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Two-shell vortex and antivortex dynamics in a Corbino superconducting disk
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We examine theoretically the dynamics of two vortex shells in pinning-free superconducting thin disks in
the Corbino geometry. In the first considered case, the inner shell is composed of vortices and the outer one of
antivortices, corresponding to a state induced by the stray field of an off-plane magnetic dipole placed on top
of the superconductor. In the second considered case, both shells comprise vortices induced by a homogeneous
external field. We derive the equation of motion for each shell within the Bardeen-Stephen model and study
the dynamics analytically by assuming both shells are rigid and commensurate. In both cases, two distinct
regimes for vortex shell motion are identified: For low applied currents the entire configuration rotates rigidly,
while above a threshold current the shells decouple from each other and rotate at different angular velocities.
Analytical expressions for the decoupling current, the recombination time in the decoupled phases, as well as the
voltage-current characteristics are presented. Our analytical results are in excellent agreement with numerical
molecular dynamics simulations of the full many-vortex problem.
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I. INTRODUCTION

The nonequilibrium dynamics of vortex matter in supercon-
ductors have attracted much attention in the past few decades
[1–9]. Besides its crucial role in understanding the transport
properties of superconducting materials, moving vortex matter
exhibits a variety of properties relevant for problems as
diverse as microscopic friction [10–12] and the nature of
dynamical phase transitions [6,13,14]. A salient advantage of
adopting vortex matter as a model system to investigate these
phenomena lies in the fact that their dynamical properties
are experimentally accessible over a wide range of control
parameters, such as temperature, concentration, and shear
drive.

One of the main experimental difficulties for studying
vortex dynamics is the “contamination” of the dynamical phase
under investigation caused by vortices which enter or exit
through the sample edges. This can be avoided by performing
experiments in the so-called Corbino-disk geometry, where
current flows radially from the center towards the edges of
a superconducting disk [15–19]. This way, vortices move
azimuthally, without ever leaving the sample. For instance, the
transition between Bragg glass and disordered solid phases in
NbSe2 crystals is better depicted in experiments performed in
the Corbino geometry than those in strips [15,17]. In addition,
the Corbino geometry has been used to probe the vortex lattice
melting transition in Bi2Sr2CaCu2O8+δ single crystals [16,18]
and to study metastable resistive states of thick MoxSi1−x films
near the critical temperature [20].

In the Corbino geometry novel dynamical phases can
appear induced by the strong inhomogeneity of the cur-
rent density (which changes with radial distance as 1/r)
[21–29]. The transition between such phases has been iden-
tified experimentally in weak pinning materials [24,28], as
well as investigated both theoretically [23,27], in the context
of the continuum approximation, and numerically [26,29] in
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large vortex systems. First, at least two phases are noticeable:
a rigid-body (RB) rotation phase for small applied currents
and a phase characterized by plastic motion of vortices for
high currents, separated by a critical current Idc [23–27,30].
In the former phase, the vortex-vortex interaction is strong
enough to form a firm vortex lattice rotating as a RB. The
vortex velocities increase linearly with distance from the
center of the disk in this case. In the latter, the shear stress
generated by the inhomogeneous current density tears the
RB motion into vortex rings rotating slower with increasing
distance from the center of the disk [23,24,27]. This plastic
motion evolves to laminar flow for further increased applied
currents [26,29]. This state is characterized by the presence of
topological defects in the vortex lattice which extend radially
inside the disk [25,26]. Moreover, the unbinding of adjacent
layers has also been observed in other systems of particles
such as colloids in rotational drive [31], as well as in other
geometries of the applied shear stress [32–35].

Theoretical [36–38] and experimental [39,40] work on
disks containing a small number of vortices confirm that
these systems naturally stabilize static configurations com-
prising vortex shells. Further theoretical investigations on
the dynamical response of these systems within the Corbino
setup suggest that the transition between RB motion and
decoupled vortex-ring rotation depends on the particular
vortex configuration, as well as on the external magnetic field
[41–43]. Several interesting phenomena were observed, such
as a nonmonotonic dependence of the critical current Idc on the
magnetic field, current-induced structural transitions between
two stable vortex configurations, and multistep decoupling
of vortex rings. In these works, the temperature-induced
transition between the RB and the decoupled moving phases
(referred to as the angular melting transition) has also been
addressed. It has been suggested that the angular melting
takes place at lower temperatures than the so-called radial
melting, where the vortex shell structure disappears, and
that this could explain the experimental results observed in
untwinned YBCO single crystals in the Corbino geometry
[24]. For larger vortex systems in mesoscopic disks it was even
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found that one vortex shell rotates decoupled from its adjacent
vortex shells, while these shells remain locked in RB motion
[43]. This reveals the importance of the (in)commensurability
between adjacent shells for the dynamic phases appearing in
the Corbino geometry.

Despite all these advances in understanding dynamical
phases and phase transitions in the Corbino geometry, analytic
considerations are still scarce. In the present work we aim at
filling this gap by considering theoretically the cases where
vortices arrange into two shells only. Such systems allow for
an analytical approach and can be understood as the minimal
systems to study the RB and decoupled phases as well as
the transition between them and thereby shed light on further
possibilities in more complex configurations.

Our model assumes two commensurate vortex shells and
ignores the intrashell dynamics; that is, each shell is assumed
to move rigidly. We consider not only the cases where both
shells are composed of vortices but also configurations with
vortex and antivortex shells, such as those found in hybrid
superconductor-ferromagnetic systems [44–51]. In Ref. [52],
we presented preliminary results of molecular dynamics
simulation of the latter case. Here we develop a fully analytical
approach for the case of two vortex shells with the same
number of (anti-)vortices, which well describes both dynami-
cal phases and establishes the conditions for observing either
of them. For the more general case of commensurate vortex
shells of either similar or dissimilar vorticities, we use an
empirical ansatz which allows us to find analytic expressions
for the recombination frequency and for the voltage-current
characteristics of the system. The analytical results are then
corroborated by the results of the numerical simulations.

This paper is organized as follows. In Sec. II we present the
theoretical formalism used to develop our analytical model and
to perform the molecular dynamics simulations. The analytical
results for the intershell motion for equal number of vortices
in each shell are presented in Sec. III. In Sec. IV, we extend
the model to consider shells with different, but commensurate,
numbers of vortices. The expressions for the voltage-current
characteristics are derived in Sec. V. Finally, in Sec. VI, we
show results of numerical simulations for both the vortex-
antivortex shells under an off-plane magnetic dipole and the
vortex shells in homogenous magnetic field and compare
them to our analytical results. The conclusions are drawn
in Sec. VII.

II. THEORETICAL APPROACH

We consider a thin superconducting disk of thickness d � ξ

and radius R = 100ξ in the limit of negligible demagnetization
effects, i.e., for effective penetration depth � = λ2/d � R.
We consider two scenarios: (i) a magnetic dipole with magnetic
moment m = m0ẑ is placed along the disk symmetry axis (the
z axis) at a distance z0 above the disk [cf. Fig. 1(a)] or (ii)
a homogeneous magnetic field, Ha, is applied along the disk
symmetry axis. In both cases, an external electric current I is
injected in the center and collected at the edge of the disk.

The vortex interactions are calculated analytically within
the London approach [36,38] for vanishing and nonover-
lapping vortex cores, in the London gauge, ∇ · A = 0, and

FIG. 1. Schematic representation of the studied system. (a) A
magnetic dipole is placed at a distance z0 from the superconducting
disk of thickness d and radius R. (b) Instead of a magnetic dipole, a
homogeneous magnetic field Ha is applied along z. For the Corbino
disk an external current, I , is injected in the center of the disk and
collected at the disk edge. Configurations containing (c) vortices
(circles with dots) and antivortices (circles with crosses), as well as
(d) with only vortices, are schematically shown for the cases depicted
in (a) and (b), respectively.

disregarding demagnetization effects, obeying the equation

μ0�J + Aext =
Nc∑
i=1

νi�(r,ri). (1)

where �0 = h/2e is the flux quantum, ri is the position of
the ith vortex core, Nc is the number of vortex cores, and
νi is the number of fluxoids carried by the vortex (νi = −1
for antivortices and |νi | > 1 for giant vortices [53–55]).
Aext is the vector potential of the external magnetic fields,
J(r, 0) = ∫ d

0 dzj(r, z) is the sheet current density, and the
function �(r,ri) for a thin disk is given by

�(r,ri) = νi�0

2π
ẑ ×

⎡
⎣ (r − ri)

|r − ri |2 −
(
r − R2

r2
i

ri

)
∣∣r − R2

r2
i

ri

∣∣2
⎤
⎦, (2)

where ẑ is a unit vector directed along the z axis. The
forces acting on the ith vortex are calculated using Fi =
νi�0J(ri) × ẑ, where ri is the vortex position and J(ri) is
the sheet current. Note again that the applied current I gives
rise to an inhomogeneous current density which decays as 1/r .

The vortex motion is described by Bardeen-Stephen equa-
tion [56]

vi = FI
i + Fdip

i + Fa
i + Fself

i +
Nc∑
j=1
i �=j

Fij , (3)
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with

FI
i = νiIri × ẑ

r2
i

, (4)

Fdip
i = − νim0ri(

r2
i + z2

0

)3/2 , (5)

Fa
i = −2νiHari , (6)

Fself
i = 2ν2

i ri

1 − r2
i

, (7)

Fij = 2νiνj

[
ri − rj

|ri − rj |2 − r2
j ri − rj

1 + r2
i r2

j − 2ri · rj

]
, (8)

where FI
i represents the forces acting on vortex i due to

the applied current I, Fdip
i and Fa

i are the forces due to the
shielding currents in response to the dipole field and/or the
homogeneous magnetic field, Fself

i is the force produced by
the vortex “own image,” and Fi,j are the forces due to all other
vortices. The length, time, magnetic moment of the magnetic
dipole m0, magnetic field, and electrical current I are given
in units of R,η4πμ0�R2/�2

0, �0R/μ0, �0/μ0πR2, and
�0/2μ0�, respectively, where η is the viscous drag coefficient
appearing in the Bardeen-Stephen model. In order to avoid

divergences, the ansatz |ri − rj |2 →
√

|ri − rj |2 + 2ξ 2 was
used in the simulations.

It is convenient to project Eqs. (3)–(8) along the ith-
vortex radial and angular directions. For that, we take the
vector and scalar products of vi = ωi × ri + vi,r

ri

ri
with ri =

(ri cos φi, ri sin φi), which yields

ri × vi = ri × FI
i +

Nc∑
j=1
i �=j

ri × Fij , (9)

ri · vi = ri · Fdip
i + ri · Fa

i + ri · Fself
i +

Nc∑
j=1
i �=j

ri · Fij , (10)

where ri × Fdip
i = ri × Fa

i = ri × Fself
i = 0 and ri · FI

i = 0.
For low-enough applied current one expects the entire

configuration to rotate as a whole. The angular velocity ωRB

for this RB rotation can be derived from Eq. (9), since the sum
of all the internal torques should be zero, i.e.,

∑Nc

i=1

∑Nc

j=1 ri ×
Fij = 0. Therefore, by summing Eq. (9) for all the vortices and
antivortices and noticing that ωi = ωRB, for i = 1, 2, . . . , Nc

in this case, we have ωRB
∑Nc

i=1 r2
i = −I

∑Nc

i=1 νi . This yields

ωRB = − L I∑Nc

i=1 r2
i

, (11)

where L = ∑Nc

i=1 νi is the total vorticity.
Using that ri × rj = −rirj sin(φi − φj ) ẑ and ri · rj =

rirj cos(φi − φj ), Eqs. (9) and (10) become

r2
i ωi = −νiI +

Nc∑
j=1
i �=j

2νiνj rirj sin φij

D1(ri, rj , φij )
−

Nc∑
j=1

2νiνj rirj sin φij

D1(1, rirj , φij )
,

(12)

vi,r = − νim0ri(
r2
i + z2

0

)3/2 − 2νiHari

+
Nc∑
j=1
i �=j

2νiνj (ri − rj cos φij )

D1(ri, rj , φij )

−
Nc∑

j=1

2νiνj

(
r2
j ri − rj cos φij

)
D1(1, rirj , φij )

, (13)

where φij = φi − φj and Dn(x, y, γ ) = x2n + y2n −
2xnyn cos(nγ ). Notice that the terms inside the sums in
Eq. (12) are the torques between the j th and the ith vortices,
while in Eq. (13) they are the radial forces acting on the ith
vortex.

In the next sections, we apply this theory for the cases where
the vortex configurations in the superconducting disk form two
concentric shells with, eventually, a vortex or giant vortex near
the center. As we discuss in Sec. VI, the contribution of such
vortex to the shell dynamics is negligible. However, it does
influence the RB rotation as it contributes to the total vorticity
of the system [see Eq. (11)].

Our analytical results were derived in the limit where the
ratio of the radial positions of the inner to the outer shell is
much smaller than 1 (but expressions for any ratio value are
obtained in Appendix D) and for an infinite superconducting
film. However, they are very reasonable approximations for
superconducting disks where the two shells are not too close
to each other and both are far from the disk border, as supported
by the numerical simulation results presented in Sec. VI. Our
main results are summarized as follows.

(i) For the case with zero total vorticity Eqs. (25)–(29)
describe the intershell motion. Equation (21) gives the decou-
pling current.

(ii) For commensurate vortex shells Eqs. (37)–(44) yield
a description of the intershell motion. For the particular case
of coexisting vortices and antivortices Eq. (47) and Eq. (48)
give the threshold current where the antivortex shell reverses
its motion.

(iii) Results for the V -I characteristics are given by
Eqs. (51)–(53) and Eqs. (56)–(58).

III. INTERSHELL MOTION FOR ZERO TOTAL
VORTICITY: ANALYTICAL RESULTS

In order to better understand the intervortex shell dynamics
in Corbino geometry, we considered configurations with two
concentric shells in the superconducting disk containing the
same number of vortices; i.e., each shell contains N1 = N2 =
N vortices (or antivortices). All vortices in each shell have
the same radial positions Rm, where m = 1,2. The system
has N -fold rotational symmetry, with the vortices placed at
the vertices of coaxial regular polygons with N sides. Each
vortex is described by its position (Rm cos φm,i, Rm sin φm,i)
and vorticity νm = 1 (νm = −1 for an antivortex), where
φm,i = ϕm + 2πi/N , and ϕm = ϕ+ is an arbitrary angular
position for the mth shell. We further assume that the vortices
within the vortex shell remain rotating with the same angular
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velocity. This means that, as long as that assumption holds, the
interring torques within the same shell cancel out.

Under the above assumptions we find the following equa-
tions of motion for each vortex shell,

R2
mωm = − νmI + τmn, (14)

vm,r = − νmm0Rm(
R2

m + z2
0

)3/2 + N − 1

Rm

+ 2N−R2N−1
m

1 − R2N
m

+ fmn, (15)

where ϕmn = ϕm − ϕn, with either m = 1 and n = 2 or m = 2
and n = 1. The torques produced by the ring n on a given
vortex in the mth ring τmn and the radial forces between the
shells are given, respectively, by Eqs. (A3) and (A4).

