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We show numerically that a harmonically trapped and coherently Rabi-coupled three-component
Bose–Einstein condensate can host unconventional vortex lattices in its rotating ground state. The
discovered lattices incorporate square and zig-zag patterns, vortex dimers and chains, and doubly
quantized vortices, and they can be quantitatively classified in terms of a skyrmionic topological
index, which takes into account the multicomponent nature of the system. The exotic ground-
state lattices arise due to the intricate interplay of the repulsive density–density interactions and
the Rabi couplings as well as the ubiquitous phase frustration between the components. In the
frustrated state, domain walls in the relative phases can persist between some components even
at strong Rabi coupling, while vanishing between others. Consequently, in this limit the three-
component condensate effectively approaches a two-component condensate with only density–density
interactions. At intermediate Rabi coupling strengths, however, we face unique vortex physics that
occurs neither in the two-component counterpart nor in the purely density–density-coupled three-
component system.

PACS numbers: 67.85.Fg, 03.75.Mn, 03.75.Lm
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I. INTRODUCTION

Since the experimental creation of large vortex lat-
tices in rotating single-component Bose–Einstein con-
densates (BECs) of atomic gases [1–3], there has been
growing interest in exploring the rotational response of
BECs with multiple components [4]. The physics of
such superfluid mixtures is more involved because the
competing effects enter not only via the self-interaction
of a single component but also through intercompo-
nent interactions [5, 6]. In terms of finding the energy-
minimizing vortex configuration, this means that the rel-
ative positioning of vortices in different components also
profoundly affects the total energy. In addition, two
different regimes can be distinguished: the immiscible
regime, where the components segregate into nonover-
lapping phases, and the miscible regime with interpene-
trating BECs [6].
The versatility of the emerging ground-state vortex

structures is apparent already in the simplest multicom-
ponent case, the two-component BEC, which has been
realized experimentally, e.g., with two hyperfine spin
states of atoms of the same species [7–14]. A rapidly
rotating miscible two-component BEC with equally pop-
ulated and repulsively interacting components was shown
to form vortex lattices whose geometry can change from
the usual triangular (or, as it is also called, hexagonal)
to square, with the lattice unit cells of the two com-
ponents displaced relative to each other [15, 16]. Sub-
sequently, a two-component mass-imbalanced BEC with
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attractive intercomponent interactions was shown to host
vortex lattices that vary from a square lattice to a tri-
angular lattice of vortex pairs (dimers) [17]. In the im-
miscible regime corresponding to strong intercomponent
repulsion, rotating harmonically trapped two-component
BECs undergo phase separation, which can lead to ser-
pentine vortex sheets [18] or, when the components are
unequally populated, to a giant vortex surrounded by a
ring of single-quantum vortices [19]. The ground states of
rotating two-component BECs can also host spin-texture
skyrmions [19–22] or solitary multiquantum vortices [22].

Moreover, a two-component BEC consisting of two hy-
perfine spin states of the same atom can be coupled not
only by density–density interactions but also coherently,
so that the phases of the complex-valued condensate wave
functions are no longer independent of each other. When
rotated, such Rabi-coupled two-component BECs were
found to contain vortex dimers (which can also be in-
terpreted as meron pairs [23, 24]) and multidimer bound
states composed of four or six individual vortices from
different components [25]. The dimer and multidimer
bound states were shown to emerge due to the Rabi cou-
pling giving rise to energy-costing domain walls in the
relative phase between the two components [25, 26]. In
effect, the domain walls confine vortices in different com-
ponents into bound vortex molecules [25, 26]. With in-
creasing strength of the Rabi coupling, the domain wall
between the bound vortices shrinks and eventually van-
ishes, merging the constituent vortices into an “integer
vortex” (with the same, coincident phase winding in each
component) [25–27]. Thus, the Rabi coupling induces an
attractive interaction between same-sign vortices in dif-
ferent components. For detailed studies of vortex–vortex
interactions in multicomponent BECs, we refer to the
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works of Eto et al. [28] and Dantas et al. [29].

The sign of the Rabi coupling does not play a role in
the ground state of the two-component system, since the
Rabi energy can always be reversed in sign, while leaving
all other energies unchanged, by multiplying either one
of the two condensate wave functions by −1. This im-
plies that the overall Rabi coupling in the two-component
ground state will always be nonrepulsive. However, the
situation becomes significantly more involved when there
are more than two coherently coupled components in the
system. For instance, in the case of three Rabi-coupled
BEC components, there exist parameter regimes where
it is impossible for all three pairwise Rabi energies to be
maximally attractive at the same point in space, leading
to intrinsic phase frustration. The subtle interplay be-
tween the various interactions suggests that when such
a frustrated system is set in rapid rotation, highly un-
conventional vortex lattices may appear in the rotating
ground state. So far, studies of vortices in Rabi-coupled
three-component BECs have focused on states with only
a few vortices and have demonstrated, for example, the
existence of stable vortex trimers [29–32]. The possible
structures of ground-state vortex lattices in these sys-
tems, however, have remained unexplored.

In this work, we investigate the rotational response of
coherently coupled three-component BECs in the param-
eter regime where the Rabi energies necessarily exhibit
intrinsic phase frustration. Specifically, we show that the
interplay of the intrinsic Rabi frustration with the other
interactions and superfluidity of the BEC can result in
the emergence of exotic vortex lattices in the rotating
ground state of the harmonically trapped system. Fixing
the relative phases of two pairs already fixes the relative
phase of the remaining pair. This can result in the sup-
pression of some of the three pairwise Rabi couplings and
generally leads to the existence of phase-frustrated vortex
lattices with unconventional features such as zig-zag pat-
terns, vortex chains, and doubly quantized vortices. In
the limit of strong Rabi coupling, the phase frustration
causes the three-component BEC to behave effectively as
a two-component BEC with only density–density inter-
actions. Consequently, we also observe a hexagonal-to-
rectangular transition in the ground-state vortex lattice
in agreement with previous results for the two-component
system [15, 16, 21].

The overall repulsive intercomponent interaction tends
to favor interlacing of vortices in different components,
splitting integer composite vortices into separate enti-
ties. Although each component still has the same vortex
density determined by the external rotation frequency,
the interlaced vortex lattices of the multicomponent sys-
tem acquire a skyrmionic character and therefore can no
longer be satisfactorily described by mere vortex winding
numbers. For this reason, we invoke a skyrmionic topo-
logical index defined in terms of a CP 2 invariant [33]
and use it to classify the observed nontrivial states.
This classification has a broader scope in multicompo-
nent quantum physics, since the relative phase frustra-

tion and vortex interlacing appear not only in multicom-
ponent BECs but also in multiband superconductors [34–
38], where they are associated with, e.g., fractional vor-
tices [39], solitons [27], skyrmions [33, 40, 41], and vortex
sheets [42].
The remainder of the article is organized as follows. In

Sec. II, we outline the theoretical description of the co-
herently coupled rotating three-component BECs. Sec-
tion III presents our main results, summarized in two
phase diagrams of skyrmionic vortex lattices, with the
discovered domains illustrated by representative exam-
ples of ground-state solutions. The physical interpre-
tation of the obtained lattices is given in terms of
the topological index (Sec. III A), intrinsic phase sup-
pression of the Rabi coupling (Sec. III B), and domain
walls (Sec. III C). Finally, we summarize our findings and
discuss the outlook in Sec. IV.

