|
Record |
Links |
|
Author |
Berthelot, A.; Bogaerts, A. |
|
|
Title |
Modeling of plasma-based CO2conversion: lumping of the vibrational levels |
Type |
A1 Journal article |
|
Year |
2016 |
Publication |
Plasma sources science and technology |
Abbreviated Journal |
Plasma Sources Sci T |
|
|
Volume |
25 |
Issue |
25 |
Pages |
045022 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Although CO2 conversion by plasma technology is gaining increasing interest, the
underlying mechanisms for an energy-efficient process are still far from understood. In this work, a reduced non-equilibrium CO2 plasma chemistry set, based on level lumping of the vibrational levels, is proposed and the reliability of this level-lumping method is tested by a self-consistent zero-dimensional code. A severe reduction of the number of equations to be solved is achieved, which is crucial to be able to model non-equilibrium CO2 plasmas by 2-dimensional models. Typical conditions of pressure and power used in a microwave plasma for CO2 conversion are investigated. Several different sets, using different numbers of lumped groups, are considered. The lumped models with 1, 2 or 3 groups are able to reproduce the gas temperature, electron density and electron temperature profiles, as calculated by the full model treating all individual excited levels, in the entire pressure range investigated. Furthermore, a 3-groups model is also able to reproduce the shape of the vibrational distribution function (VDF) and gives the most reliable prediction of the CO2 conversion. A strong influence of the vibrational excitation on the plasma characteristics is observed. Finally, the limitations of the lumped-levels method are discussed. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000380380200036 |
Publication Date |
2016-07-08 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0963-0252 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.302 |
Times cited |
33 |
Open Access |
|
|
|
Notes |
This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 606889 and it was also carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions—Interuniversity Attraction Poles, phase VII (PSI-IAP7) supported by the Belgian Science Policy Office (BELSPO). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. |
Approved |
Most recent IF: 3.302 |
|
|
Call Number |
c:irua:134397 |
Serial |
4101 |
|
Permanent link to this record |