In the rest of this section we focus on configurations with
two shells and the same number of vortices and antivortices
in both shells (although the above equations remain valid
for two shells with the same number of vortices with ν =
1). In this case L = 0, “+” and “−” are labels for the
vortex and antivortex shells, respectively, and N+ = N− = N .
Rigorously speaking, the neutrality (L = 0) of the vortex
system is guaranteed only for a disk with infinite radius, for
which the total flux induced by the nearby magnetic dipole is
zero [49]. Nevertheless, for finite but sufficiently large disks,
L = 0 configurations are still likely to occur [48,50].

Figure 2 depicts a typical configuration with no vortex at
the center, five vortices at the inner shell, and five antivortices
at the outer shell, which we refer to as the (0, 5, −5)
configuration. Notice that the symmetry of the model yields
that all the (anti)vortices within the same shell move together.
The equations for angular motion of the vortex (+) and the
antivortex (−) shells become

R2
±ω± = ∓

(
I − τ+−

N

)
, (16)

FIG. 2. The two-vortex-shell model for configurations with the
same number of vortices and antivortices in each shell is represented
schematically for the (0, 5, −5) configuration as an example.
Circles with dots (crosses) represent vortices (antivortices). The
vortices (antivortices) are at radius R+ (R−) and at angular positions
ϕ+ + 2πj/N (ϕ− + 2πj/N ), for j = 0, 1, . . . , N . ϕ = ϕ− − ϕ+ is
the intershell angular displacement.

where τ−+ = −τ+− are the intershell torques,

τ+−
N

= 2NRN
−RN

+

[
1

DN (R+,R−,ϕ)

− 1

DN (1,R+R−,ϕ)

]
sin Nϕ. (17)

From these equations we obtain the relative angular velocity
between the antivortex and the vortex shells,

ω− − ω+ = dϕ

dt
=
(

1

R2+
+ 1

R2−

)(
I − τ+−

N

)
, (18)

where ϕ = ϕ− − ϕ+. It is reasonable to assume that the radial
vortex positions do not change much for nonzero I . In this
case, the radial positions obtained for the I = 0 case (cf.
Appendix A), i.e., R+ = R+(0) and R− = R−(0), can be used
in the equation describing the intershell motion.

We proceed by neglecting the contribution from the
vortex images since it is much smaller than the non-
image term because R+ < R− < 1. In fact, we find
R− � 0.5 and R+ � 0.2 as typical values for the
shells radii, which gives DN (1,R+R−,ϕ+−)−1 ∼ 1, while
DN (R+,R−,ϕ+−)−1 � 1. To give some examples, for R− =
0.5,R+ = 0.2 and N = 5 we have DN (R+,R−,ϕ+−)−1 ∼
103 and DN (1,R+R−,ϕ+−)−1 ∼ 1, while for for R− =
0.5,R+ = 0.2 and N = 2, 10 < DN (R+,R−,ϕ+−)−1 < 25
and DN (1,R+R−,ϕ+−)−1 ∼ 1. Note that this approximation
becomes exact for an infinite film. Therefore,

τ+−
N

≈ 2N�N sin Nϕ

1 + �2N − 2�N cos Nϕ
, (19)

where � = R+/R−. Finally, the equation for intershell motion
is obtained by substituting Eq. (19) in Eq. (18), which yields

dϑ

dt
= K

[
I − 2N�N sin ϑ

1 + �2N − 2�N cos ϑ

]
, (20)

where ϑ = Nϕ and K = N (R−2
+ + R−2

− ). This formula gives
the intershell dynamics, since it shows that ϕ grows while I

increases.
Inspection of Eq. (20) allows us to identify two distinct

regimes of the intershell dynamics. For small-enough currents
the shells are coupled to each other because of the attractive
vortex-antivortex interaction. In this case, both shells are
expected to rotate with RB angular velocity ωRB, given by
Eq. (11). However, since L = 0, we have ωRB = 0. Therefore,
the stationary regime for small currents corresponds to no
rotation of either shell. This phase extends until a current
strong enough to unbind the shells is reached. This decoupling
current, Idc, can be calculated by maximizing the right-hand
side (RHS) of Eq. (20), I = 2N�N sin ϑ

1+�2N−2�N cos ϑ
, with respect to ϑ .

This yields

Idc = 2N�N

1 − �2N
(21)

and

ϑc = Nϕc = arccos

(
2�N

1 + �2N

)
= arcsin

(
1 − �2N

1 + �2N

)
, (22)
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where ϕc is the maximal angular displacement between the
vortex and the antivortex shells with no intershell motion. For
I > Idc the stationary regime corresponds to ϕ oscillating in
time, with the vortex and antivortex shells moving at different
angular velocities.

Full analytical solution of Eq. (20) is given in detail
in Appendix D. The resulting expressions are not very
illuminating. However, in most of the cases we find R+ 	 R−,
which allows Eqs. (D3), (D4), and (D5) to be significantly
simplified, since the denominator of Eq. (20) is approximately
equal to 1. The intershell equation of motion becomes

dϑ

dt
= K(I − Idc sin ϑ), (23)

where Idc = 2N (R+/R−)N . This equation has a solution
monotonically increasing or decreasing with time (depending
on the initial conditions) for I � Idc, while a periodic solution
is expected for I > Idc. In fact, for I < Idc the solution reaches
a stationary value,

ϑstat = Nϕstat = arcsin

(
I

Idc

)
, (24)

which can be readily computed from the above equation by
setting dϑ

dt
= 0.

Equation (23) is solved in Appendix B. After some
algebraic manipulation we find

ϕ = 2

N
arctan [ζ (t)], (25)

where

ζ (t) = tan
(

Nϕ0

2

)+ [
Ĩ − tan

(
Nϕ0

2

)]
f (I,t)

1 + [
1 − Ĩ tan

(
Nϕ0

2

)]
f (I,t)

, (26)

and

f (I,t) =

⎧⎪⎪⎨
⎪⎪⎩

tanh (πt/T )√
1 − Ĩ 2

, I < Idc,

tan (πt/T )√
Ĩ 2 − 1

, I > Idc.

(27)

In the equations above, Ĩ = I/Idc, ϕ0 = ϕ(t = 0), and

T = 2π

KIdc

√
|Ĩ 2 − 1|

=
2π
N(

1
R2+

+ 1
R2−

)√∣∣I 2 − I 2
dc

∣∣ . (28)

For I > Idc this equation gives the period of ϕ (which is the
time it takes for the vortex and antivortex shells to detach, slide
past each other, and reconnect again). For I < Idc it represents
a characteristic time in which ϕ reaches its stationary value [in
Appendix C we show that Eq. (24) is the limit of Eqs. (25),
(26), and (27) when t � T for I < Idc].

To be specific, we consider the case of two shells with
N+ = N− = 4 for m0 = 1.5 and z0 = 0.045. The equilibrium
values of the shells radii were obtained analytically following
the stabilization procedure described in Appendix A, which
yields R+ = 0.014 545 and R− = 0.289 462. The time de-
pendence of ϕ is depicted in Fig. 3(a) for I < Idc and in
Fig. 3(b) for I > Idc [Eqs. (26) and (27)]. The behavior
shown in Fig. 3(a) is related to the transient time, after the
external current is switched on, the configuration [initially
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dc

)

t

I/Idc = 0.10
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I/Idc = 0.90
I/Idc = 0.99

FIG. 3. The intershell angular displacement ϕ as function of
time for R+ = 0.014 545 and R− = 0.289 462 (i.e., R+/R− � 1)
for the (0, 4, −4) vortex configuration (obtained for m0 = 1.5 and
z0 = 0.045). For I < Idc (a) we show ϕ(t) approaching the limiting
value given by Eq. (22) for two sets of initial conditions: ϕ(t =
0) = 0 and ϕ(t = 0) = 1.1 arcsin(I/Idc)/N . For I > Idc (b) ϕ varies
periodically. The time is given in units of the period T of the vortex
intershell decoupling and reconnection.

at ϕ0 = 0 or ϕ0 = 1.1 arcsin(I/Idc)/N] takes to reach the
intershell angular difference given by the stationary value
[see Eq. (22)]. On the other hand, Eq. (27) for I > Idc shows
the intershell motion over the −π/N < ϕ < π/N domain,
which is indeed periodic. For I � Idc Eq. (26) becomes
tan(Nϕ/2) = ζ ≈ tan (Nϕ0

2 + πt
T

); i.e., ϕ = ϕ0 + 2πt/NT ∼
I (R−2

+ + R−2
− )t becomes a linear function of time.

From the determined time dependence of ϕ for I > Idc we
obtain the dynamics of each of the shells, by inserting Eq. (26)
into Eqs. (16). Thereby, we have

ω± = ∓R−2
±

(
I − 2Idcζ

1 + ζ 2

)
, (29)

where ζ is given by Eq. (26). For I � Idc and t � T , ω± goes
asymptotically to 0. For I > Idc, Fig. 4 shows the angular
velocities of the vortex shell ω+ [the time dependence of the
antivortex shell ω− has opposite sign and differs only by a mul-
tiplication factor; see Eq. (29)] for the configuration (0, 3,−3)
for m0 = 1.0 and z0 = 0.05. For these parameters we found
R− = 0.233 68 and R+ = 0.017 206. The angular velocities
oscillate with frequency 1/T [where the period T is given by
Eq. (28)]. For applied currents just above Idc sharp peaks are
observed. This is related to the shells being strongly coupled
(moving with similar angular velocities) for a long time within
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FIG. 4. Time dependence of the angular velocity ω+ for the con-
figuration (0, 3, −3), with R− = 0.233 68,R+ = 0.017 206 (obtained
for m0 = 1.0 and z0 = 0.05). Several values of I > Idc are shown,
with ϕ(t = 0) = arcsin(1) as the initial condition. For I � Idc two
shells move with almost same angular velocities, until sharp peaks
of velocities in opposite directions appear with period T [Eq. (28)].
(Inset) ω+/I as a function of time. As I is increased, sharp peaks
transform into a sinusoidal behavior.

one oscillation before they tear apart. When this happens high
angular velocities in opposite directions appear for a short
time until the vortex and antivortex shells recouple and the
process is repeated. As I increases, the sharp peaks transform
into a sinusoidal behavior (shown in the inset of Fig. 4),
since ϕ ≈ 2πt/NT and ω± ≈ ∓R−2

± [I − Idc sin(2πt/T )] for
I � Idc.

The shells’ angular positions can be obtained by integrating
Eq. (29) in time. For I > Idc, this yields

ϕ±(t) − ϕ±(0) = ∓R−2
±

∫
dϕ

(I − Idc sin Nϕ)
dϕ

dt

= ∓ R2
∓

(R2+ + R2−)
[ϕ(t) − ϕ0], (30)

where we assumed an external current constant in time and
ϕ given by Eqs. (25)–(27). Vortices have a larger angular
displacement than antivortices, which is due to the increasing
current density toward the center of the sample in the Corbino
setup. The vortex and antivortex motions occur in short bursts
for I � Idc, while monotonically increasing with time for
I � Idc. In the latter case the vortex shell’s motion has an
asymptotic behavior within one period of oscillation given by

ϕ±(t) − ϕ±(0) = ∓2π

N

R2
∓

(R2+ + R2−)

t

T
. (31)

Although the results of this section are derived for a thin
superconducting disk, they are exact in the limit of an infinite
film.

IV. INTERSHELL MOTION MODEL FOR
COMMENSURATE VORTEX SHELLS

In order to better understand the intershell dynamics for
two shells of vortices (these shells can be constituted by either
vortices or antivortices), we consider two vortex shells, 1 and

2, containing N1 and N2 vortices, respectively, such that N1 =
(M − 1)N2, where M = 1, 2, . . .. Moreover, we assume all
vortices in one shell are rotating with the same angular velocity
ωα=1,2. Therefore, after adding the contributions of all vortices
within a given shell [see Eq. (A2)] we have the following set
of equations describing the angular motion of the αth vortex
shell,

Nα

〈
R2

α

〉
ωα = −�αI + ταβ, (32)

where �α = ∑Nα

i=1 νi is the vorticity of the αth shell, 〈R2
α〉 =∑Nα

m=1 R2
i /Nα is the mean square radial vortex position in this

shell, and ταβ = ∑Nα

i=1

∑Nβ

j=1 τij = −τβα is the torque on the
αth shell due to the βth shell. In the case where there are more
than two shells one has to consider the torques exerted by
all the β �= α shells (the torques on the vortices due to other
vortices in the same shell cancel out, since we consider a rigid
shell). For the case of commensurate shells considered here
the intershell torques are

ταβ

N2
=

M−1∑
m=1

τm,M = −
M−1∑
m=1

τM,m = −τβα

N2

= − 2νανβN2R
N2
2

M−1∑
m=1

RN2
m

[
1

DN2 (Rm,R2,ϕ2,m)

− 1

DN2 (1,Rm,R2,ϕ2,m)

]
sin N2ϕ2,m, (33)

where να (νβ) is the vorticity of the vortices in the αth
(βth) shell, and ϕ2,m = ϕ2 − φm is the angular separation
between the vortex in shell 1 and one given vortex in shell 2.
Also, it is reasonable to consider the radial positions of the
vortices in the less populated shell to be the same. However,
even for commensurate shells the above expression for the
intershell torques is still difficult to integrate analytically,
since the vortices in shell 1 are not arranged in a regular
polygon; i.e., they do not have the same radial positions and
are not evenly spaced azimuthally. In fact, not only are the
deviations of the vortex positions from the vertices of a regular
polygon configuration dependent, they also depend on external
parameters (such as, e.g., the magnetic dipole moment and
position), as well as on the applied current I , since it changes
the intershell separation. Consequently, the exact computation
of the intershell torques requires the solution of Eqs. (A1) and
(A2) for a given value of I .

Therefore, in order to derive a simple yet useful model
for the intershell motion, instead of dealing with Eq. (32)
combined with Eq. (33), we assume an intershell torque given
by

τβα = τmax sin N1ϕαβ. (34)

Here τmax denotes the maximum torque one shell can exert
on the other shell and it is directly related to the decoupling
current Idc. Contrary to the case of equal number of vortices
in the shells (which allow us to have an analytical formula
for Idc), in this model the decoupling current becomes a
parameter (which can be extracted from simulation data, for
instance) [57]. Nonetheless, the above assumption simplifies
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considerably the intershell equation of motion, which becomes

ωα − ωβ =
(

�β

Nβ

〈
R2

β

〉 − �α

Nα

〈
R2

α

〉
)

I

−
(

1

Nα

〈
R2

α

〉 + 1

Nβ

〈
R2

β

〉
)

τmax sin N1ϕαβ. (35)

This allows us to determine the dynamic behavior of the vortex
configurations as a function of I , since Eq. (35) is similar to
Eq. (23), with ϑ = N1ϕαβ , i.e.,

N1(ωα − ωβ) = dϑ

dt
= K[I − Idc sin ϑ], (36)

where

K = N1

(
�β

Nβ

〈
R2

β

〉 − �α

Nα

〈
R2

α

〉
)

, (37)

Idc = τmax

(
Nα

〈
R2

α

〉+ Nβ

〈
R2

β

〉
�βNα

〈
R2

α

〉− �αNβ

〈
R2

β

〉
)

. (38)

In Eqs. (37) and (38), specifically, α represents the outer shells.
Therefore, we have the same solutions given by Eqs. (25)–(27),
but with N1 instead of N , and Eq. (28) becomes

T = 2π

K

√∣∣I 2 − I 2
dc

∣∣ . (39)

The angular velocities of each shell are found by plugging
in Eqs. (32) the solution ϑ = N1ϕαβ = 2 arctan[ζ (t)] and by
noticing that sin ϑ = 2 tan(ϑ/2)/[1 + tan2(ϑ/2)] [Eq. (25)].
This yields

ωα = − 1

Nα

〈
R2

α

〉[�αI − 2σαβIdcζ

1 + ζ 2

]

= ωRB − σαβ

Nα

〈
R2

α

〉(I − 2Idcζ

1 + ζ 2

)
, (40)

where ζ (t) is given by Eqs. (25), (26), and (27), with N1 instead
of N ,

σαβ = �αNβ

〈
R2

β

〉− �βNα

〈
R2

α

〉
Nα

〈
R2

α

〉+ Nβ

〈
R2

β

〉 , (41)

and ωRB is the angular velocity the configuration would have
if it was rotating as a RB [see Eq. (11) and taking into account
that the vortex in the center, if present, has a negligible angular
velocity in our model],

ωRB = − (�α + �β)I

Nα

〈
R2

α

〉+ Nβ

〈
R2

β

〉 . (42)

For the case of one shell with vortices and another with
antivortices, we label the antivortex (vortex) shell index 2 (1).
Therefore, �2 = −N− and �1 = N+, and the above equations
become

ω± = ∓1

〈R2±〉
[
I − N∓(〈R2

+〉 + 〈R2
−〉)

N+〈R2+〉 + N−〈R2−〉
2Idcζ

1 + ζ 2

]
. (43)

For the case N+ = N− we recover Eq. (29).

From the angular velocities we calculate the angular
displacement of each shell as function of time. By performing
similar algebraic manipulation as done for the case of zero
total vorticity, we obtain

�ϕα(t) = − (�α + �β)I t

Nα

〈
R2

α

〉+ Nβ

〈
R2

β

〉 − σαβN1�ϕαβ(t)

KNα

〈
R2

α

〉
= ωRBt − σαβN1�ϕαβ(t)

KNα

〈
R2

α

〉 , (44)

where �ϕα(t) = ϕα(t) − ϕα(0) and �ϕαβ(t) = ϕαβ(t) −
ϕαβ(0). This equation shows that the shell displacement has
an additional term, which depends linearly on the applied
current, compared to the previous case of zero total vorticity
[cf. Eq. (31)] and corresponds to the angular displacement of
the RB frame rotating with angular velocity ωRB.

For I > Idc the case of a vortex and an antivortex shell
presents more interesting features, since the attractive vortex-
antivortex interaction plays an important role in the intershell
motion. Namely, the antivortex shell is dragged by the vortex
shell (which experiences stronger current density being closer
to the center of the disk) whenever individual vortices and
antivortices are sufficiently close to each other. For low applied
currents (just above Idc) this vortex-antivortex interaction
prevails and the antivortex shell rotates alternately in the same
and in the opposite direction to the rotation of the vortex
shell. For higher currents, the induced Lorentz forces acting
upon each shell overcome the vortex-antivortex interaction
most of the time. Thereby, in this case, the shells rotate
in opposite directions. This behavior is depicted in Fig. 5,
where the angular displacements of the antivortex and vortex
shells are shown as functions of time within one period T .

FIG. 5. Angular displacement of antivortices as a function of
time (within one period T ) for a configuration containing N+ = 6
vortices and N− = 3 antivortices. The data were calculated for√
〈R2

+〉 = 0.0975,
√
〈R2

−〉 = 0.57 and different values of I > Idc. The
initial condition is ϕ−(t = 0) = ϕ+(t = 0) = 0. For I � Idc the net
angular displacement of antivortices is in the same direction as that
of vortices (which move in the negative direction). For higher values
of I/Idc the antivortices rotate opposite to vortices. (Inset) Angular
displacement of vortices (dashed lines) and antivortices (solid lines)
as a function of time.
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For I = 1.072 04Idc the antivortex shell predominantly rotates
in the same direction as the vortex shell. For I � 1.57Idc

the antivortex shell rotates only in the direction imposed by
the applied current, even though the angular displacement is
smaller whenever the vortices and antivortices come closer to
each other. I = 1.144 08Idc is the threshold current for which
the net antivortex angular motion is exactly zero. In the inset
of Fig. 5 it is clear that the vortex and antivortex angular
displacement increase with increasing applied current (this is
not evidenced in the main panel since the period T decreases
for increased applied current).

The distinction between these two types of motion can
be made by computing the net angular displacement of the
antivortex shell during one period T . Therefore, making t = T

and �ϕαβ(T ) = 2π/N1 and substituting Eq. (41) in Eq. (44),
one obtains

�ϕα(T ) = − 2π

K
[
Nα

〈
R2

α

〉+ Nβ

〈
R2

β

〉]

×
⎡
⎣�βNα

〈
R2

α

〉− �αNβ

〈
R2

β

〉
Nα

〈
R2

α

〉 − (�α + �β)I√
I 2 − I 2

dc

⎤
⎦.

(45)

The threshold current I ∗ where one of the shells changes the
direction of rotation is given by the condition of zero net
angular displacement within T ,�ϕ−(T ) = 0. In this case the
condition is fulfilled for

1

cαβ

= �αNβ

〈
R2

β

〉− �βNα

〈
R2

α

〉
Nα

〈
R2

α

〉
(�α + �β)

= I ∗√
I ∗2 − I 2

dc

, (46)

which yields

I ∗ = Idc√
1 − c2

αβ

. (47)

In the case where one of the shells contains antivortices,
replacing α and β with the antivortex and vortex shells labels
− and +, respectively, we have

cαβ = c−+ = (N+ − N−)〈R2
−〉

N+(〈R2+〉 + 〈R2−〉) . (48)

Notice that |c−+| < 1, which yields I ∗ � Idc. Therefore, for
I < I ∗ the vortex-antivortex interaction is sufficiently strong
to overcome the Lorentz force produced by the applied
current, causing the net rotation of antivortices in the same
direction as that of the vortices. On the other hand, for
I > I ∗ antivortices have net rotation opposite to vortices and
in the direction dictated by the applied current. For the case
depicted in Fig. 5, i.e., N+ = 6,N− = 3,

√
〈R2

+〉= 0.0975, and√
〈R2

−〉 = 0.57, Eqs. (47) and (48) yield I ∗ = 1.144 08Idc for
zero net antivortex motion. For the same number of vortices
and antivortices in the shells I ∗ = Idc.

In Eq. (48) c−+ may also depend on Idc, which results
in a nonlinear dependence of I ∗ on Idc. This is so because
Idc depends on the vortex and antivortex positions, so it may
depend on 〈R2

−〉 and 〈R2
+〉 as well. Conversely, one can think of

〈R2
−〉 and 〈R2

+〉 depending on Idc. So, for N+ > N−, c−+ might
depend on Idc. However, in our case we expect this dependence

to be small since c−+ = (1 − N−/N+)/(1 + 〈R2
+〉/〈R2

−〉) ≈
(1 − N−/N+) because typically we have

√
〈R2

+〉/〈R2
−〉 be-

tween 0.2 and 0.25. For the case N+ = 6, N− = 3,
√

〈R2
+〉 =

0.0975, and
√

〈R2
−〉 = 0.57, making c−+ = (1 − N−/N+)

gives I ∗ = 1.155Idc, which is a very good approximation to
the exact value.

It is interesting to point out that in the case of both shells
being constituted by vortices there is no real value for I ∗, since
|cαβ | > 1. This should be so since in this case the shells are
expected to rotate always in the same direction when driven
by the external current.

V. VOLTAGE-CURRENT CHARACTERISTICS

Measurements of the voltage-current characteristics is
a standard experimental manner to examine the dynamic
regimes of vortices in the Corbino geometry. For the case of
two-shell dynamics, a suitable arrangement of voltage contacts
a, b, and c, as illustrated schematically in Fig. 6, allows one to
probe the motion of each shell individually by measuring the
voltage drop between two point contacts. In the case depicted
in Fig. 6, the voltage corresponding to the first (second) vortex
shell would be V1 = Vab (V2 = Vbc). The overall response of
the system is simply the sum of these voltages.

Whenever a vortex passes between two voltage contacts
a voltage pulse Vi(t) is detected. As pointed out by Clem
[58], irrespectively of the pulse shape, its time integral is∫

Vi(t)dt = �0. In the Corbino geometry, a single vortex
or antivortex will generate Nr such pulses, where Nr is the
number of revolutions performed during the measurement
time �texp. The pulses will be positive if the (anti)vortex
moves (counter)clockwise or negative otherwise. Notice that,
for an intricate dynamics, a vortex may pass back and forth
through the line between the contacts, thus inducing both

FIG. 6. Time-averaged voltage associated with the antivortex
shell (red), vortex shell (blue), and configuration (green) motion as
function of the applied current for the same configuration shown
in Fig. 5. (Inset) Scheme of three point contacts (light blue dots)
between which the vortex shells may move (depicted as large red and
blue circles).
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negative and positive pulses. These obviously cancel out after
a long measurement time. In the end, what matters is the
total angular (counter)clockwise displacement of the vortex
�φi = ±2πNr = �i�t , where �i = 1

�texp

∫
�texp

ωi(t)dt is the
time-averaged angular velocity of the vortex. Therefore, for a
single vortex, one can write

Vi = −νi

�0

2π
�i. (49)

Assuming that during �texp the vortex shell α keeps its
integrity (that is, Nα is constant and vortices do not overpass
each other), all vortices in the shell will perform the same
number of revolutions. Therefore, the contribution of each
vortex is the same and the voltage drop due to shell rotation
reads

Vα = −�α

�0

2π
�α, (50)

where �α is the time-averaged angular velocity of the shell
and �α = ναNα is its total vorticity.

For the commensurate shell motion considered here, ωα(t)
is a periodic function with a period T given by Eq. (39). In this
case, the average over �texp may be replaced by the average
over T .

Substituting Eqs. (40)–(42) in Eq. (50) above and per-
forming the required time integration, we find [in units of
�0/(2πt0)]

Vα = �α

Nα

〈
R2

α

〉+ Nβ

〈
R2

β

〉[(�α + �β)I

+
(

�αNβ

〈
R2

β

〉
Nα

〈
R2

α

〉 − �β

)√
I 2 − I 2

dc�(I − Idc)

]
, (51)

where �(x) is the Heaviside step function. The first term
is proportional to ωRB, which varies linearly with I and,
therefore, is Ohmic. The other contribution, for I > Idc comes
from the relative motion between the shells. For the specific
case where there are commensurate shells of vortices and
antivortices, we have

V∓ = N∓
N−〈R2−〉 + N+〈R2+〉

[
∓ (N+ − N−)I

+ N±

( 〈R2
±〉

〈R2∓〉 + 1

)√
I 2 − I 2

dc�(I − Idc)

]
, (52)

while in the case of configurations with only vortices (consid-
ering Nα = N1 > Nβ = N2, R1 > R2), we find

V(1,2) = N(1,2)

N1
〈
R2

1

〉+ N2
〈
R2

2

〉[(N1 + N2)I

+ N(2,1)

(〈
R2

(2,1)

〉
〈
R2

(1,2)

〉 − 1

)√
I 2 − I 2

dc�(I − Idc)

]
. (53)

In the latter case the initial Ohmic response starts to increase
(decrease) with

√
I 2 − I 2

dc for currents above Idc for the voltage
associated with the shell 2 (1).

On the other hand, for configurations with vortices and
antivortices, for I < Idc the Ohmic response has opposite
voltages due to the motion of vortices and antivortices in the
same direction (RB motion of the configuration). For I > Idc,
there is an additional positive contribution proportional to√
I 2 − I 2

dc. While the voltage associated with vortices always
has the same sign, the one due to antivortex motion changes
sign. From Eq. (52) one verifies that the applied current at
which this voltage changes sign is given by Eqs. (47) and (48).
This is expected, since the latter equations describe the current
at which the antivortex shell does not have any net motion;
therefore, V−(I ∗) = 0.

Figure 6 shows V+, V−, and Vtot = V+ + V− [divided by
Vtot(Idc)] as a function of the applied current for the (1, 6,−3)
configuration with R+ ≈ 0.0975 and R− ≈ 0.57 (the same
values used to plot Fig. 5). The voltages depict the behavior
mentioned above: For I < Idc the linear response is related to
the RB motion of the entire configuration, while for I > Idc a
contribution proportional to

√
I 2 − I 2

dc is obtained [59]. Notice
also that for I < Idc the voltage produced by the moving
antivortices is opposite in sign to the one produced by moving
vortices, since they move in the same direction and the electric
fields generated by vortex and antivortex shells have opposite
sign. In addition, in the range Idc < I < I ∗, V− still has
opposite sign to V+ because the net motion of the antivortices is
in the same direction as the vortex shell rotation. Nevertheless,
Vtot has the same sign as V+ for in the whole range of the
applied current.

We also computed the power dissipated due to the vortex
motion. The dissipated power P in a given volume, V , is given
by
∫
V

d3rE · j, where E is the electric field and j is the current
density. Following the Bardeen-Stephen approximation, we
consider the electric fields only inside the vortex cores, given
by Eq. (49). Therefore, for NS shells, each moving with
angular velocity ωα and containing Nα vortices or antivortices,
we have

P ≈ πξ 2
Nv∑
i=1

νi�0(ẑ × vi)

πξ 2
· J(ri) (54)

=
Nv∑
i=1

vi · Fi =
Nv∑
i=1

vi · vi =
Nv∑
i=1

(
ω2

i r
2
i + v2

i,r

)

≈
NS∑
α=1

Nα

〈
R2

α

〉
ω2

α. (55)

Here 〈R2
α〉 = ∑Nα

i=1 r2
i /Nα , Fi is the force acting on the ith

vortex, and we used the Bardeen-Stephen equation of motion,
vi = Fi . For the case of two commensurate shells, integrating
the above equations over one period, T , results in the time-
averaged dissipated power

〈P〉 = (
Nα

〈
R2

α

〉〈
ω2

α

〉
T

+ Nβ

〈
R2

β

〉〈
ω2

β

〉
T

)

=
⎡
⎣RRB + ρs

√
1 − I 2

dc

I 2
�(I − Idc)

⎤
⎦I 2, (56)
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where

RRB = (�α + �β)2

Nα

〈
R2

α

〉+ Nβ

〈
R2

β

〉 , (57)

ρs =
(

1

Nα

〈
R2

α

〉 + 1

Nβ

〈
R2

β

〉
)

σ 2
αβ. (58)

Substituting Eq. (41) in the above equations we find 〈P〉 =
(Vα + Vβ)I , where Vα and Vβ are given by Eq. (51), as should
be expected.

VI. SIMULATION RESULTS

In addition to the analytic model detailed in the previous
sections, we performed molecular dynamics simulations of
vortices in a thin disk of radius R in both scenarios: (i) with
a magnetic dipole on top (as illustrated in Fig. 1) and
(ii) subjected to a homogeneous magnetic field Ha . For
both cases, the initial vortex configurations were obtained by
integrating Eq. (1) for I = 0 using the method described in
Refs. [38,60] for different values of the control parameters
m0 and z0 for the dipole case and Ha for the homogeneous
field case. Then, for each configuration, a radial current I was
gradually increased from I = 0, taking as initial configuration
the one obtained for the previous value of current. For each
current, the vortex dynamics was recorded for more than 106

time steps. In all simulations, the intervortex potential was cut
off inside the vortex cores.

The simulation results reveal the same general trends
predicted by our analytical model. At low currents, the system
behaves as a RB, with both shells rotating in the same direction
with the same angular velocities. Above a decoupling current,
Idc, the shells decouple and rotate with different angular
velocities in a highly correlated motion. In the case of the disk
with a magnetic dipole on top, the antivortex and vortex shells
rotate in opposite directions at an even higher current (see also
Ref. [52]). For all configurations under investigation here, and
in both scenarios, the RB angular velocity was found to follow
Eq. (11) exactly. In fact, since Eq. (11) is a direct result of
the the RB constraint, one can use it to check whether the
simulations are running properly. However, all other results
of our analytic model rely on assumptions such as shells
forming rigid, regular polygons. In what follows, we check
thoroughly in which extent these approximations represent an
accurate description of the dynamics of two vortex shells in
superconducting disks.

A. The rigid-body phase

We first compare our analytical results to the numerical ones
for the moving RB phase. We start with the case of the dipole-
disk system with equally populated shells (N+ = N−). In this
case, a key feature of the model is that the steady-state value of
the angular displacement between both shells increases with
the current as arcsin(I/Idc) [see Eq. (24)] as a result of the shear
gradient induced by the 1/r behavior of the current density. To
check this, we computed the quantity �φ = ϕ−+(I ) − ϕ−+(0),
which represents the difference between the angular separation
of each vortex of the inner shell to the nearest antivortex in the
outer shell at a current value I compared to I = 0 for different

FIG. 7. Vortex-antivortex angular separation, �φ, as a function
of the applied current I in the RB phase for the states (1, 4, −4)
(squares) and (1, 5, −5) (pentagons). The (1, 4, −4) state was
obtained for m0 = 2.4 and z0 = 0.06, 0.07, . . . , 0.1; and m0 =
2.6, 2.8, . . . , 3.8 and z0 = 0.1. The (1, 5, −5) state was obtained for
m0 = 3.2 and z0 = 0.09,0.1; m0 = 3.4 and z0 = 0.1; and m0 = 3.6
and z0 = 0.08,0.09. The solid line depicts the theoretical dependence
N+�φ = arcsin(I/Idc) provided by our analytic model. I is normal-
ized to the corresponding decoupling current of the considered state.

shell configurations. In Fig. 7 we show N+�φ as a function
of I/Idc for the states (1, 4, −4) and (1, 5, −5) obtained for
different values of m0 and z0. Regardless of the state and
the chosen m0 and z0, all these data collapse on one curve
and are fitted remarkably well by the theoretical dependence
N+�φ = arcsin(I/Idc).

The angular displacements for configurations having com-
mensurate (but not equal) shell occupation in the dipole-disk
system are shown in Fig. 8. The configurations were obtained
for different values of m0 and z0. Since for each antivortex
there are N+/N− vortices in the inner shell (with N+/N−
varying from 2 to 6), N+/N− values of �φ are found for each
configuration. The dependence of �φ on I/Idc is roughly
the same for all the vortices and can be described well
by the functional dependence N+�φ = arcsin(I/Idc) + 2πn,
where n = 0, 1, . . . ,N+/N− − 1. This indicates that our
ansatz [Eq. (34)] for the intershell torque works as a good
approximation for these configurations. However, in contrast
to the N+ = N− case, some discrepancies from the predicted
behavior are apparent. That is because, in general, the shells
do not form regular polygons, contrary to the assumption
taken in our analytic model assumption. If we denote by
R+ + δRn and 2πn/N+ + δφn the radial and angular positions
of the nth vortex (for I = 0) we find that δRn and δφn grows
as N+/N− increases. This feature remains also for nonzero
applied current and can be seen in Fig. 8.

For the case where the disk is subjected to a homogeneous
field, the stable configurations contain only vortices and, in
general, there are fewer vortices in the inner shell (Nint) than
in the outer one (Nout) [36,38,61]. In this case, the model
developed in Sec. IV predicts an angular displacement [in
relation to φ(0)] �φ = arcsin(I/Idc)/Nout for commensurate
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FIG. 8. Vortex-antivortex angular separation, �φ, as a function of
I/Idc in the RB phase for several configurations with commensurate
inner (vortex) and outer (antivortex) shells. The symbols with
green and red edges represent data obtained for m0 = 8.0 and
m0 = 6.0, respectively. The state (1, 6, −3) contains data calculated
for z0 = 0.2, 0.21, and 0.22. The solid lines depict the N+�φ =
arcsin(I/Idc) + 2πn dependence, where n = 0, 1, . . . ,N+/N− − 1,
expected by our model. Due to the shells’ commensurability there are
N− antivortices with N+/N− angular separations to corresponding
nearest vortices.

shells. Figure 9(e) shows the good agreement between this
prediction and the simulation results for states (0, 3, 9) (Ha =
16.0), (0, 4, 12) (Ha = 24.0), and (1, 6, 12) (Ha = 27.0), de-
picted in Figs. 9(a), 9(b), and 9(d), respectively. For (0, 6, 12)
(Ha = 27.0), shown in Fig. 9(c), we find a similar dependence
to our model, except that, instead of Nout in the above equation,
one has ∼0.75Nout. This difference between predicted and
fitted values seems to be related to the inner shell geometry,
which is closer to a deformed triangle instead of a regular
hexagon. In this configuration the angular separations between
neighboring vortices in the inner shell are equal to π/3 for all
the vortices (as it would be for a regular hexagon), but the radial
distances are not. In fact, the inner shell is best described by
two equilateral triangles of different sizes.

Another observed feature is that the angular separation
�φ(I ) is not exactly the same for all vortices in the outer shell.
This is more pronounced for the (0, 6, 12) configuration, but
it is also present in the other configurations depicted in Fig. 9.
This indicates that the outer shell would be better described as
Nout/Nin polygons with Nin sides. However, our model of rigid

FIG. 9. Vortex positions for weak applied currents and states (a)
(0, 3, 9) at Ha = 16.0, (b) (0, 4, 12) at Ha = 24.0, (c) (0, 6, 12) at
Ha = 27.0, and (d) (1, 6, 12) at Ha = 27.0 in the frame rotating with
angular velocity of the inner shell for I < Idc. The vortex markers
are made larger as the applied current increases. (e) The angular
displacements between vortices in the inner and outer shells �φ as a
function of the applied current I [corresponding to the configurations
shown in panels (a)–(d)]. The blue line depicts the analytic equation
�φ = arcsin(I/Idc)/Nout, while the magenta lines represent �φ =
arcsin(I/Idc)/N ′, where N ′ = 0.7Nout and N ′ = 0.78Nout.

outer and inner vortex shells is still a reasonable approximation
in those cases.

B. The decoupled-shells phase

In what follows we analyze the more intricate dynamics of
the decoupled phase (I > Idc). A salient feature of this phase
is the periodic sequence of detachments and reconnections as
the shells move relative to each other. These are reflected in the
time evolution of the shells’ angular velocities as a series of
peaks with a well-defined period T . This behavior, already
predicted by our analytic model (cf. Fig. 4), is illustrated
in Fig. 10 for the configuration (1, 4, −4). The simulation
data are in excellent agreement with the analytical prediction
obtained from Eq. (18). Notice that the influence of the vortex
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FIG. 10. Vortex and antivortex angular velocities, ω+ and ω−,
respectively, as a function of time, for the configuration (1, 4, −4) (for
m0 = 3.0,z0 = 0.1) and different applied currents. Points and lines
represent the simulation data and the analytical results, respectively.
For the above analytical curves we used Idc = 1.488 027 5 × 10−3.

in the center of the disk on the intershell dynamics is negligible,
since its radial position is very close to zero.