II. THEORETICAL FRAMEWORK

Our starting point is a harmonically trapped three-
component BEC consisting of three different spin states
of a single atomic species, coupled coherently to each
other. We use the standard zero-temperature mean-
field approach [5] and describe the condensate with three
complex-valued wave functions Ψi, where i ∈ {1, 2, 3}.
For simplicity, we focus on the case of a highly oblate
cylindrically symmetric trapping potential with the har-

monic trap frequencies satisfying ω
(i)
z ≫ ω

(i)
x = ω

(i)
y ≡ ω,

which implies that the BEC is quasi-two-dimensional and
the z dependence can be integrated out. Assuming that
the system is set into rotation about the z axis with an-
gular frequency Ω, we write the two-dimensional Gross-
Pitaevskii (GP) energy functional [30] in the rotating
frame of reference as

E =

∫

[

3
∑

i=1

(

~
2

2m
|∇Ψi|2 +

1

2
mω2r2|Ψi|2

− ΩΨ∗
iLzΨi

)

+
1

2

3
∑

i=1

3
∑

j=1

gij |Ψi|2|Ψj |2

− ~

∑∑

i6=j

ωijΨ
∗
iΨj

]

d2r,

(1)

where m is the mass of the atoms, r2 = x2 + y2, and
Lz = −i~(y∂x − x∂y) is the angular momentum opera-
tor. The local density–density interactions are charac-
terized by the intracomponent and intercomponent cou-
pling constants gii and gij (= gji, i 6= j), respectively.
We assume that g11 = g22 = g33 and g12 = g13 = g23.
The additional coupling constants ωij (= ωji ∈ R) in
Eq. (1) interlink the phase angles of the three wave func-
tions and are referred to in the literature as the effective
Rabi frequencies [23–26, 43, 44]. Accordingly, we call the
last term in Eq. (1) the Rabi energy and denote the cor-
responding energy density as εR =

∑∑

i<j εij , where



3

εij = −~ωij(Ψ
∗
iΨj + Ψ∗

jΨi) are the pairwise Rabi en-
ergy densities. The Rabi term describes a coherent cou-
pling induced by an external driving field, which allows
atoms to change their internal state coherently, and has
been achieved experimentally for two-component BECs
by means of two-photon transitions as reported, e.g., in
Refs. [7–9].
Variation of Eq. (1) with respect to each Ψ∗

i leads to
three coupled time-independent GP equations:

(

− ~2

2m
∇2 +

1

2
mω2r2 − ΩLz − µ

+

3
∑

j=1

gij |Ψj|2
)

Ψi − ~

∑

j( 6=i)

ωijΨj = 0,

(2)

where i ∈ {1, 2, 3}. Here µ is a chemical potential enforc-
ing the constraint

∫ 3
∑

i=1

|Ψi(r)|2d2r = N, (3)

since we consider a coherently coupled system whose
Hamiltonian conserves the total particle number N =
∑

iNi but not the componentwise numbers Ni =
∫

|Ψi|2d2r.
In order to obtain dimensionless quantities for the nu-

merics, we measure length in units of the radial harmonic
oscillator length ar =

√

~/mω and energy in units of
~ω. We parametrize the interactions by the two dimen-
sionless quantities g = g11mN/3~2 and σ = g12/g11 and
consider only the repulsively interacting miscible system
with 0 < σ ≤ 1. Then dimensionless GP equations take
the form

(

− 1

2
∇̃2 +

1

2
r̃2 + g|Ψ̃i|2 −

Ω

ω
L̃z −

µ

~ω

+ σg
∑

j( 6=i)

|Ψ̃j |2
)

Ψ̃i −
∑

j( 6=i)

ωij

ω
Ψ̃j = 0,

(4)

where Ψ̃i = N−1/2
√
3arΨi and r̃ = r/ar. Our numerical

analysis of the three-component BEC is based on solv-
ing Eqs. (4) with link-variable discretization [45] and a
relaxation method.

III. NUMERICAL RESULTS

We have numerically solved the GP equations of the
rotating three-component BEC in the presence of both
density–density and Rabi couplings [Eqs. (4)]. In all the
states we present, we have fixed the intracomponent cou-
pling strength to g = g11mN/3~2 = 2115 and the ro-
tation frequency to Ω = 0.97ω. On the other hand, we
treat the relative intercomponent density–density cou-
pling strength σ = g12/g11 and the Rabi frequency ω12

as tunable parameters in order to study their effect on

the ground-state vortex lattices of the system. We limit
our analysis to repulsive intercomponent interactions in
the miscible regime, 0 < σ ≤ 1, and take ω12 < 0. We
assume the other two Rabi frequencies ω13 and ω23 to
be equal and consider two different fixed positive val-
ues, ω13 = ω23 = 0.01ω and ω13 = ω23 = 0.05ω,
since these already convey many of the key phenom-
ena associated with the phase-frustrated Rabi coupling.
Hence, we end up with two different fixed parameter sets
(g,Ω/ω, ω13/ω, ω23/ω) and the dimensionless variables σ
and ω12/ω.
Our numerical results for the two parameter sets are

presented as two phase diagrams in the plane of σ and
ω12/ω in Figs. 7 and 14. In the remainder of this
section, we will first construct the phase diagrams in
detail (Sec. III A) and then discuss the emerging phe-
nomena of Rabi suppression (Sec. III B) and domain
walls (Sec. III C). We recall from Ref. [46] that when the
Rabi couplings are not present, only triangular lattices
were observed in the rotating ground states in the range
0 ≤ σ < 1.

