toggle visibility
Search within Results:
Display Options:
Number of records found: 437

Select All    Deselect All
 | 
Citations
 | 
   print
Bilayer SnS2 : tunable stacking sequence by charging and loading pressure”. Bacaksiz C, Cahangirov S, Rubio A, Senger RT, Peeters FM, Sahin H, Physical review B 93, 125403 (2016). http://doi.org/10.1103/PhysRevB.93.125403
toggle visibility
Transport properties of bilayer graphene in a strong in-plane magnetic field”. Van der Donck M, Peeters FM, Van Duppen B, Physical review B 93, 115423 (2016). http://doi.org/10.1103/PhysRevB.93.115423
toggle visibility
Theoretical investigation of electron-hole complexes in anisotropic two-dimensional materials”. Chaves A, Mayers MZ, Peeters FM, Reichman DR, Physical review B 93, 115314 (2016). http://doi.org/10.1103/PhysRevB.93.115314
toggle visibility
Effect of doping and elastic properties in (Mn,Fe)2(Si,P)”. Roy P, Torun E, de Groot RA, Physical review B 93, 094110 (2016). http://doi.org/10.1103/PhysRevB.93.094110
toggle visibility
Magnetic field dependence of energy levels in biased bilayer graphene quantum dots”. da Costa DR, Zarenia M, Chaves A, Farias GA, Peeters FM, Physical review B 93, 085401 (2016). http://doi.org/10.1103/PhysRevB.93.085401
toggle visibility
New family of graphene-based organic semiconductors : an investigation of photon-induced electronic structure manipulation in half-fluorinated graphene”. Walter AL, Sahin H, Kang J, Jeon KJ, Bostwick A, Horzum S, Moreschini L, Chang YJ, Peeters FM, Horn K, Rotenberg E;, Physical review B 93, 075439 (2016). http://doi.org/10.1103/PhysRevB.93.075439
toggle visibility
Optical properties of GaS-Ca(OH)2 bilayer heterostructure”. Torun E, Sahin H, Peeters FM, Physical review B 93, 075111 (2016). http://doi.org/10.1103/PhysRevB.93.075111
toggle visibility
Quantum magnetotransport properties of a MoS2 monolayer”. Tahir M, Vasilopoulos P, Peeters FM, Physical review : B : condensed matter and materials physics 93, 035406 (2016). http://doi.org/10.1103/PhysRevB.93.035406
toggle visibility
Vortical versus skyrmionic states in mesoscopic p-wave superconductors”. Fernández Becerra V, Sardella E, Peeters FM, Milošević, MV, Physical review B 93, 014518 (2016). http://doi.org/10.1103/PhysRevB.93.014518
toggle visibility
Two-shell vortex and antivortex dynamics in a Corbino superconducting disk”. Cabral LRE, de Aquino BRCHT, de Souza Silva CC, Milošević, MV, Peeters FM, Physical review : B : condensed matter and materials physics 93, 014515 (2016). http://doi.org/10.1103/PhysRevB.93.014515
toggle visibility
Extension of Friedel's law to vortex-beam diffraction”. Juchtmans R, Guzzinati G, Verbeeck J, Physical Review A 94, 033858 (2016). http://doi.org/10.1103/PhysRevA.94.033858
toggle visibility
Spiral phase plate contrast in optical and electron microscopy”. Juchtmans R, Clark L, Lubk A, Verbeeck J, Physical review A 94, 023838 (2016). http://doi.org/10.1103/PhysRevA.94.023838
toggle visibility
Finite-temperature vortices in a rotating Fermi gas”. Klimin SN, Tempere J, Verhelst N, Milošević, MV, Physical review A 94, 023620 (2016). http://doi.org/10.1103/PhysRevA.94.023620
toggle visibility
Skyrmionic vortex lattices in coherently coupled three-component Bose-Einstein condensates”. Orlova NV, Kuopanportti P, Milošević, MV, Physical Review A 94, 023617 (2016). http://doi.org/10.1103/PHYSREVA.94.023617
toggle visibility
Symmetry-constrained electron vortex propagation”. Clark L, Guzzinati G, Béché, A, Lubk A, Verbeeck J, Physical review A 93, 063840 (2016). http://doi.org/10.1103/PhysRevA.93.063840
toggle visibility
Local orbital angular momentum revealed by spiral-phase-plate imaging in transmission-electron microscopy”. Juchtmans R, Verbeeck J, Physical Review A 93, 023811 (2016). http://doi.org/10.1103/PhysRevA.93.023811
toggle visibility
