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The opto-electronic properties of confined water form one of the most active research areas in the
past few years. Here we present the multiscale methodology to discern the out-of-plane electronic
and dipolar dielectric constants (εel⊥ and ε

dip

⊥
) of strongly confined water. We reveal that εel⊥ and ε

dip

⊥

become comparable for water confined in angstrom-scale channels (with height of less than 15Å)
within graphene (GE) and hexagonal boron nitride (hBN) bilayers. Channel height (h) associated
with a minimum in both εel⊥ and ε

dip

⊥
is linked to the formation of the ordered structure of ice

for h ≈(7 − 7.5)Å. The recently measured total dielectric constant εT⊥ of nanoconfined water [L.
Fumagalli et al., Science 360, 1339 (2018)] is corroborated by our results. Furthermore, we evaluate
the contribution from the encapsulating membranes to the dielectric properties, as a function of the
interlayer spacing, i.e. the height of the confining channel for water. Finally, we conduct analysis
of the optical properties of both confined water and GE membranes, and show that the electron
energy loss function of confined water strongly differs from that of bulk water.

I. INTRODUCTION

Optical, dielectric and electronic properties of confined
water in hydrophobic (e.g. made of GE) and hydrophilic
(e.g. hBN) slit-shaped pores and channels are of broad
relevance to science and engineering, in topics as versa-
tile as ion-transfer and protein folding1,2, biochemistry,
environmental science3, and fluid-based electronics4,5.
One generally expects a very low dielectric constant in
crystalline two-dimensional (2D) materials6, but only re-
cently it became possible to measure the out-of-plane di-
electric constant of confined water, by detection of elec-
trostatic force via atomic-force microscopy (AFM)7. For
water confined within bilayer GE and bilayer hBN it was
found that total out-of-plane dielectric constant of water
is εT⊥ ≈ 2 for channel height smaller than 15Å7 (while the
dielectric constant of GE and hBN layers was measured
to be about 3.5). Such ultra-low εT⊥ is below any reported
dielectric constant of water and ice, and might be due to
the formation of two interfacial layers close to the confin-
ing membranes, having vanishingly small polarizations.
For channel heights h > 20Å, the dielectric constant in-
creases superlinearly towards the bulk value (εB ≈ 80)7.
One then poses the question: what is the structure of
such a strongly confined water? The formation of ice
under such high-pressure conditions is expected. Inde-
pendent of the water phase, all the ice phases formed
under pressure should satisfy the so-called Bernal-Fowler
ice rules, where each water molecule has four hydrogen-
bonded neighbors with a quasi-tetrahedral configuration
[with two short O-H distances (the donated protons) and
two long ones (the accepted protons)]. At the transi-
tion into 2D phase of ice, the crystalline structure with
a larger density may form, where the nearest-neighbor
distances are more or less the same. Such a flat square
ice was proposed in Ref. [8], exhibiting higher density

(1.36 gcm−3) as compared to bulk crystalline ices (∼ 0.92
gcm−3 for ice IX and XI). However, we will show that
crystalline 2D-ices can not be the answer to the above
question posed. If so, then it becomes impossible to infer
how the electronic and dipolar contributions to dielec-
tric constant of water will evolve in the regime of the
angstrom-scale confinement. The prediction of the latter
behavior is the primary objective of our article.

Although several studies determined the out-of-plane
component of dipolar dielectric constant of confined wa-
ter in nanoscale channels9–12, there is no clear distinction
nor explanation for the behavior of either electronic or
dipolar dielectric constant of confined water in channels
narrower than 15Å. Since classical theoretical methods
are unable to properly address the electronic part of the
dielectric constant, quantum simulations at the angstrom
length scale are highly required.

In this study, employing a multi-scale approach, a solid
theoretical background for understanding the dielectric
properties of strongly confined water is presented. In
particular, for water confined at angstrom scale (within
the bilayers of 2D materials) we revealed that the elec-
tronic and dipolar contribution to the dielectric constant
are almost equal. This is entirely at odds with expecta-
tions for bulk water, where electronic contribution is neg-
ligible, or the expectations for crystalline 2D materials,
where dipolar contributions vanish. Besides the results
on the confined water alone, we also present a separate
yet useful analysis of the dielectric and optical properties
of the confining GE or hBN membranes as a function
of the interlayer distance, for complete understanding of
related and readily feasible nanofluidic optoelectronic de-
vices.
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FIG. 1: The histogram for the z-component of the dipolar and electronic dipole moments of (a) GE-confined water and (c)
hBN-confined water, obtained from MD (empty columns) and DFT (shaded columns) calculations, in absence of electric field.
The blue and black dotted curves represent approximately Gaussian distribution. Panels (b) and (d) show the top and side
views of the amorphous ice structures between GE and hBN layers under pressure (2 − 4)GPa and at room temperature, for
channel height 7.2Å. (e) illustrates the definition of different quantities: h, the distance between the centers of atoms of the
confining layers; σ, the length parameter in the Lennard-Jones (LJ) potential; t, the effective (real) thickness of the system,
with membranes included; and lz, the thickness of confined water alone.

II. MULTISCALE APPROACH TO DIELECTRIC
CONSTANT OF CONFINED WATER

We start by explaining the methodology behind our
analysis. In order to extract the components to dielec-
tric constant of confined water, we resort to the linear-
response regime, and employ two methods based on com-
puting the z-component of the total dipole moment.
More details can be found in Ref. [13].

A. Dipolar contribution

Using Large scale Atomic/Molecular Massively Paral-
lel Simulator (LAMMPS)15 package, after reaching equi-
librium conditions during 9ns, we produced hundreds of
snapshot for confined water over the period of 1ns. The
cell length along z-axis was changed by sub-Angstrom

steps of about 0.2Å. Although in all plots channel height
h was defined as the distance between the center of
two C(B/N) atoms of top and bottom GE(hBN) layers,
here we considered the effective height of water alone,
i.e. lz = h − σ where σ is the length parameter in the
Lennard-Jones (LJ) potential (cf. Fig. 1(c)).

The NVT ensemble (Nose-Hoover thermostat) was
used to keep temperature constant at 300K16. The
SPC/E model for water-water interaction17 and LJ po-
tential were employed for GE-water and hBN-water in-
teractions. The cutoff for LJ and Coulomb potential was
taken to be 10Å. The LJ parameters are set to ϵOO =
0.1553 kcal/mol, σOO = 3.166Å. By applying Particle-
Particle Particle-Mesh (PPPM) method, the long-range
Coulomb interaction has been computed, having an ac-
curacy of 10−4. The water bonds and angles were fixed
using SHAKE algorithm18. The periodic boundary con-
ditions are applied along x and y directions. The unit
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cell sizes are set to yield the bulk water density, i.e. 1
gcm−3.

A microscopic picture of dielectric properties of con-
fined water can be assessed by calculating the fluctua-
tions of the total dipole moment of the system (µdip

T ) at
finite temperature. After equilibration, by extracting the
z-component of the total molecular dipole moment, µdip

z ,
one obtains the perpendicular dipolar dielectric constant
as10

εdip⊥ = 1 +
σ2
⊥

ε0kBTV
, (1)

where σ2
⊥ = ⟨µdip

z µdip
z ⟩ − ⟨µdip

z ⟩⟨µdip
z ⟩ and V is the vol-

ume of the system (V = A × lz where A is the area of
the confining wall (membrane) and lz < h is the effective
thickness of the confined water). For µdip

z (= P dip
z × V )

obtained in molecular dynamics simulations, the averag-
ing is performed over time, typically for longer than 1 ns
after εdip⊥ has converged. Note that Eq. (1) is applicable
only to homogeneous systems12 and can be reformatted
to have the usual form of the fluctuation dissipation the-
orem19.

B. Electronic contribution

Ab initio simulations of the behavior of the con-
fined water under electric field were performed us-
ing Spanish Initiative for Electronic Simulations with
Thousands of Atoms (SIESTA)21 package based on
the density functional theory (DFT). Double-ζ plus
two polarization functions (DZDP) basis set for ex-
pansion of the electron wave function were used. For
the exchange-correlation functional we used general-
ized gradient approximation (GGA) with Perdew-Burke-
Ernzerhof (PBE) pseudopotential22 and nonlocal van der
Waals density functional (vdW-DF) with Dion-Rydberg-
Schröder-Langreth-Lundqvist pseudopotential23. The
linear combination of atomic orbitals (LCAO) with the
cutoff energy of 400Ry in a 3×3×1 Monkhorst-Pack grids
were used for channel heights 6.5Å≤ h ≤15Å. Notice that
for optical calculations, we increased the Monkhorst-Pack
grids and optical mesh to 100×100×1 and 500×500×1,
respectively.

The optimized ionic coordinates of water molecules
from MD simulations were fed as input for DFT calcula-
tions. Next, the self-consistent cycle (SCF) convergence
was performed where the vacuum size in the z-direction
for all systems was set to 20Å.

By applying external electric field, perpendicular to
the (x, y)-plane, and finding the z-component of the elec-
tronic dipole moment of system, µel

z , one can estimate the
electronic dielectric constant as

εel⊥ ≃ 1 +
∆µel

z

ε0V Ez

, (2)

where ∆µel
z = µel

z (Ez)−µz(0) is the dipole moment vari-
ation for confined water subjected to an electric field Ez.

Here µel
z (0) is the electric dipole moment in absence of

electric field. A linear fit of the data of ∆µel
z versus Ez

using Eq. (2) will yield ε⊥el for various considered config-
urations.

In order to understand this equation, for a given Ez,
one can find εel⊥ = Ez

Ez−E
p

⊥

when Ez is the external elec-
tric field, and Ep is the response (or polarization) elec-
tric field, i.e. Ep

⊥ =
∆µel

z

V
ε0 = ∆P el

z ε0, where ∆P el
z is

the change in polarization that can be calculated from
first principles. Obviously, for small ∆µel

z

ε0V Ez
one obtains

Eq. (2). Similar analysis was used for determining dielec-
tric constant of bulk MgO by Umari et al., where ε⊥ was
found to be around 5.1424.

C. Total dielectric constant

For polarizable systems, the total dielectric constant
(or equivalently dielectric constant) has two main con-
tributions, i.e. molecular and electronic one:

εTij = εmij + εelij , (3)

where i, j = x, y, z, and εmij and εelij are molecular and
electronic dielectric constant, respectively. Also, εmij =

εdipij +εionij where εdipij and εionij are dipolar and ionic terms.
Note that the dipolar term is dominant compared to the
ionic term. In result, we assumed that εmij = εdipij . Here-
after label zz is replaced by ⊥. At zero temperature the
dipolar term vanishes (because σ2

⊥ = 0) and dielectric
constant has only electronic contribution. By increas-
ing temperature, and in the 3D-phase, the dipolar term
should be taken into account. Notice that the molecular
term includes both ionic and dipolar terms, where dipolar
term is dominant, due to rigidity of water bond lengths
and angles. In this study we focus on the perpendicular
component of εT⊥ for both electronic and dipolar terms.

One also expects to see the contribution of confining
membranes to the dielectric constant. Before presenting
the dielectric behavior of confining membranes (in section
3), we first determine the dielectric constant of confined
water alone. The needed quantities to compute the dipo-
lar and electronic dielectric constants as explained in the
previous sections were calculated using combined molec-
ular dynamics (MD) and ab initio simulations. In what
follows, we present those results.

D. Results for dielectric constant of confined water
alone

As explained above, different configurations (minimum
100 snapshots for a given channel height) of confined wa-
ter between two GE(hBN) sheets separated by distance
h were extracted from MD simulations. In Fig. 1, we
show the histograms for the obtained z-component of the
dipolar and electronic dipole moments, µdip

z and µel
z , for
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confined water in bilayer GE [Fig. 1(a)] and bilayer hBN
[Fig. 1(b)] for h = 7.2Å and Ez = 0. As indicated in
Fig. 1(c) and mentioned before, the channel height (h)
is defined as the interlayer distance between the confining
2D membranes. However, the actual volume used in Eq.
(1) and Eq. (2) is V = A × lz. For simplicity, the GE
and hBN sheets were taken rigid in the MD simulations,
and considered channel height was kept below 15Å. The
insets in both figures show top and oblique views of a
typical lattice structure of confined water. Interestingly,
both dipolar and electronic parts of the dipole moments
follow approximately Gaussian distribution in Fig. 1(a)
and (b). It is worthwhile to estimate εdip⊥ using other
water models such as TIP4P20. We performed an addi-
tional simulation to obtain εdip⊥ for nano-confined water
between two GE sheets with h = 10Å and found εdip⊥ ≈ 3
which is larger than experimental value7, i.e. 2. The lat-
ter results indicate that SPC/E model produces better
agreement with experimental results.

In the MD simulations, we computed the dipolar di-
electric constant (εdip⊥ ) for various channel heights using
Eq. (1). Then, for the electronic part, as depicted in
Fig. 2 for two typical systems, we find the variation of
electronic polarization (P el

z ) with respect to the applied
electric field, where the slope of P el

z (Ez) for the consid-
ered confined water and Eq. (2) yield εel⊥.

The corresponding εel⊥ and εdip⊥ (without GE and hBN
layers), using 100 MD snapshots and Eq. (2), are shown
in Fig. 3 by square and triangular dots, respectively. In
the same panel the total dielectric constant is shown by
circular dots. Notice that we subtract 1 from εT⊥ to avoid
double counting, since 1 appears in both εdip⊥ and εel⊥.
One can see that total dielectric constant of confined wa-
ter is smaller than 2.5 for a wide range of channel heights,
i.e. 6.5Å≤ h ≤ 15Å. This is in good agreement with the
dielectric constant of the angstrom scale channels in the
recent experimental data7. Notice also that εdip⊥ > 2εel⊥.

It is further important to note that confined water in
channel heights h ≈ (7.2 − 7.5)Å exhibits amorphous
crystalline structure (see the shaded area in Fig. 4).
To verify this, in Fig. 4(a) we depict the lateral radial
distribution function (RDF) of the O-O distance of wa-
ter molecules confined in channels of height h = 6.5Å,
7.2Å, and 10Å. In Fig. 4(b) the lattice structure of con-
fined water in case h = 7.2Å is shown. Such a clear
crystalline structure causes the dielectric constant to be
minimal, and is not observed for other channel heights
(h = 6.5Å or 10Å). In fact, the electronic and dipolar
dielectric constants for h ≈ (7.2− 7.5)Å are smaller than
those found in the other channel heights. We attribute
this to the suppression of both electronic charge and
molecular dipole fluctuations in the systems with pro-
nouncedly crystalline structure and significant increase
in the number of hydrogen bonds, as shown in Fig. 5.

FIG. 2: The z-component of the electronic polarization vs.
applied electric field Ez, of confined water in bilayer GE and
bilayer hBN, for interlayer distance h = 7.2Å. The results are
obtained after averaging over 100 structural snapshots.

FIG. 3: Electronic, dipolar, and total dielectric constant of
confined water as a function of the channel height. Shaded
area highlights the minimal values of both εel⊥ and ε

dip

⊥
.

III. DIELECTRIC CONSTANT OF BILAYER
GRAPHENE AND BILAYER HBN: THE EFFECT

OF INTERLAYER DISTANCE

In this section we turn our attention to finding the
dielectric constant of bilayer GE and bilayer hBN, as
typical experimental choices for confining membranes in
nanofluidic samples.
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A. Methodology

For the fully first-principles calculations of dielectric
constant of crystalline structure of both GE and hBN,
it is more accurate to employ a plane-wave basis projec-
tor augmented wave (PAW) method in the framework
of density-functional theory (DFT). The generalized
gradient approximation (GGA) in the Perdew-Burke-
Ernzerhof (PBE) form25 was used for the exchange-
correlation potential as implemented in the Vienna Ab
initio Simulation Package (VASP)26. In order to cap-
ture the layer-layer interaction, the vdW correction to
the GGA functional was included, by using the DFT-D2
method of Grimme27.

For the ground-state stacking configurations of the
studied bilayers (GE and hBN), the structural optimiza-
tions and the dielectric properties were calculated us-
ing the kinetic energy cutoff for plane-wave expansion
to be 500 eV. The energy was minimized until its varia-
tion in the following steps became 10−8 eV. A 50×50×1
Γ-centered k-point sampling was used for both structural
optimizations and dielectric properties. To avoid inter-
action between the neighboring layers, a vacuum space
of 20Å was implemented. The atoms were fully relaxed
until the stress along each direction became smaller than
1 kbar and the forces acting on each atom became less
than 10−8 eV/Å.

Used two-dimensional membranes exhibit periodicity
in two-directions (x and y directions in our calculations)
and the layer is confined in the z-direction. Non-physical
interactions are avoided by introducing a vacuum be-
tween the repeating layers in the z-direction. The out-
put of the VASP code for the dielectric constant, εSC ,
then contains both the dielectric response of the layer
and the effect of the inserted vacuum. The 3×3 di-
electric constant has three non-zero elements, two in-
plane (εSC

xx =εSC
yy ) and one out-of-plane (εSC

zz ) component.
VASP calculates the electronic dielectric constant using
the following equation

εSC
ij = (δij + χel

ij), (4)

where indices i, j = x, y, z, εSC
ij represents the dielectric

constant for the ij-direction, while χel
ij is the susceptibil-

ity tensor for the same direction. Due to isotropic nature
of the bilayers, the dielectric constant elements are zero
for i ̸= j. Notably, the dielectric constant given in Eq. (4)
includes the electronic and ionic contributions which are
given by the susceptibility tensor:

χel
ij = χel

ij + (1/V )ZmiF
−1
mnZnj , (5)

where m,n count the atoms in the lattice, χel
ij is the pure

electronic susceptibility tensor, V is the volume of the
cell, F−1

mn is the force constant matrix, and Z is the Born
effective charge tensor.

Note that the dielectric constants extracted from
VASP represent the combined dielectric constant of the

FIG. 4: (a) The radial distribution function of oxygen atoms
of confined water for the channel heights h = 6.5Å, 7.2Å, and
10Å. Panel (b) shows the top and side views of the lattice
structure of confined water for h = 7.2Å.