A. Lattice phase diagrams

Let us first consider the parameter set with ω13 =
ω23 = 0.01ω, and vary the interspecies interaction
strength and the remaining Rabi frequency in the ranges
0.1 ≤ σ ≤ 1 and 0.01ω ≤ −ω12 ≤ 0.12ω, respec-
tively. This results in a diverse set of ground-state vor-
tex lattices, examples of which are depicted in Figs. 1–
6. For each solution, we present the density |Ψi|2 of
each component, the total density ntot =

∑

i |Ψi|2, and
the Rabi energy density εR; we also present the relative
phase angles between the components using the quanti-
ties sgn (ωij) cos(ϕi−ϕj), where sgn is the sign function,
i < j, and ϕi = arg (Ψi). In addition, we locate the
vortices as the singular points of the superfluid velocity
fields ~∇ϕi/m; the uncertainty in their position is of the
order of the grid spacing, which is 0.0875ar throughout
this work. We will refer to Figs. 1–6 when discussing the
related phenomena in the subsequent sections.
For 0.1 ≤ σ ≤ 0.9 and sufficiently small values of

|ω12|, all three components host triangular vortex lat-
tices that are interlaced with one another. An example
of such a state is presented in Fig. 1 for σ = 0.2 and
ω12 = −0.01ω. However, for 0.1 ≤ σ ≤ 0.2 and increased
|ω12|, vortices in components 1 and 2 move on top of
each other to form overlapping triangular vortex lattices,
which are in turn interlaced by the triangular lattice in
component 3 (Fig. 2). Together, the three components
constitute a honeycomb lattice of local minima in the
total density ntot [Fig. 2(d)].
For stronger intercomponent repulsion within the mis-

cible regime, 0.3 ≤ σ ≤ 0.9, and increased |ω12|, the
triangular vortex lattices in components 1 and 2 become
replaced by almost overlapping square lattices of vortex
dimers, while component 3 hosts a square lattice of soli-
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min max

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

x

y

25 ar

2
5
a
r

Figure 1. Rotating ground state for the intercomponent in-
teraction strength σ = g12/g11 = 0.2 and the dominant Rabi
frequency ω12/ω = −0.01. The panels show (a)–(c) atomic
densities |Ψ1|

2, |Ψ2|
2, and |Ψ3|

2, respectively; (d) total den-
sity ntot; (e) negative Rabi energy density −εR; (f) vortices
of each component on top of −εR, with (blue) squares, (ma-
genta) dots, and (green) triangles denoting vortices in the
wave functions Ψ1, Ψ2, and Ψ3, respectively; (g) − cosϕ12,
where ϕij = arg (Ψi)−arg (Ψj); (h) cosϕ13; (i) cosϕ23. Panel
(f) also indicates the elementary unit cell of the combined
lattice formed by the three kinds of vortices. The average
topological index Q̄ = 1 for this state [see Eq. (6)]. This
state corresponds to the intracomponent interaction strength
g = g11mN/3~2 = 2115, rotation frequency Ω/ω = 0.97, and
Rabi frequencies ω13 = ω23 = 0.01ω. The field of view in pan-
els (f)–(i) is 11ar × 11ar, where ar =

√

~/mω, showing the
central portion of the harmonic trap. The range of the col-
ormap is from −1 to +1 in panels (g)–(i), but varies between
panels (a)–(f).

tary vortices that interlaces both dimer lattices. Ground
states of this type are shown in Figs. 3 and 4. In the range
0.3 ≤ σ ≤ 0.7, the alignment of the dimers tends to ex-
hibit small distortions across the system, as is evident
from Figs. 3(a) and 3(b). Note, however, that neither
ntot [Fig. 3(d)] nor the Rabi energy density εR [Fig. 3(e)]
shows the lattice distortions appearing in components 1
and 2. For 0.8 ≤ σ ≤ 0.9, on the other hand, the dimers
tend to be uniformly aligned, as in Figs. 4(a) and 4(b).

The case σ = 1, corresponding to strong intercom-
ponent repulsion, can be considered as the border that
separates miscible and immiscible regimes. Here, two lat-
tice phases can be distinguished with varying ω12. For
0.01ω ≤ −ω12 ≤ 0.04ω, we obtain interlaced triangu-
lar vortex-dimer lattices in components 1 and 2, while a
triangular lattice of doubly quantized fused-core vortices
appears in component 3 (Fig. 5). A fused-core vortex
comprises two singly quantized vortices practically coa-

min max

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

x

y

25 ar

2
5
a
r

Figure 2. Rotating ground state for σ = g12/g11 = 0.2
and ω12/ω = −0.09. Other parameter values are the
same as in Fig. 1. The panels depict (a) |Ψ1|

2; (b) |Ψ2|
2;

(c) |Ψ3|
2; (d) ntot; (e) −εR; (f) vortices superposed on −εR;

(g) − cosϕ12; (h) cosϕ13; (i) cosϕ23. Panel (f) also indicates
the elementary unit cell of the combined vortex lattice. The
average topological index Q̄ = 2/3 for this state. The field
of view in panels (f)–(i) is 11ar × 11ar. The colormap ranges
from 0 to a varying positive maximum in panels (a)–(f) and
from −1 to +1 in panels (g)–(i).

lesced into one doubly quantized defect, or at least to
within a distance smaller than the core diameter of the
constituent vortices. The appearance of doubly quan-
tized vortices in the ground state of the system exempli-
fies the versatile rotational behavior of multicomponent
BECs and is to be contrasted with single-component con-
densates, where multiply quantized vortices tend to be
highly unstable against splitting [47–50] unless specifi-
cally stabilized by confinement [50–52]. The distinct el-
liptical shape of the combined defect [Fig. 5(c)] is due to
the small separation of the phase singularities within the
fused core. In the second lattice phase at σ = 1, which
occurs for 0.05ω ≤ −ω12 ≤ 0.12ω and is illustrated in
Fig. 6, component 1 hosts a honeycomb vortex lattice,
component 2 a triangular lattice of vortex dimers, and
component 3 a triangular lattice of fused-core vortices.
Furthermore, we note that the Rabi energy density ex-
hibits a honeycomb spatial structure [Fig. 6(e)].

All the states discussed above can actually be topolog-
ically characterized as containing skyrmions, which have
attracted considerable attention in the context of mul-
ticomponent BECs [19–22, 31, 53–57]. As detailed in
Ref. [33], skyrmions in a K-component model in two spa-
tial dimensions can be defined by the CPK−1 topological
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min max

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

x

y

25 ar

2
5
a
r

Figure 3. Rotating ground state for σ = g12/g11 = 0.7
and ω12/ω = −0.09. Other parameter values are the
same as in Fig. 1. The panels depict (a) |Ψ1|

2; (b) |Ψ2|
2;

(c) |Ψ3|
2; (d) ntot; (e) −εR; (f) vortices superposed on −εR;

(g) − cosϕ12; (h) cosϕ13; (i) cosϕ23. Panel (f) also shows
the elementary unit cell of the combined vortex lattice. The
average topological index Q̄ = 4/3 for this state. The field
of view in panels (f)–(i) is 11ar × 11ar. The colormap ranges
from 0 to a varying positive maximum in panels (a)–(f) and
from −1 to +1 in panels (g)–(i).

invariant

Q =

∫

iǫβα
2π|Ψ|4

(

|Ψ|2∂αΨ†∂βΨ+Ψ†∂αΨ∂βΨ
†Ψ

)

d2r, (5)

termed the topological index. CPK−1 is the complex
projective space whose points label the complex lines
through the origin of the space CK . In Eq. (5), Ψ† =
(Ψ∗