Current-induced birefringent absorption and non-reciprocal plasmons in graphene”. Van Duppen B, Tomadin A, Grigorenko AN, Polini M, 2D materials 3, 015011 (2016). http://doi.org/10.1088/2053-1583/3/1/015011
toggle visibility
Many-body electron correlations in graphene”. Neilson D, Perali A, Zarenia M, (mbt18) 702, 012008 (2016). http://doi.org/10.1088/1742-6596/702/1/012008
toggle visibility
CO2 conversion in a gliding arc plasma: 1D cylindrical discharge model”. Wang W, Berthelot A, Kolev S, Tu X, Bogaerts A, Plasma sources science and technology 25, 065012 (2016). http://doi.org/10.1088/0963-0252/25/6/065012
toggle visibility
Effective ionisation coefficients and critical breakdown electric field of CO2at elevated temperature: effect of excited states and ion kinetics”. Wang W, Bogaerts A, Plasma sources science and technology 25, 055025 (2016). http://doi.org/10.1088/0963-0252/25/5/055025
toggle visibility
Modeling plasma-based CO2conversion: crucial role of the dissociation cross section”. Bogaerts A, Wang W, Berthelot A, Guerra V, Plasma sources science and technology 25, 055016 (2016). http://doi.org/10.1088/0963-0252/25/5/055016
toggle visibility
DBD in burst mode: solution for more efficient CO2conversion?”.Ozkan A, Dufour T, Silva T, Britun N, Snyders R, Reniers F, Bogaerts A, Plasma sources science and technology 25, 055005 (2016). http://doi.org/10.1088/0963-0252/25/5/055005
toggle visibility
Plasma–liquid interactions: a review and roadmap”. Bruggeman PJ, Kushner MJ, Locke BR, Gardeniers JGE, Graham WG, Graves DB, Hofman-Caris RCHM, Maric D, Reid JP, Ceriani E, Fernandez Rivas D, Foster JE, Garrick SC, Gorbanev Y, Hamaguchi S, Iza F, Jablonowski H, Klimova E, Kolb J, Krcma F, Lukes P, Machala Z, Marinov I, Mariotti D, Mededovic Thagard S, Minakata D, Neyts EC, Pawlat J, Petrovic ZL, Pflieger R, Reuter S, Schram DC, Schröter S, Shiraiwa M, Tarabová, B, Tsai PA, Verlet JRR, von Woedtke T, Wilson KR, Yasui K, Zvereva G, Plasma sources science and technology 25, 053002 (2016). http://doi.org/10.1088/0963-0252/25/5/053002
toggle visibility
Modeling of plasma-based CO2conversion: lumping of the vibrational levels”. Berthelot A, Bogaerts A, Plasma sources science and technology 25, 045022 (2016). http://doi.org/10.1088/0963-0252/25/4/045022
toggle visibility
How do the barrier thickness and dielectric material influence the filamentary mode and CO2conversion in a flowing DBD?”.Ozkan A, Dufour T, Bogaerts A, Reniers F, Plasma sources science and technology 25, 045016 (2016). http://doi.org/10.1088/0963-0252/25/4/045016
toggle visibility
A 3D model of a reverse vortex flow gliding arc reactor”. Trenchev G, Kolev S, Bogaerts A, Plasma sources science and technology 25, 035014 (2016). http://doi.org/10.1088/0963-0252/25/3/035014
toggle visibility
The influence of power and frequency on the filamentary behavior of a flowing DBD—application to the splitting of CO2”. Ozkan A, Dufour T, Silva T, Britun N, Snyders R, Bogaerts A, Reniers F, Plasma sources science and technology 25, 025013 (2016). http://doi.org/10.1088/0963-0252/25/2/025013
toggle visibility
Appearance of a conductive carbonaceous coating in a CO2dielectric barrier discharge and its influence on the electrical properties and the conversion efficiency”. Belov I, Paulussen S, Bogaerts A, Plasma sources science and technology 25, 015023 (2016). http://doi.org/10.1088/0963-0252/25/1/015023
toggle visibility
Fluid modelling of a packed bed dielectric barrier discharge plasma reactor”. Van Laer K, Bogaerts A, Plasma sources science and technology 25, 015002 (2016). http://doi.org/10.1088/0963-0252/25/1/015002
toggle visibility
Influence of defect distribution on the reducibility of CeO2-x nanoparticles”. Spadaro MC, Luches P, Bertoni G, Grillo V, Turner S, Van Tendeloo G, Valeri S, D'Addato S, Nanotechnology 27, 425705 (2016). http://doi.org/10.1088/0957-4484/27/42/425705
toggle visibility
Select All    Deselect All
 | 
Citations
 | 
   print

Save Citations:
Export Records: