|
Record |
Links |
|
Author |
Van Laer, K.; Bogaerts, A. |
|
|
Title |
Fluid modelling of a packed bed dielectric barrier discharge plasma reactor |
Type |
A1 Journal article |
|
Year |
2016 |
Publication |
Plasma sources science and technology |
Abbreviated Journal |
Plasma Sources Sci T |
|
|
Volume |
25 |
Issue |
25 |
Pages |
015002 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
A packed bed dielectric barrier discharge plasma reactor is computationally studied with a fluid model. Two different complementary axisymmetric 2D geometries are used to mimic the intrinsic 3D problem. It is found that a packing enhances the electric field strength and electron temperature at the contact points of the dielectric material due to polarization of the beads by the applied potential. As a result, these contact points prove to be of direct importance to initiate the plasma. At low applied potential, the discharge stays at the contact points, and shows the properties of a Townsend discharge. When a high enough potential is applied, the plasma will be able to travel through the gaps in between the beads from wall to wall, forming a kind of glow discharge. Therefore, the inclusion of a so-called ‘channel of voids’ is indispensable in any type of packed bed modelling. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000370974800009 |
Publication Date |
2015-12-01 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0963-0252 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.302 |
Times cited |
50 |
Open Access |
|
|
|
Notes |
The authors gratefully thank St Kolev for the many interesting discussions and the useful advise in setting up the models. This research was carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions— Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb. ac.be/), and supported by the Belgian Science Policy Office (BELSPO). K Van Laer is indebted to the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders) for financial support. |
Approved |
Most recent IF: 3.302 |
|
|
Call Number |
c:irua:129802 |
Serial |
3982 |
|
Permanent link to this record |