FIG. 5: The variation of the number of H-bonds in confined
water as a function of the channel height in the MD simula-
tions. The red dashed line indicates the number of hydrogen
bonds in bulk water.

sample and the surrounding vacuum. In order to dis-
till the dielectric constant of the sample alone, we elimi-
nate the contribution of the vacuum using a capacitance
model6. In fact, in the out-of-plane direction, the ca-
pacitance of the supercell extracted directly from VASP
code (εSC

⊥ ) is the series of the vacuum capacitance and
the sample capacitance. This enables us to find the out-
of-plane electronic dielectric constant (we used notation
zz = ⊥) of the sample alone using6

εel⊥ = [1 +
c

t
(

1

εSC
⊥

− 1)]−1, (6)

where c is the thickness of the supercell (including the
sample and the surrounding vacuum) and t is the real
thickness of the system (see Fig. 1(d)), i.e. t = h +
σ. Therefore all the results reported in this paper using
VASP code have been re-scaled using Eq. (6).
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FIG. 6: (a) The obtained electronic dielectric constant (εel⊥)
of bilayer GE and bilayer hBN vs. the channel height, in
comparison to several available values from literature.

B. Results

Finally we discuss the calculated electronic dielectric
constant of bilayer GE and bilayer hBN as confining
membranes. We performed several ab initio simulations
for determining the dielectric constant of bilayer GE
(with AB-stacking) and hBN (with AA′ stacking) as a
function of interlayer distance. Here the evaluations of
dielectric constant are done at zero temperature and for
rigid bilayers, hence the dipolar term for the dielectric
constant is zero.

For the ground-state bilayers, there are few available
reports on the dielectric constant using different thickness
for monolayer and bilayer GE and bilayer hBN6. Our
results of εel⊥ for bilayer GE and bilayer hBN (3.0) are
in good agreement with those of Ref. [28], i.e. εel⊥ ≃
2.9 and the experimental results for the total dielectric
constant7,29, i.e. εT⊥

∼= 3.5. In comparison to our results,
Ref. [30] underestimates εel⊥ for bilayer GE and bilayer
hBN. All these results are shown in Fig. 6(a).

The variation of εel⊥ with h representing a decay func-
tion. This is due to the fact that, as seen from Eq. (2) the
dielectric constant is a function of thickness via V = A×t.
Therefore one expects to see a decreasing function of εel⊥
with increasing interlayer distance h, as validated in our
results shown in Fig. 6(a). Two best fits according to
Eq. (2) and corresponding functions are shown by solid
lines in Fig. 6(a), i.e. εel⊥(GE) = 0.52 + 8.19/h and
εel⊥(hBN) = 0.75 + 6.42/h. We speculate that the main
origin of the decreasing dependence of εel⊥ on thickness
is the induced charge polarization in bilayers driven by
external electric field.

For completeness of the analysis, we performed two
additional DFT calculations to determine the electronic
dielectric constant of monolayer GE and hBN, and ob-
tained values 2.94 and 2.99 respectively. These values

are very close to those found for relaxed bilayer GE and
bilayer hBN (the starting values at far left of Fig. 6(a)).
This can be understood by using a simple model for a
bilayer with dielectric constant εBL composed of two suc-
cessive capacitors, each made of a monolayer with dielec-
tric constant εML. Taking the thickness of the bilayer
as tBL and that of monolayers as tML, and the fact that
CBL = CML/2 for a series of two capacitors, one writes
tBL/εBL = 2 × tML/εML. Using tBL = 2 × tML - when
bilayer is at its minimum energy configuration - we find
εBL = εML. This is indeed verified by our ab initio re-
sults, and once more validates our methodology.

IV. OPTICAL PROPERTIES

In this section, we connect the dielectric function of
the studied systems to their corresponding optical prop-
erties, in particular the absorption spectra, the electron
energy loss function and the real part of the dielectric
function. When discussing properties of the confining
membranes we consider monolayer, bilayer and double-
layer GE. Here term ‘double layer’ stands for two GE
layers which are separated by an arbitrary channel width
h > 3.5Å. Term ‘bilayer’ refers to the minimum-energy
configuration of two stacked graphene layers, i.e. AB-
stacking for bilayer GE (with h = 3.4Å).

A. Method

The dielectric function ε(ω) is obtained by assuming
λ ≫ Luc, where λ and Luc are the wavelength of the in-
cident light and the unit cell length, respectively. The
imaginary part (εi(ω)) of ε(ω) is extracted using the
Lorentzian approximation of Dirac delta function33, and
the real part (εr(ω)) can be obtained using the Kramers–
Kronig relations34. It is useful to mention that εr(ω)
and εi(ω) are related to the energy storage and dielectric
losses within the medium, respectively. Consequently,
the extinction ratio, κ(ω) is given as:

κ(ω) =

√

√

ε2r(ω) + ε2i (ω)− εr(ω)

2
, (7)

from which the absorption spectrum α(ω) can be calcu-
lated as:

α(ω) =
2ωκ(ω)

c
, (8)

where λ and c are wavelength and speed of light in vac-
uum, respectively. Three different absorption spectra
can be obtained with respect to the polarization direc-
tion of the external electric field. The broadening energy
and the value of the scissor operator are taken as 50meV
and 1 eV, respectively. The electron energy loss (EEL)
function (the collective excitation of plasma) is calculated
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as follows:

L(ω) = Im(−
1

ε(ω)
) =

εi(ω)

ε2r(ω) + ε2i (ω)
, (9)

where L(ω) gives the electron inelastic interaction with
a sample.

B. Results

1. Energy loss function of confined water

We first calculated the electron energy loss function for
confined water between GE sheets. As a general feature,
we find that confined water exhibits a large red-shift and
a strong decrease of intensity of the characteristic peak
compared to bulk water (see Fig. 7(a)). For example,
the characteristic peak for confined water in 7.2Å chan-
nel appears at energy about 16 eV (with λ ∼= 77nm and
ν = 3.87 × 1015 Hz in the extreme ultraviolet (EUV)
range). The peak broadening and a slight blue shift is ob-
served with increasing channel height, which is due to the
phase transition from amorphous ice to liquid water. The
characteristic peak for bulk water is located at energy
about 25 eV (with λ ∼= 49.5nm and ν = 6.05 × 1015 Hz
in same EUV range). Our results for bulk water are in
agreement with those reported by Emfietzoglou et al. us-
ing an optical-data model35 and with those obtained in
inelastic scattering measurements36. One should note
that significant peak, in this work, appears beyond the
range (0− 20) eV at energy about 25 eV compared to the
results in Ref. [36,37].

The reason for the larger L(ω) in bulk water as com-
pared to the confined water is the larger degree of free-
dom of water molecules in bulk water resulting in larger
fluctuations in the electronic polarization (∆µel

z ). The
latter increases dipolar term in Eq. (3). In addition, we
depicted real and imaginary parts of electric dielectric
function for confined water between GE sheets, i.e. εr(ω)
and εi(ω) as shown in Fig. 7(b, c). It is seen that εr(ω)
and εi(ω) for channel height 10Å is larger than those for
7.2Å, 8.2Å. Subsequently L(ω) is also smaller for channel
with height 10Å.

Furthermore, the calculated energy gaps for confined
water were 3.86 eV, 4.71 eV and 4.56 eV for channel
heights h = 7.2Å, 8.2Å, 10Å, respectively. Such non-
monotonic behavior of the band gap can be related to
the (in)commensurability between the channel height and
the size of water molecules38.

Also, the absorption coefficient was calculated. The
optical gap (∆o) and the electronic gap (∆e) are almost
equal, which is due to neglected excitonic effects. As
a result, the band edge absorption spectra show non-
monotonic (oscillating) behavior for both ∆e and ∆o.
Notice that no absorption peak was found for either con-
fined or bulk water, which is due to the transparency of
water at the absorption edge. We refrain from repeating
those results here.

FIG. 7: (a) Total electron loss function, (b) imaginary part
and (c) real part of the electric dielectric function of confined
water in angstrom-scale slits. Here the heights of channel are
7.2Å, 8.2Å, 10Å. For the comparison purposes we show bulk
results

2. Energy loss function of graphene membranes

As a highly spatially resolved spectroscopy (SRS) to
detect changes in the electronic structure, the electron
loss function is a very suitable approach to investigate
the surface plasmons. There are two types of surface
plasmons: i) low energy 2D plasmons, and ii) high energy
π and π + σ plasmons40. The electronic structure could
be found by recording the energy loss of transmitted or
reflected electrons. Also, these surface plasmons can be
described using the classical plasmons theory41. In fact,
the energy of plasmons can be calculated from the peak
positions of any loss function. Multiple peaks are found
in the electron loss function because of the collective ex-
citations at various photon energies. In Fig. 8, EEL
functions (L̄∥(ω) and Lz(ω)) are shown for monolayer,
bilayer and double-layer GE along three different photon
polarization directions (x, y, and z). The revealed peaks
in L̄∥(ω) and Lz(ω) display plasma frequencies (ωp).

Duo to the symmetry, the EEL function for the x and
y-directions are the same. Fig. 8(a) show in plane EEL
function (L̄∥(ω) =

Lx(ω)+Ly(ω)
2 ). Three peaks of L̄∥(ω)

are found at 2 eV, 5.6 eV and 16 eV in monolayer GE,
which is in good agreement with previous reports47,50,51.
The first peak (at ∼ 2 eV) originates from the π plasmon.
The other peaks are due to the π + σ plasmons. Going
from monolayer to bilayer and double-layer GE, one no-
tices a blue shift in both relevant energy ranges, with
double-layer data somewhat red-shifted with respect to
bilayer data. Further, the peak at 2 eV of the monolayer
is washed out in cases of bilayer and double layer. We
note that the optical properties remain similar for chan-
nel heights in the range 5Å≤ h ≤10Å, so only h = 5Å was
considered for the double-layer case in our calculations.

In Fig. 8(b) we plot the EEL function for the per-
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FIG. 8: Electron energy loss function for monolayer, bilayer
and double-layer GE for (a) in-plane polarization and (b) per-
pendicular polarization.

pendicular polarization (z-polarized photon). Lz(ω) is
forbidden in IR and visible range when the electric field
is perpendicular to the GE sheets. The results remain
relatively unchanged in the UV range, compared to the
other directions of photon polarization. It is important
to note that the peaks in Lz(ω) could stem from the reso-
nant transitions of π, π∗, σ and σ∗ electrons among bands
in all directions. In addition, the high energy π and π+σ
plasmons can be found in bilayer and multi-layer GE52.

3. Optical absorption of graphene membranes

Optical absorption of GE is divided into intra-band
(from IR to vacuum-UV) and inter-band transitions (in
the extreme-UV range). Allowed optical transitions be-
tween sub-bands obey relation |N | = |M ± 1|, where N
and M are Landau level indices42.

In Fig. 9, strong optical isotropic in the monolayer,
bilayer, and double-layer GE is shown for the polarization
vector on sheet.

Duo to the symmetry, the absorption for the x and
y-directions is the same. Fig. 9(a) show in-plane optical
absorption (ᾱ∥ =

αx+αy

2 ). Absorption takes place from
IR to UV range. We found a symmetry-allowed peak
at 5.2 eV39, although earlier empirical results indicated
an asymmetric absorption peak at 4.6 eV43–46 in Deep-
UV range (related to intraband transitions). Addition-
ally, we did not find the second exciton peak at 6.4 eV
reported in Ref. [43]. These differences originate from
excitonic effects. In addition, quasi-flat bands of π and
π∗ cause that i) the electron and hole effective masses
become larger, ii) van Hove singularities appear closer to
the Fermi level and iii) the absorption peak emerges in
Deep-UV range47, along M-K symmetry direction. Fur-
thermore, asymmetric absorption peaks have been ob-
served related to inter-band transitions in extreme-UV

FIG. 9: The absorption spectra for monolayer, bilayer and
double-layer GE along (a) in-plane polarization and (b) per-
pendicular polarization.

range. For monolayer GE, the maximum intensity ab-
sorption peak are found at ∼ 15 eV which originate from
the electronic transition between px hybridized orbital
and π∗ anti-bonding orbital along the M–K direction and
around K point, respectively47. Also, we found a slight
blue shift and an intensity increase in the bilayer and
double-layer GE compared to the monolayer GE. Addi-
tionally, we did not find the peak at 12 eV in monolayer
GE, due to parallel bands py to π∗ along K-Γ direction,
reported in Ref. [47].

Fig. 9(b) shows the absorption for perpendicular po-
larization (z-polarized photon), which is negligible (from
IR to vacuum-UV) because of the extremely small thick-
ness of the layers. The first absorption peak is observed
at 15.6 eV for all considered GE membranes. A sharp
absorption peak around 17.6 eV was found in bilayer GE,
that can be related to the electron charge redistribution
caused by an external perturbation (e.g. incident light).
In fact, AB-stacked configuration causes asymmetry be-
tween valence and conduction bands. Therefore, charge
transfer occurs between upper and bottom layers, after
spatial redistribution of the electron density48,49. Conse-
quently, both the intensity of interlayer transitions and
the absorption peak are enhanced in the extreme-UV
range.

4. The real part of the dielectric function of graphene
membranes

The static dielectric function (ε(0)) refers to response
of the system to the external electric field at near-zero
frequencies. Fig. 10(a) shows the real part of the dielec-
tric function for the x-polarized photon. ε(0) is about
7.5 eV, 15.6 eV and 12.4 eV for monolayer, bilayer and
double-layer GE, respectively. Moreover, the typical os-
cillatory behavior of the dielectric function is dampened
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FIG. 10: Real part of the dielectric function for monolayer,
bilayer and double-layer GE, for photon polarization along
(a) x-, (b) y-, and (c) z-direction.

in all cases, for energies above 6 eV. Furthermore, the
plasmon frequency (ωp) can be found where εr changes
sign from negative to positive53. There are one plasmon
frequency in monolayer GE at 2.6 eV and two different
plasmon frequencies in the bilayer and double-layer GE
at 2.6 eV and 6.7 eV.