1,Ψ
∗
2, . . . ,Ψ

∗
K), ǫβα is the two-dimensional Levi-Civita

symbol, and summation over α, β ∈ {x, y} is implied. For
our states, the integration in Eq. (5) is carried over an
elementary unit cell of the combined three-component
vortex lattice, which we determine from the central re-
gion of the trap by treating the vortex array as a system
of three types of point particles. The chosen elemen-
tary unit cells are indicated by the black solid lines in
panels (f) of Figs. 1–6. The unit cell is also used to cat-
egorize the overall lattice geometry as either rectangular
or hexagonal: we identify the geometry as rectangular if
the elementary unit cell can be chosen so that its largest
angle is closer to π/2 than it is to 2π/3; otherwise, the
geometry is identified as hexagonal [58]. We note in pass-
ing that, from a topological point of view, the existence
of two-dimensional skyrmions is allowed in the model be-
cause the second homotopy group π2

(

CPK−1
)

for K ≥ 2
is isomorphic to the additive group of integers, Z [59, 60].
The topological index Q is zero for an integer vortex,

min max

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

x

y

25 ar

2
5
a
r

Figure 4. Rotating ground state for σ = 0.9 and ω12/ω =
−0.09. Other parameter values are the same as in Fig. 1. The
panels show (a) |Ψ1|

2; (b) |Ψ2|
2; (c) |Ψ3|

2; (d) ntot; (e) −εR;
(f) vortices superposed on −εR; (g) − cosϕ12; (h) cosϕ13;
(i) cosϕ23. Panel (f) also indicates the elementary unit cell
of the combined vortex lattice. The average topological index
Q̄ = 4/3 for this state. The field of view in panels (f)–(i)
is 11ar × 11ar. The colormap ranges from 0 to a varying
positive maximum in panels (a)–(f) and from −1 to +1 in
panels (g)–(i).

i.e., when there is an equally charged vortex in every com-
ponent at the same point in space (or, in fact, when the
vortices are separated by distances significantly smaller
than their core radii). In our case, we deal with two
types of states: In the first type, which corresponds to
small values of |ω12|, there are three mutually interlaced
lattices, as, for example, in Fig. 1. In the second type,
which appears when |ω12| is increased, we find increas-
ingly overlapping vortex lattices in components 1 and 2,
as in Fig. 2. If we calculate the CP 2 topological index
for the states in Figs. 1 and 2, we obtain the same Q = 1
per combined-lattice unit cell, although these two exam-
ples clearly constitute two distinct phases. Therefore, in
order to better distinguish between different phases, we
instead calculate pairwise CP 1 topological indices Qij ,
i < j, by using Eq. (5) separately for each pair of the
components [61], and then calculate an average topolog-
ical index Q̄ for the entire three-component state as

Q̄ =
Q12 +Q13 +Q23

3
. (6)

We stress that each Qij is calculated over the same unit
cell of the three-component lattice. In all the cases we
consider here, Qij ∈ {0, 1, 2}.
To illustrate the use of Eq. (6), let us consider, for

example, the state shown in Fig. 1, for which the ele-
mentary unit cell is chosen as the rhombus that connects
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min max

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

x

y

25 ar

2
5
a
r

Figure 5. Rotating ground state for σ = 1 and ω12/ω =
−0.01. Other parameter values are the same as in Fig. 1. The
panels correspond to (a) |Ψ1|

2; (b) |Ψ2|
2; (c) |Ψ3|

2; (d) ntot;
(e) −εR; (f) vortices superposed on −εR; (g) − cosϕ12;
(h) cosϕ13; (i) cosϕ23. Panel (f) also shows the elementary
unit cell of the combined vortex lattice. The average topo-
logical index Q̄ = 2 for this state. The field of view in panels
(f)–(i) is 11ar × 11ar. The colormap ranges from 0 to a vary-
ing positive maximum in panels (a)–(f) and from −1 to +1
in panels (g)–(i).

four vortices of component 3 [Fig. 1(f)]. The unit cell
encloses one vortex of each component. As a result, the
pairwise topological indices are Q12 = Q13 = Q23 = 1,
and hence the average topological index for the state is
Q̄ = 1. On the other hand, calculating the average topo-
logical index for the state shown in Fig. 2 in the same
manner gives Q̄ = 2/3, because the individual vortices
of components 1 and 2 reside on top of each other and
hence Q12 = 0.

By calculating the average topological index Q̄ from
Eq. (6) for all the obtained states and collecting the re-
sults, we obtain the phase diagram shown in Fig. 7. It
classifies the different types of ground-state skyrmionic
vortex lattices for the fixed Rabi couplings ω13 = ω23 =
0.01ω in the two-dimensional domain 0.1 ≤ σ ≤ 1 and
0.01ω ≤ −ω12 ≤ 0.12ω. In addition to indicating the
changes in Q̄, Fig. 7 shows the boundary across which
the geometry of the combined vortex lattice changes from
hexagonal to rectangular or vice versa.

The states with Q̄ = 1 correspond to skyrmionic lat-
tices with one vortex per component in a rhombic unit
cell that results from three mutually interlaced trian-
gular vortex lattices [Fig. 1(f)]. This phase occurs for
σ ≤ 0.9 and small |ω12|. For σ ≤ 0.2 and large |ω12|,
the states with Q̄ = 2/3 also have a rhombic unit cell
but with overlapping triangular lattices in components 1
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Figure 6. Rotating ground state for σ = 1 and ω12/ω =
−0.09. Other parameter values are the same as in Fig. 1. The
panels correspond to (a) |Ψ1|

2; (b) |Ψ2|
2; (c) |Ψ3|

2; (d) ntot;
(e) −εR; (f) vortices superposed on −εR; (g) − cosϕ12;
(h) cosϕ13; (i) cosϕ23. Panel (f) also indicates the elemen-
tary unit cell of the combined vortex lattice. The average
topological index Q̄ = 4/3 for this state. The field of view in
panels (f)–(i) is 11ar × 11ar. The colormap ranges from 0 to
a varying positive maximum in panels (a)–(f) and from −1 to
+1 in panels (g)–(i).
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Figure 7. Phase diagram of skyrmionic vortex lattices as a
function of the intercomponent interaction strength σ and
the Rabi frequency ω12, for fixed intracomponent interaction
strength g = 2115, external rotation frequency Ω/ω = 0.97,
and Rabi frequencies ω13 = ω23 = 0.01ω. Each asterisk
corresponds to a numerically solved ground state of the ro-
tating three-component Bose–Einstein condensate. The gray
solid lines demarcate regions with different indicated values of
the average topological index Q̄ [Eq. (6)]. The (red) dashed
lines indicate the boundary across which the geometry of the
elementary unit cell of the three-component vortex lattice
changes from hexagonal (H) to rectangular (R) or vice versa.
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Figure 8. Rotating ground state for the intercomponent in-
teraction strength σ = g12/g11 = 0.2 and the dominant Rabi
frequency ω12/ω = −0.09. The panels show (a)–(c) atomic
densities |Ψ1|

2, |Ψ2|
2, and |Ψ3|

2, respectively; (d) total den-
sity ntot; (e) negative Rabi energy density −εR; (f) vortices
of each component on top of −εR; (g) − cosϕ12; (h) cosϕ13;
(i) cosϕ23. Panel (f) also shows the elementary unit cell of
the combined vortex lattice. The average topological index
Q̄ = 4/3 for this state. This state corresponds to the in-
tracomponent interaction strength g = g11mN/3~2 = 2115,
rotation frequency Ω/ω = 0.97, and Rabi frequencies ω13/ω =
ω23 = 0.05ω. The field of view in panels (f)–(i) is 11ar×11ar.
The colormap ranges from 0 to a varying positive maximum
in panels (a)–(f) and from −1 to +1 in panels (g)–(i).

and 2 [Fig. 2(f)]. However, for σ ≥ 0.3, the states with
Q̄ = 2/3 are described by a square unit cell instead. The
rectangular lattice phase with Q̄ = 4/3, which occurs for
0.3 ≤ σ ≤ 0.9 at intermediate values of |ω12|, originates
from almost overlapping square lattices of vortex dimers
in components 1 and 2 that are interlaced by a square
vortex lattice in component 3, implying a rectangular
unit cell that contains two vortices of each component
[Figs. 3(f) and 4(f)]. The states with Q̄ = 2 appearing at
σ = 1 for small values of |ω12| have a hexagonal unit cell
that includes two vortices of each component [Fig. 5(f)];
with increasing |ω12|, the vortices of component 1 be-
gin to coincide with those of component 2, resulting in
a hexagonal lattice phase with Q̄ = 4/3 for σ = 1 and
−ω12 ≥ 0.06ω [Fig. 6(f)].
We now turn to the second parameter set, which dif-

fers from the first by having ω13 = ω23 = 0.05ω in-
stead of 0.01ω. Representative ground-state solutions for
0.03ω ≤ −ω12 ≤ 0.16ω and 0.1 ≤ σ ≤ 1 are depicted in
Figs. 8–13. When all the obtained solutions from this
range are classified in terms of the average topological
index Q̄ [Eq. (6)], we obtain the skyrmionic-lattice phase
diagram presented in Fig. 14. In addition to indicating
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Figure 9. Rotating ground state for σ = 0.1 and ω12/ω =
−0.16. Other parameter values are the same as in Fig. 8. The
panels show (a) |Ψ1|

2; (b) |Ψ2|
2; (c) |Ψ3|

2; (d) ntot; (e) −εR;
(f) vortices superposed on −εR; (g) − cosϕ12; (h) cosϕ13;
(i) cosϕ23. Panel (f) also indicates the elementary unit cell
of the combined vortex lattice. The average topological index
Q̄ = 2/3 for this state. The field of view in panels (f)–(i)
is 11ar × 11ar. The colormap ranges from 0 to a varying
positive maximum in panels (a)–(f) and from −1 to +1 in
panels (g)–(i).

the observed values of Q̄, the diagram categorizes the
ground states as hexagonal or rectangular according to
the geometry of the elementary unit cell. Below, we pro-
vide a detailed account of the discovered phases.

We first consider the small-σ regime (Figs. 8 and 9).
For small |ω12|, components 1 and 2 host zig-zag vortex
lattices and component 3 exhibits a conventional trian-
gular lattice. All three lattices interlace one another, and
the unit cell of the combined vortex lattice is a rectan-
gle containing two vortices of each component; hence,
the average topological index is Q̄ = 2. With increasing
|ω12|, the zig-zag lattices in components 1 and 2 begin
to overlap more and more, while the triangular lattice in
component 3 remains interlaced with the other two, giv-
ing rise to Q̄ = 4/3 (Fig. 8). In the limit of large |ω12|, the
lattices in components 1 and 2 become locked together
and lose their zig-zag character, which results in a two-
component-like phase with Q̄ = 2/3 and a rhombic unit
cell (Fig. 9). The total density exhibits a plane-wave-like
modulation in both Figs. 8(d) and 9(d).

The states occurring for intermediate strengths of the
intercomponent repulsion, 0.5 . σ . 0.8, correspond to
two components hosting zig-zag lattices and one compo-
nent having a square lattice. For small |ω12|, all three
lattices interlace one another and Q̄ = 2 (Fig. 10).
With increasing |ω12|, the separation distance between
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Figure 10. Rotating ground state for σ = 0.7 and ω12/ω =
−0.03. Other parameter values are the same as in Fig. 8. The
panels show (a) |Ψ1|

2; (b) |Ψ2|
2; (c) |Ψ3|

2; (d) ntot; (e) −εR;
(f) vortices superposed on −εR; (g) − cosϕ12; (h) cosϕ13;
(i) cosϕ23. Panel (f) also indicates the elementary unit cell
of the combined vortex lattice. The average topological index
Q̄ = 2 for this state. The field of view in panels (f)–(i) is
11ar×11ar. The colormap ranges from 0 to a varying positive
maximum in panels (a)–(f) and from −1 to +1 in panels (g)–
(i).

component-1 and component-2 vortices decreases and the
average topological index eventually falls to Q̄ = 4/3
(Fig. 11). In both phases, the unit cell is a rectangle that
encloses two vortices of each component and approaches
a square with increasing |ω12| [Figs. 10(f) and 11(f)]. We
also note that while the spatial profile of the Rabi en-
ergy density εR depends noticeably on ω12 [Figs. 10(e)
and 11(e)], the total density ntot exhibits a square pat-
tern in both phases [Figs. 10(d) and 11(d)].

When the intercomponent interaction strength σ ap-
proaches unity, the overall geometry of the three-
component lattices changes back to hexagonal. For
σ = 0.9 and 0.03ω ≤ −ω12 ≤ 0.09ω, the system hosts
triangular dimer lattices in components 1 and 2 and par-
allel straight chains of vortices in component 3, as illus-
trated in Fig. 12 for ω12 = −0.06ω. For σ = 1 and
0.03ω ≤ −ω12 ≤ 0.09ω, the dimers in components 1
and 2 become more tightly bound and turn into fused-
core vortices, while component 3 hosts a triangular lattice
of dimers (Fig. 13). As shown in Figs. 12(f) and 13(f),
the unit cell for both of these states is a rhomboid con-
taining two vortices of each component, and the average
topological index is Q̄ = 2. With increasing |ω12|, the
vortices in component 1 move on top of those in com-
ponent 2, resulting in the hexagonal lattice phase with
Q̄ = 4/3 observed for 0.12ω ≤ −ω12 ≤ 0.16ω.
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Figure 11. Rotating ground state for σ = 0.7 and ω12/ω =
−0.12. Other parameter values are the same as in Fig. 8. The
panels show (a) |Ψ1|

2; (b) |Ψ2|
2; (c) |Ψ3|

2; (d) ntot; (e) −εR;
(f) vortices superposed on −εR; (g) − cosϕ12; (h) cosϕ13;
(i) cosϕ23. Panel (f) also shows the elementary unit cell of
the combined vortex lattice. The average topological index
Q̄ = 4/3 for this state. The field of view in panels (f)–(i)
is 11ar × 11ar. The colormap ranges from 0 to a varying
positive maximum in panels (a)–(f) and from −1 to +1 in
panels (g)–(i).

B. Rabi suppression in the three-component
system

In the Gross–Pitaevskii model for rotating Rabi-
coupled two-component BECs, which is obtained from
Eq. (1) by assuming Ψ3 ≡ 0, the sign of the Rabi fre-
quency ω12 is irrelevant for the ground-state energetics
because changing the sign of ω12 can be exactly balanced
by changing the sign of either Ψ1 or Ψ2. Therefore,
ω12 = ω0 and ω12 = −ω0 (ω0 ∈ R) will yield physi-
cally identical ground-state solutions with the same at-
tractive Rabi energy ER ≤ 0 that favors coincidence of
same-sign vortices between the two components. In the
three-component counterpart, however, the signs of ωij

make a difference, and can result in intrinsic frustration
and consequent suppression of some or all of the three
pairwise Rabi couplings.

In order to heuristically see how the Rabi suppres-
sion emerges in the three-component BEC, consider the
wave functions in the vicinity of a vortex, for exam-
ple, in component 1. In local polar coordinates (r′, φ′)
with the vortex at r′ = 0, we write the wave functions
as Ψj (r

′, φ′) = exp [i (κjφ
′ + Cj)] fk (r

′), where the con-
stants Cj ∈ R only affect the Rabi term in Eq. (1). The
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Figure 12. Rotating ground state for σ = 0.9 and ω12/ω =
−0.06. Other parameter values are the same as in Fig. 8. The
panels depict (a) |Ψ1|

2; (b) |Ψ2|
2; (c) |Ψ3|

2; (d) ntot; (e) −εR;
(f) vortices superposed on −εR; (g) − cosϕ12; (h) cosϕ13;
(i) cosϕ23. Panel (f) also shows the elementary unit cell of the
combined vortex lattice. The average topological index Q̄ = 2
for this state. The field of view in panels (f)–(i) is 11ar×11ar.
The colormap ranges from 0 to a varying positive maximum
in panels (a)–(f) and from −1 to +1 in panels (g)–(i).

Rabi energy density then becomes

Eloc
R

πr20
= − 2

r20

∑∑

i<j

ωijδκi,κj
cosCij

∫ r0

0

fifjr
′dr′, (7)

where δκi,κj
is the Kronecker delta, Cij = Ci − Cj , and

r0 defines the small disk over which the local Rabi en-
ergy Eloc

R is averaged. In the case κ1 = κ2 = κ3 = κ,
i.e., a κ-quantum integer vortex (or no vortices at all
if κ = 0), all three terms in the sum can be nonzero.
If we further assume f1 = f2 = f3, the minimiza-
tion of the above Rabi energy density implies maximiza-
tion of the function h (C12, C13) =

∑∑

i<j ωij cosCij =

ω12 cosC12 + ω13 cosC13 + ω23 cos (C12 − C13) with re-
spect to C12 and C13. This function has an upper bound
of

∑∑

i<j |ωij |. However, depending on the values of

ωij , maxCij
h (C12, C13) may be significantly below this

upper bound, indicating that some or all of the Rabi cou-
plings are suppressed by the relative phase frustration be-
tween the particular components. In general, the upper
bound can be reached if and only if ω12ω13ω23 ≥ 0, which
is never satisfied by the parameter values used in this
work (all the presented states have ω12 < 0 < ω13 = ω23).
Of course, the above calculation based on Eq. (7) is

only a crude approximation to the intricate behavior we
have obtained from the full GP equations (4). But at
least it shows that even with fully overlapping vortex
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Figure 13. Rotating ground state for σ = 1 and ω12/ω =
−0.09. Other parameter values are the same as in Fig. 8. The
panels show (a) |Ψ1|

2; (b) |Ψ2|
2; (c) |Ψ3|

2; (d) ntot; (e) −εR;
(f) vortices superposed on −εR; (g) − cosϕ12; (h) cosϕ13;
(i) cosϕ23. Panel (f) also shows the elementary unit cell of the
combined vortex lattice. The average topological index Q̄ = 2
for this state. The field of view in panels (f)–(i) is 11ar×11ar.
The colormap ranges from 0 to a varying positive maximum
in panels (a)–(f) and from −1 to +1 in panels (g)–(i).
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Figure 14. Phase diagram of skyrmionic vortex lattices in
the plane of the intercomponent interaction strength σ and
the Rabi frequency ω12 for fixed intracomponent interaction
strength g = 2115, external rotation frequency Ω/ω = 0.97,
and Rabi frequencies ω13 = ω23 = 0.05ω. Each asterisk cor-
responds to a numerically solved ground state of the three-
component Bose–Einstein condensate. The gray solid lines
demarcate regions with different indicated values of the av-
erage topological index Q̄ [Eq. (6)]. The (red) dashed lines
mark the boundary across which the geometry of the elemen-
tary unit cell of the three-component vortex lattice changes
from to rectangular (R) to hexagonal (H) or vice versa.
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Figure 15. Pairwise Rabi energies Eij = −~ωij

∫

(Ψ∗

iΨj +
Ψ∗

jΨi) d
2r as functions of the Rabi frequency ω12 for fixed

σ = 0.7, g = 2115, and Ω/ω = 0.97. Here Eij are for ω13 =
ω23 = 0.01ω and E′

ij for ω13 = ω23 = 0.05ω.

lattices in all three components, corresponding to non-
skyrmionic states with Q̄ = 0, the amount of energy
gained by minimizing the Rabi energy would be strongly
suppressed by the inherent phase frustration; this in turn
explains why the interlacing of vortices and the conse-
quently rich skyrmionic-lattice and relative-phase struc-
tures feature so prominently in the system. The ap-
proximation suggests that for the parameter set used
in Fig. 7, the phase frustration would occur symmet-
rically between all three pairs at ω12 = −0.01ω, for
which the above maximization yields cosC12 = −0.5 and
cosC13 = cosC23 = 0.5 (Figs. 1 and 5 show examples
with such ω12). At ω12 = −0.09ω (Figs. 2–4 and 6), the
optimal relative phases would yield cosC12 = −0.99 and
cosC13 = cosC23 = 0.056, so that maxCij

h (C12, C13) =
0.091ω < 0.11ω =

∑∑

i<j |ωij |. This means that the
Rabi couplings within the pairs 1–3 and 2–3 would be
strongly suppressed, whereas the coupling within the
pair 1–2 would be almost maximal. The prediction is
in line with Figs. 2–4 and 6, where locking of the vortex
lattices is observed within the pair 1–2 but not within the
other two pairs. For the parameter set used in Fig. 14,
the phase frustration is expected to be symmetric be-
tween all three pairs at ω12 = −0.05ω (cf. Fig. 12,
where ω12 = −0.06ω) and to occur dominantly within
the pairs 1–3 and 2–3 for ω12 ≤ −0.09ω (Figs. 8, 9, 11,
and 13).
Figure 15 shows the behavior of the pairwise Rabi

energies E12 and E13 as functions of −ω12 for fixed
σ = 0.7, g = 2115, and Ω/ω = 0.97, as obtained from
the numerical solution of Eqs. (4). Unprimed quantities
are for ω13 = ω23 = 0.01ω and primed quantities for
ω13 = ω23 = 0.05ω. We observe that −E12 and −E′

12

-1 1

(a)

(b)

(c)

(d)

(e)

Figure 16. Relative phases between the three condensate
components shown in terms of sgn (ωij) cosϕij , where ϕij =
arg (Ψi) − arg (Ψj) and the sgn function makes small values
(shown in black) correspond to maximally repulsive pairwise
Rabi energy density εij . The first column is for − cosϕ12,
the second for cosϕ13, and the third for cosϕ23. The rows
correspond to different values of ω12/ω: (a) −0.01, (b) −0.03,
(c) −0.04, (d) −0.06, and (e) −0.12. Other parameters are
fixed at σ = 0.7, Ω/ω = 0.97, g = 2115, and ω13 = ω23 =
0.01ω. The field of view in each panel is 11ar × 11ar, and the
vortices in Ψ1, Ψ2, and Ψ3 are marked with (blue) squares,
(magenta) dots, and (green) triangles, respectively.

are superlinearly increasing functions of −ω12, whereas
−E13 and −E′

13 have a maximum at a finite −ω12. The
decrease of −E13 and −E′

13 with −ω12 is a direct con-
sequence of the relative phase suppression between the
particular components. The Rabi energies for other val-
ues of σ show qualitatively similar behavior.

C. Domain walls in the relative phases

The Rabi coupling leads to well-defined relative phases
between the condensates, and therefore, to the possibil-
ity of domain walls, i.e., one-dimensional defects [62],
in the relative phase fields [26]. The Rabi term breaks
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the U(1) symmetries associated with the relative phases
ϕij ≡ ϕi − ϕj , where ϕi = arg (Ψi) and i < j, by ren-
dering the value for which sgn (ωij) cosϕij = 1 energet-
ically favorable. This prompts us to define a domain
wall to lie along the path that connects two oppositely
charged vortices in ϕij (i.e., same-sign vortices in ϕi and
ϕj) and satisfies cosϕij = −sgn (ωij), i.e., maximizes the
phase-dependent part of the pairwise Rabi energy. To-
gether, the repulsive density–density coupling gij > 0
and the Rabi coupling ωij 6= 0 give rise to an energy
minimum at a finite domain-wall length [23]. Increasing
|ωij | decreases this optimal length until the two oppo-
sitely charged vortices in ϕij merge and the domain wall
vanishes.

Let us now investigate the behavior of domain walls in
the states discussed in the preceding sections (Figs. 1–6
and 8–13). To this end, we consider the three compo-
nents in pairs and their corresponding pairwise relative
phases ϕ12, ϕ23, and ϕ13. The relative phases are pre-
sented in panels (g)–(i) of said figures using the quantities
sgn (ωij) cosϕij , with domain walls shown in black; the
positions of vortices of the relevant components are also
indicated.

The properties of the domain walls depend on the
strength of the Rabi coupling. For example, their char-
acteristic width (analogous to the core size of vortices) in
ϕij is proportional to |ωij |−1/2 [26]. In Fig. 16, we show
how the domain walls change when ω12 is varied in the
range 0.01ω ≤ −ω12 ≤ 0.12ω while the other parameters
are kept constant (so that the depicted states lie along the
vertical line σ = 0.7 in Fig. 7). At ω12 = −0.01ω, the do-
main walls are fairly delocalized, appearing wide between
the oppositely charged vortices in each ϕij [Fig. 16(a)].
Increasing |ω12| to 0.03ω narrows the domain walls in ϕ12,
while ϕ13 and ϕ23 remain nearly unchanged [Fig. 16(b)].
In this regime, the pairwise Rabi energies −E12, −E13

and −E23 all increase with increasing −ω12, as shown in
Fig. 15. Figures 16(a)–16(c) all correspond to the lattice
phase that consists of three mutually interlaced triangu-
lar lattices, has Q̄ = 1, and is illustrated in Fig. 1. At
ω12 = −0.06ω, the strong Rabi coupling between com-
ponents 1 and 2 shrinks the domain walls in ϕ12, with
vortices in ϕ1 and ϕ2 almost coinciding [Fig. 16(d)]. Si-
multaneously, the Rabi energies −E13 and −E23 reach
their maximum and gradually start decreasing due to
the relative phase frustration occurring for these pairs
(Fig. 15). The state in Fig. 16(d) has Q̄ = 4/3 and a
rectangular vortex-lattice unit cell enclosing two vortices
of each component. Finally, at ω12 = −0.12ω [Fig. 16(e)],
the coincidence of vortex positions between components 1
and 2 has become almost perfect and the domain walls
have essentially vanished in ϕ12 [63]; this also halves the
size of the elementary unit cell, yielding Q̄ = 2/3. Thus,
we arrive at a peculiar state in which the domain walls
persist in ϕ13 and ϕ23, but vanish completely in ϕ12. The
effective locking of components 1 and 2 with ϕ12 ≃ π im-
plies that ϕ13 ≡ ϕ23 + ϕ12 ≃ ϕ23 + π, in agreement with
Fig. 16(e).

D. Lattice phases revisited

Equipped with the insight gained from the previous
two subsections, let us return to the phase diagrams in
Figs. 7 and 14, and the various skyrmionic phases therein.
One can see that in the limit of large |ω12|, both phase di-
agrams exhibit a hexagonal-to-rectangular transition in
the underlying vortex-lattice geometry, which is quali-
tatively similar to the transition observed in density–
density-coupled two-component BECs [15, 16]. In or-
der to understand how it comes about in the three-
component system, note that when |ω12| is large enough
to overcome the density–density repulsion due to g12 > 0
and dominate over the other Rabi couplings, compo-
nents 1 and 2 become effectively locked together such
that Ψ1 = sgn (ω12)Ψ2 = −Ψ2. At the same time, the
Rabi coupling becomes very weak for the pairs 1–3 and 2–
3 because of the suppression effect; in fact, since we have
ω13 = ω23, Ψ1 = −Ψ2 implies that ε13 = −ε23, leading
to cancellation of these Rabi couplings from the energy
functional. As a consequence, in this fully locked limit
components 1 and 2 can be viewed as a single compo-
nent, and the system starts to behave like a repulsive
two-component system with only density–density inter-
actions. Then the hexagonal-to-rectangular transition is
expected in the overall lattice geometry, and the ensuing
ground states can be classified according to the results of
Refs. [15, 16].

For the parameter set used in Fig. 7, an example from
the two-component-like regime with triangular lattices is
presented in Fig. 2 (σ = 0.2), while Fig. 16(e) shows a
two-component-like state with square lattices (σ = 0.7).
The locking of components 1 and 2 implies that no ad-
ditional lattice phases are expected for |ω12| > 0.12ω in
Fig. 7. For the parameter set of Fig. 14, on the other
hand, the Rabi frequencies ω13 = ω23 = 0.05ω are so
large that for the values of ω12 considered, the two-
component limit with fully locked components 1 and 2
is reached only for σ ≤ 0.2 (Fig. 9). Nevertheless, in-
creasing |ω12| beyond the value 0.16 shown in Fig. 14 is
expected to eventually result in two-component-like lat-
tice phases with Q̄ = 2/3 also for 0.2 < σ < 1.

The states containing zig-zag vortex lattices in some
of the components (Figs. 8, 10, and 11) appeared in the
regime where all |ωij | were comparable with each other
and with the density–density repulsions. The zig-zag lat-
tices can be viewed as deformed Abrikosov lattices where
vortices originally in a straight row have been displaced
in alternating directions. In the state shown in Fig. 8,
with σ = 0.2 and Q̄ = 4/3, these displacements are in
opposite directions in components 1 and 2. Visual in-
spection of Figs. 8(g)–8(i) reveals that the zig-zag con-
figuration can efficiently accommodate relatively tightly
bound vortex dimers in each ϕij , rendering it the energy-
minimizing state for the comparable Rabi and density–
density couplings between the components. It also fol-
lows from the zig-zag pattern that the dimers in each
ϕij are arranged in an antiferromagnetic order relative
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to one another, maximizing the intracomponent vortex
distances. The states illustrated in Figs. 10 and 11 can
be understood in a similar way but with the vortex lat-
tices in the individual components having an underlying
square geometry instead of the hexagonal one observed
in Fig. 8 [64]. Zig-zag vortex patterns have previously
been found for single-component BECs in highly eccen-
tric harmonic trap potentials [65].

IV. CONCLUSIONS

In this work, we have shown that Rabi-coupled three-
component BECs can host unconventional vortex lattices
in the rotating ground state of the system. Such lattices
were found to involve, for example, vortices arranged
in square, zig-zag, or chain patterns, or coalesced into
dimers or doubly quantized fused-core vortices. Based on
the elementary unit cell of the combined lattice pattern in
each state, we classified the ground states as either hexag-
onal or rectangular. We also argued that the emerging
multicomponent lattices can be interpreted as having a
skyrmionic character, which we quantified in terms of a
topological index computed over the unit cell. By com-
bining these two classification schemes, we collected our
results in the phase diagrams of Figs. 7 and 14. They en-
able one to identify the proper ground-state skyrmionic
vortex lattice for different values of the intercomponent
interaction strength σ and the Rabi frequency ω12, for the
two different parameter sets we have used in this work.

For certain combinations of signs and values of the
Rabi frequencies ωij , some of the pairwise Rabi ener-
gies turned out to be heavily suppressed due to relative
phase frustration. For example, when ω12ω13ω23 < 0
and |ω12| ≫ |ω13| ≈ |ω23|, the Rabi coupling is significant
only between components 1 and 2. Such Rabi suppression
results in an effective reduction of the three-component
BEC to a density–density-coupled two-component BEC.
In this limit, the three-component system was found to
exhibit a hexagonal-to-rectangular vortex-lattice transi-
tion in agreement with the previous results for the repul-
sively coupled two-component BECs and the classifica-
tion given in Refs. [15, 16]. Similarly, a three-component
multiband superconductor, for which the Josephson-type
coupling serves as an analog of the Rabi coupling in
BECs, also reduces to a two-gap superconductor at a
particular choice of the coupling matrix [35].

Considering that we have limited our study to a spe-
cific subset of the large parameter space (e.g., by fix-
ing g and assuming 0 < σ ≤ 1), we expect the rotating

ground state of the Rabi-coupled three-component BEC
to harbor many more unforeseen vortex-lattice struc-
tures. This should be especially true in the more general
case where one relaxes the equalities g11 = g22 = g33 and
g12 = g13 = g23, which tend to favor equal populations
of the three components.
In light of the Rabi suppression, it might also be inter-

esting to compare and contrast the present system with
a hybrid three-component system in which two compo-
nents are different spin states of the same atom coher-
ently coupled to each other, while the third component is
a different species with different atomic mass and coupled
only through density–density interactions to the other
two components. In the limit of strong Rabi coupling,
the hybrid system would reduce to a mass-imbalanced
two-component BEC, whose rotating ground state ex-
hibits a variety of unconventional ground-state vortex
structures [17, 22]. This more intricate limiting behavior
suggests that when the Rabi coupling is of intermediate
strength, rotation of the hybrid system will likely pro-
duce novel ground-state vortex lattices that do not exist
in the equal-mass system.
To experimentally realize our skyrmionic vortex lat-

tices, one could use, e.g., 87Rb atoms in the ground-state
multiplet 52S1/2. Two-component BECs have already
been realized using mixtures of the |F = 1,mF = −1〉
and |2, 1〉 sublevels [8], the |1, 1〉 and |2, 2〉 sublevels [13],
and the |2, 1〉 and |2, 2〉 sublevels [11] from this mul-
tiplet. The Rabi-coupled three component BEC could
be created by optically trapping a mixture of three of
these states and using microwave and radiofrequency ra-
diation to coherently couple them via two-photon pro-
cesses. The vortex lattices could then be produced by
inducing rotation in the system and letting it relax to
its minimum-energy state. Measurement of the relative
phase angles between the BEC components should also
be feasible [7]. Furthermore, we note that many of the
discovered skyrmionic phases could be distinguished by
imaging only the profile of the total density ntot.
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M. Möttönen, Phys. Rev. A 85, 043613 (2012).

[18] K. Kasamatsu and M. Tsubota, Phys. Rev. A 79, 023606
(2009).

[19] S.-J. Yang, Q.-S. Wu, S.-N. Zhang, and S. Feng, Phys.
Rev. A 77, 033621 (2008).

[20] U. Al Khawaja and H. Stoof, Nature (London) 411, 918
(2001).

[21] P. Mason and A. Aftalion, Phys. Rev. A 84, 033611
(2011).

[22] P. Kuopanportti, N. V. Orlova, and M. V. Milošević,
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