnetic
confinement which confines electrons in specific regions in
space.'’

Recently, it was predicted that nonuniform strain may lead
to a considerable energy gap and a large gauge field that
effectively acts as a uniform magnetic field.!' Recently, Tomori
et al. used pillars made of a dielectric material (electron
beam resist) which were placed on top of a substrate that
was then overlayed with graphene to generate nonuniform
strain on a microscale.'”> The graphene sections, which are
located between the pillars, are attached to the substrate, and
the size and separation of the pillars control the strength and
distribution of the strain. The length scale in the experiment
was micrometers and SiO, was used as the substrate.

Here we study nonuniform strain at the atomistic scale
where the continuum approach is no longer applicable. We
also study the local density of state (LDOS) maps using the
relaxed graphene configuration as the input for tight-binding
calculations. We find very strong nonuniform pseudomagnetic
fields that can be created by depositing graphene on a substrate
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decorated with nanoscale pillars and find that the quasiparticle
LDOS are strongly modified near the pillars. The optimum
configuration of graphene over such nanopillars depends on the
imposed boundary conditions. The induced pseudomagnetic
fields are larger than 1000 T and are spatially distributed
around the nanopillars. Decreasing the distance between the
nanopillars alters the sixfold symmetry of the pseudomagnetic
field distribution and results in a new configuration of magnetic
confinement for the charge carriers in graphene around the
nanopillars. Our study shows the LDOS maps around the
pillars, which can be experimentally verified by STM. Here
we ignore additional effects possibly arising from electrostatic
and/or electron-lattice interactions which could modify the
strain configuration or the local density of states.

Atomistic model. A classical atomistic molecular dynamics
simulation (MD) is employed to find the optimum configu-
ration of large flakes of graphene (GE) over the nanopillars.
The second generation of Brenner’s bond-order potential is
employed and is able to describe covalent sp® bond breaking
and the formation of associated changes in atomic hybridiza-
tion within a classical potential.'> The van der Waals (vdW)
interaction between GE and the nanopillars and substrate is
modeled by employing the Lennard-Jones (LJ) potential.'*"!”

In order to model the substrate, a (100) surface with a lattice
parameter equal to £ =3 A is assumed with LJ parameters
os and €s. The density of sites in the substrate is g = £72
and the number of atoms is 13 700. As an example we took
the nanopillars to be double-wall armchair carbon nanotubes
(DWCNTs) taken with (3,3) and (6,6) indexes including 144
atoms (see the left insets in Fig. 1). The number of atoms in
the graphene sheet is 44 800, which is equivalent to a sheet of
size 34.8 x 34.43 nm?. We assume that both the substrate and
nanopillar atoms are rigid during the simulation.

To model the interaction between two different types of
atoms, such as a carbon atom (C) and a substrate atom (S),
we adjust the LJ parameters using the equations er = (/eces
and o7 = (oc + 05)/2. The parameters for carbon are o¢c =
3.369 A and ec = 2.63 meV. For the substrate atoms we
took o5 = 3.5 A and €5 = 10.0 meV, which are typical for
insulators, e.g., Si0,.'*
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FIG. 1. (Color online) The optimal configuration of graphene on
top of double-wall armchair carbon nanotubes (nanopillars) that are
place on top of a square lattice substrate (the right insets show a top
view). The left insets show the nanopillars and the substrate. In (a)
the distance between pillars is 10 nm while in (c) and (d) it is 5 nm.
The pillar heights are 1 nm in (a), (b), and (d), while the height of
the central pillar in (¢) is 1.5 nm. The colors indicate the scaled stress
distribution, i.e., white represents the highest stress and dark green
the lowest stress.

The atomic stress experienced by each ith atom can
be expressed as??! i, =50 riijil;)’_ where the inner
summation is over all the carbon atoms which are neighbors
of the ith atom which occupies a volume Q = 47 aj/3. The

scaler r;; is the v component of the distance between atoms
i and j and Flf is the force on ith atom due to atom jth
in the p direction. We used this expression to calculate the
stress on each atom. In order to be able to visualize the stress
distribution on the GE atoms, we colored the atoms using
a dimensionless invariant quantity22 J, = é[(nxx — nyy)2 +
(nyy — Nz 4 Nz — Ma)® + 6(77)2;y + 77)251 + 7751)], ie., dark
green (white) is related to a minimum (maximum) value of J;.

Strain-induced pseudomagnetic field. Coupling the Dirac
equation, which governs the low-energy electronics of
graphene, to the curved surface is a common way to study the
effects of graphene’s curved geometries on its corresponding
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electronic properties.>® The metric of the curved surface
describes the curvature of the surface. The origins of the
deformations are external stresses that deform graphene so
that the nearest neighbor distances become nonequal. The
latter results in modified hopping parameters, which are now
a function of the atomic positions #(r).!° Assuming small
atomic displacements (u =r; —r; < ap) and rewriting the
Dirac Hamiltonian in the effective mass approximation with
nonequal hopping parameters yields the induced gauge fields:

2ph
A= i(u)cx — Uyy, — 2uxy)9 (1)

where B ~ 3isaconstant and u,g is the strain tensor including

out-of-plane displacernents,2’18 ie.,
1 (duy  dug 3%h
I L , 2
fap =3 <8x5 * 0xy * Bxaax,g> @

where h(x,y) is the displacement along the z direction.!'®

Note that the out-of-plane term becomes important when A
is comparable to or larger than the C-C bond length.!” The
corresponding pseudomagnetic field component perpendicular
to the x-y plane is obtained as

B=0,A, —dA,. 3)

This is the pseudomagnetic field that an electron experiences
in the K valley. We will find B by making the necessary
differentiations numerically in the case of supported boundary
conditions. Notice that in Egs. (1)—(3) the differentiation is
discrete and done numerically with the forward differentiation
method by using the initially flat and finally strained discrete-
atomic coordinates. The larger the deformed region, the closer
this numerical differentiation is to the continuum limit.”

Here we found that the major contribution is due to
the out-of-plane terms, which appear mainly around the
deformed parts. The other in-plane terms contribute less to the
pseudomagnetic field around the deformed parts, particularly
when the system is large as compared to the deformed regions.

Tight-binding model. The electronic properties are de-
scribed by a tight-binding Hamiltonian for the m carbon
orbitals. The minimal Hamiltonian, which describes the low-
energy band structure is

H=— Z t(r,»j)cjgcjg + H.c., “

(i,j).0

where cja (cjo) creates (destroys) an electron at site i (j).
The sum runs over nearest neighbors pertaining to opposite
sublattices (i, j) and the electron spin o. In the following we
will ignore the spin degrees of freedom since no spin-flipping
term is present in the Hamiltonian.

The strain is included in the modified hopping amplitudes
between 7 orbitals #, (r;;), according to the empirical relation

t(rij) = Yo exp3'37(%_1), where yp =2.7eVandag = 1.42A
is the equilibrium intercarbon distance.’ This also gives a
good approximation for the next-nearest neighbor hopping
amplitude. We also consider the effect of misalignment of the
7 orbitals due to the finite curvature. This effect translates into
the mixing of the m and o orbitals. Depending on the local
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curvature, the modified hopping amplitude is

t(rij) = tr sin(6;) sin(6;) cos(¢) — 1, cos(6;) cos(8;), (5)

where 6; and 6; are the angles formed by the normals at each
atomic position, defined as n; = 1/3 Z#k(rij X Tig)/|rij ¥
rix|, with the interatomic distance r;; and ¢ describes the
angle formed by the normal n; and the plane defined by n;
and r;; (for details, see Refs. 23-25). The strain configuration
and the curvature are extracted from the relaxed position of
the graphene sheet obtained from our molecular dynamics
simulation. For the systems considered here the effect of
curvature is small when compared to the effect of strain on
the hopping amplitudes.

The system size considered here (44 800 carbon atoms)
becomes prohibitively large for an exact diagonalization
of the Hamiltonian. Instead we will numerically obtain an
approximation of the Green’s function by using a Chebyshev
expansion within the kernel polynomial method.?®?° The
Green’s function is defined as

Gij(@) = (ci|G@)|ch), (6)
where G(w +in) = [w+in — H]~".

First a scaling of the excitation energies is performed,
e.g., H=(H—1b)/a, & = (w — b)/a, where a = (Epay —
Enin)/(2—1n) and b = (Enax + Emin)/2, where n > 0 is a
small number. Following Refs. 28 and 26, the components of
the Green’s function can be expressed as an expansion written
in terms of Chebyshev polynomials:

00
Gij (5)) — Z a, (i,j)e_i n-arccos(&))’ (7)
n=0

—2i
V1—&?
where the coefficients a,(i,j) = (c;|v,) can be obtained by
an iterative procedure involving repeated applications of the
Hamiltonian on iterative vectors |v,,):

[Vnt1) = 2H|vn) — [Vn-1), ®

where |vg) = Ic}) and |v_;) = 0. Significant computational
speedup is achieved when the computations are done on
graphical processing units (GPUs), i.e., video cards. The
computations are performed on Nvidia GeForce GTX 580
cards.

The physical properties that can be straightforwardly
extracted from the Green’s functions are the local density of
states (LDOS), N;(w) = — %Im[Gii(w)], where the factor of 2
appears due to the summation over the spin components.

Results and discussion. At the start of our simulation we
put graphene on top of the nanopillars at hp = 1.4 nm. The
substrate is at zero height and the nanopillars are located
between graphene and the substrate. We have investigated two
particular patterns of nanopillars: (i) five DWCNTs which
have in-plane coordinates (0,0) and (+d, =d) withd = 5 and
10 nm, and (i) four DWCNTs at (0,0), (d~/3/2, d /2), and
(0, —d). The height of DWCNTSs was set to be 1 nm [except
for the central pillar shown in Fig. 1(c) for which the height is
1.5 nm]. In order to prevent crumpling at the boundaries we
only allow the boundary atoms to vibrate in the z direction.

In Fig. 1 we show the optimal configuration of GE on top of
four [Figs. 1(a)-1(c)] and five [Fig. 1(d)] DWCNTs. The right
insets in Figs. 1(a)-1(d) show a top view. Notice that the stress

RAPID COMMUNICATIONS

PHYSICAL REVIEW B 86, 041405(R) (2012)

distribution is mainly concentrated around the nanopillars, as
expected. For the configuration presented in Fig. 1(a) the pillars
are 10 nm apart. Due to the vdW interaction the graphene
sheet will stick to the substrate except around the pillars,
where the shape is close to a Gaussian even though deviations
from an isotropic description exists. In the atomic limit, a
slight anisotropy appears, and the graphene sheet bends mostly
in a zigzag direction, making the shape of the deformation
hexagonal. In Figs. 1(b)—1(d) the pillars are closer together
(i.e., 5 nm). Due to its large bending rigidity, the graphene sheet
will be suspended over the substrate in the regions between
the pillars. Depending on the pillar configuration, various stain
configurations are achieved. If all the pillars have the same
height [Figs. 1(b) and 1(d)], most of the stress is obtained at the
pillar location and where graphene sticks to the substrate. If the
central pillar is higher [Fig. 1(c)], besides the maximal stress
at the pillar location, high stress is also obtained throughout
the suspended sheet.

The corresponding pseudomagnetic field profiles generated
by the strain configurations are shown in Figs. 2(a)-2(d).
When the deformations are isolated [Fig. 2(a)], the gauge
field and the pseudomagnetic field exhibit sixfold symmetry*!°
similar to a Gaussian deformation, h(x,y) = G exp(— x;} 5.
The continuum theory predicts that the pseudomagnetic gauge

field is A = %(xz — y2, —xy) and the pseudomagnetic

fieldis B = h(’;—’g)z(xz + y?)sin(36), where 0 is the azimuthal
angle. Large pseudomagnetic fields on the order of thousands
of teslas are obtained. When the graphene sheet is suspended
[Figs. 2(b)-2(d)], the sixfold symmetry survives near the
pillars, but more complex pseudomagnetic field profiles can
be obtained, from large fields throughout the suspended sheet
[Fig. 2(c)] to fields localized only near the edges of the
suspended sheet [Fig. 2(d)]. As seen from Figs. 2(c) and 2(d),
the closer the pillars, a triangular and rectangular magnetic
field profile is created within the position of the pillars. In
Figs. 2(c) there is a high magnetic field region at the center
and the electron cannot pass through this region.

In order to investigate the effect of the strain on the
electronic properties, we input the obtained relaxed positions
of the atoms from our atomistic simulations into the tight-
binding model in order to find the LDOS maps around the
pillars. These are shown in Figs. 2(e)-2(h) for £ = 0.1332 eV
and in Figs. 2(1)-2(1) for E = 2.2306 eV. Two regimes can
be observed, depending on the energy. For low energies, the
pseudomagnetic field will induce sublattice polarized states
localized either near the pillars [Fig. 2(e)] or in the regions
with large pseudomagnetic fields [Fig. 2(g)]. In the five-pillar
configuration [Fig. 2(h)], these low-energy states are mostly
localized near the edges of the suspended region. Interference
patterns which depend on the energy are observed.’® A very
different effect, which is not described by the low-energy
Dirac approximation,” is related to the shift of the van Hove
singularity seen in unstrained graphene at £ = yy = 2.7 eV.
Because of strain, the hopping parameters will be modified,
therefore locally shifting the van Hove singularity. This is
observed in Figs. 2(i)-2(l), where the enhancement of the
LDOS is correlated with the stress and is enhanced where
the stress is larger. Additional interference patterns appear
between the pillars. Note the hexagonal symmetry of the
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FIG. 2. (Color online) (a)-(d) Pseudomagnetic fields in one Dirac cone for four different pillar configurations shown in Fig. 1, respectively.
(e)—(h) Low-energy (E = 0.1332 ¢V) LDOS map and (i)—(1) high-energy (E = 2.2306 eV) LDOS map for the same four configurations. Note

that the bulk unstrained LDOS is subtracted from the LDOS maps.

LDOS, as seen in Fig. 2(i), showing the deviation from
the circular symmetry obtained for an isolated Gaussian
bump.

Conclusions. By combining molecular dynamics simula-
tions with tight-binding calculations, we have shown how
strain can be manipulated at the nanoscale. Isolated pillars
show a sixfold symmetric pseudomagnetic field and LDOS
map. By decreasing the distance between the pillars, the sixfold
symmetry of the pseudomagnetic field is altered and a complex
field profile appears within the suspended area. We found that,

by modifying the interpillar distances and the pillar heights,
one can design a particular desired magnetic field profile.
Modifications of the hopping parameters due to changes in
the C-C distances induced by strain modify the LDOS around
the deformations of the graphene sheet. Verifications of the
sixfold symmetry of the LDOS near pillars could be easily
confirmed with STM experiments.
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