Fig. 10(b) shows the real part of the dielectric constant
for the y-polarized photon. The static ε(0) is about 6 eV,
14.6 eV and 12.4 eV for monolayer, bilayer and double-
layer GE, respectively. For y-polarization, two plasmon
frequencies are found for both bilayer and double-layer
GE at 2.6 eV and 6.7 eV, but there is still no plasmon
frequency in the monolayer case.

For the z-polarized photon [Fig. 10(c)], static ε(0) is
about 1.3 eV, 1.38 eV and 1.34 eV for monolayer, bilayer
and double-layer GE, respectively. These values are close
to the vacuum dielectric function, due to the extremely
small thickness of the material along z-direction. The
oscillatory behavior of the real part of the dielectric con-
stant shifts into the extreme-UV range, and starts from
13 eV. The plasmon frequency is found only for bilayer
GE, at 18.5 eV. As mentioned above, the perpendicular
electric field causes the asymmetry of the charge redistri-
bution around atoms of upper and bottom layers in bi-
layer GE48,49, which causes optical differences compared
to monolayer GE.

V. CONCLUDING REMARKS

Fumagalli et al. were recently able to experimentally
extract the out-of-plane dielectric constant εT⊥ of con-
fined water in bilayer hBN7. However, it remained unan-
swered what the electronic and dipolar contributions are
to dielectric constant of confined water. For bulk water
(εB = 80), because of the large dielectric constant, one
knows that the electronic contribution is negligible31.

On the other hand, in a metallic 2D-crystal, because of
perfect crystalline structure, one expects to have nearly
100% of εT⊥ to be the electronic contribution6. How-
ever, when water is confined between two 2D membranes,
in angstrom-scale slits, the ultra-low εT⊥ (≈ 2.1) makes
it highly nontrivial to determine the ratio between the
electronic and dipolar terms. After recovering the ex-
perimental result for εT⊥ in our simulations of water con-
fined in bilayer GE and bilayer hBN, in this article we
revealed that over 40% of the total dielectric constant
of confined water in angstrom-scale slits is the electronic
contribution. In other words, dipolar and electronic parts
of dielectric constant become very comparable in strongly
confined water. The small dielectric constant can be at-
tributed to the reduced number of hydrogen bonds of
confined water in angstrom-scale slits, i.e. the prefer-
ential tetrahedral bonding geometry in bulk water and
ice are no longer favored. Moreover our results confirm
that the lattice structure of the confined water in re-
cent experiment does not correspond to any of the previ-
ously studied 2D-ices32, and has likely random structure.
Therefore, one should not expect to recover experimental
data when studying monolayer crystalline ice.

For completeness, we also determined the electronic di-
electric constant of bilayer GE and hBN as typical con-
fining membranes, as a function of the interlayer spacing,
and showed that it decreases with increasing the inter-
layer distance. The obtained value for standard (empty)
bilayer is also in excellent agreement with available ex-
perimental data - the measured dielectric constant of bi-
layers in recent experiment is about εT⊥ ≈ 3.5 which is
very close to our value εel⊥ = 3.0. The difference is likely
due to the finite temperature dipolar term that can be
added to our analysis. In fact at finite temperatures, bi-
layers are not rigid and one expects to see angstrom-scale
ripples. The latter will yield non-zero dipolar term for
the dielectric constant of bilayers.

In the last part of this article we analysed the optical
properties of both confined water and bilayer/monolayer
and double-layer GE as confining membranes. In par-
ticular, we showed that electron energy loss function of
confined water is very different compared to bulk water.
Though the characteristic peak for bulk water locates at
energy about 25 eV, it shifts to about 16 eV for confined
water in 7.2Å slits. With increasing channel height (i.e.
7.2Å< h ≤15Å.), we observe a peak broadening and a
slight blue shift due to the phase transition from amor-
phous ice to liquid water. Concerning the membranes,
we detail the differences between monolayer, bilayer and
double-layer graphene when exposed to incident light in
different directions.

We conclude that the use of our methodology is fully
corroborated by comparison to experimental data, and
that it reliably discriminates the electronic and dipo-
lar contributions to dielectric constant of confined wa-
ter. Taken together with reported optical properties of
all system constituents, our results are very important
for further understanding of optoelectronic properties of
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water and its interactions with surfaces and fields, but
also for understanding such properties of other fluids and
solids under extreme confinement.
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