In the model developed for equally populated shells, the
frequency of reconnection of the shells is given by f = 1/T =
(K/2π )

√
I 2 − I 2

dc, where K is a function of the shell radii [see
Eq. (28)]. To check the validity of this equation, we calculated
the reconnection frequency, normalized by fN = IdcK/2π ,
as a function of I/Idc for configurations (1, 4, −4) and
(1, 5, −5) and different values of m0 and z0 (which result
in different values of the shell radii R+ and R−). The results,
presented in Fig. 11(a), reveal a remarkable collapse of all
numerical data points precisely on the predicted theoretical
curve. Figure 11(b) shows the dependence of the decoupling
current Idc, calculated numerically, on the ratio R+/R− for the
configurations (1, 4, −4) and (1, 5, −5) for the same values
of m0 and z0 used in Fig. 11. Once more, the numerical data are
in excellent agreement with the theoretical prediction, given
by Eq. (21).

Similar series of detachments and reconnections can be
observed for the case where the vortex and the antivortex
shells in the disk-dipole system are commensurate, but not
equally populated. Figure 12 shows the angular velocities of
the shells as functions of time for the configuration (1, 6,−2).
For a better visualization, the angular velocities were divided
by the corresponding current and time was normalized by the
theoretical value of the period T [calculated from Eq. (39)
with N+ instead of N1]. Points and lines depict the results
of the simulation and the model, respectively. Once again,
a very good agreement between the numerical data and the
analytic prediction is observed. The same conclusion extends
to other commensurate configurations we have analyzed,
(1, 4, −2) and (1, 6, −3), as well as for a particular weakly
commensurate configuration (1g2, 6, −4) (from here on, 1gn

stands for a giant vortex of vorticity n located at the center).
In all these cases, the shells form polygons very close to
regular and the central vortex radial position is practically zero.
However, for other weakly commensurate configurations, such
as (1, 4, −1), (1, 6, −1), (1g2, 5, −2), and (1g3, 4, −3),
the shells deform considerably from regular polygons and
the displacement of the central (giant) vortex from the disk
center is appreciable. For these configurations, the quantitative

FIG. 11. (a) Normalized reconnection frequency f/fN (fN =
KIdc/2π ) of configurations (1, 4, −4) and (1, 5, −5) as a function
of normalized current (I ′ = I/Idc) calculated for different values of
the control parameters m0 and z0. (b) Decoupling current Idc as a
function of the reduced radial position R+/R− extracted from the
simulations considered in (a). The continuous and dashed lines are
plots of Eq. (21) for N+ = N− = 4 and N+ = N− = 5, respectively.

FIG. 12. Time dependence of the vortex and the antivortex
angular velocities for the configuration (1, 6, −2), m0 = 8.0, z0 =
0.2 and different applied currents (Idc = 2.4447 × 10−3 gives best
analytical fit to the simulation results). Points (lines) depict the results
from the simulation (model). The angular velocities were divided by
the applied current for better visualization. (Inset) Magnification of
the peaks in the angular velocity for the antivortex shell.
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FIG. 13. The dependence of f/fN on I/Idc for all of the
investigated vortex-antivortex configurations.

agreement between the model and the simulations is much
poorer, though all qualitative trends remain captured by the
model.

The functional dependence of the frequency of the peaks
in angular velocity on the applied current was found to be the
same for all the investigated configurations. In fact, Fig. 13
shows that all of them can be adjusted to follow the same
curve, that agrees with the curves for the configurations
(1, 4, −4) and (1, 5, −5) discussed before [see Fig. 11(a)].
Therefore, although not providing a prediction of Idc for the
cases where N1 �= N2, the functional dependence predicted
by the model is the same as the one found in simulations
even in this case. Moreover, the fitting parameter fN obtained
for commensurate configurations with N− > 1 shows a good
agreement with Eq. (28).

Finally, we test the results of our model in the decoupled
phase for the case of a disk subjected to a homogeneous field.
As expected, the time evolution of the angular velocity of
each shell also presents peaks associated with the slippage
of the vortices in one shell over the vortices in the other
shell. Figure 14 shows that the reconnection frequency
of all configurations considered in our simulations follow
the

√
I 2 − I 2

dc law predicted by our model [see Eq. (39)].
However, contrary to the case with vortices and antivor-
tices, in the present situation the normalization factor fN

differs from the predicted one, f model
N = KIdc/2π , where

K is given by Eq. (37). In fact, we find for (0, 3, 9)fN =
0.1277 and f model

N = 0.1573; for (0, 4, 10) fN = 0.001 227
and f model

N = 0.000 692 1; for (0, 4, 12) fN = 0.3540 and
f model

N = 0.4786; for (0, 6, 12)fN = 0.028 70 and f model
N =

0.028 05; for (1, 6, 12) fN = 0.1675 and f model
N = 0.178 25.

The differences are significant but typically do not exceed
40%. Better agreements are found for states (0, 6, 12) and
(1, 6, 12). The discrepancies could be due to the fact that the
outer shells are not regular polygons (as assumed in the model)
and, in fact, these systems would be modeled more precisely
by considering the outer shell as composed of Nout/Nin regular
polygons with Nin sides. This argument seems to be supported

FIG. 14. Frequency of the angular frequency peaks for inner and
outer vortex shells as a function of the applied current. The solid line
depicts the

√
(I/Idc)2 − 1 dependence. The inset shows the same for

a larger range of currents.

by the larger differences observed in the (0, 3, 9) and (0, 4, 12)
configurations, where the outer shells are, respectively, similar
to a rounded triangle and a rounded square [cf. Figs. 9(a) and
9(b)]. On the other hand, the (0, 6, 12) and (1, 6, 12) configura-
tions have nearly circular outer shells [see Figs. 9(c) and 9(d)].

We also studied the angular velocities of the vortices as a
function of time obtained from the simulations and compared
them to the ones predicted by our model. The agreement is
not as good as in the vortex-antivortex case. However, it is
still reasonable if we consider the time scaled by Tfit for the
simulation results, as well as t/Tmodel for the angular velocity
dependence from the model. An example is shown in Fig. 15
for (0, 4, 12) configuration at Ha = 24, where the angular
velocities ω of the vortices are depicted as functions of time
divided by Tfit for I = 0.019 25, I = 0.0195, I = 0.02, and
I = 0.025. ω is divided by I for better visualization. The
results from the model, with time divided by Tmodel, are shown
by solid lines, where we used Idc = 0.019 225. Similarly to the
vortex-antivortex case, ω is sharply peaked for currents just

-25

-20

-15
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0 0.5 1 1.5 2

ω
 / 

I

t/T

I = 0.025
I = 0.02
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I = 0.01925

FIG. 15. Angular vortex velocity as function of time for the
(0, 4, 12) configuration at Ha = 24, for different applied currents.
Solid lines (points) depicts the results from our model (simulations).
Time is divided by the respective period of motion, Tmodel and Tfit,
which are related by Tfit/Tmodel = f model

N /fN .

014515-13



L. R. E. CABRAL et al. PHYSICAL REVIEW B 93, 014515 (2016)

above Idc and presents smoother oscillations as I increases.
These peaks appear when vortices in one shell overcome the
potential well produced by the vortices in the other shell.
One of the differences between this situation and the one
with vortices and antivortices is the fact that ω is strictly
negative in the former, meaning vortices always rotate in the
same direction. The agreement between model and simulation
is good for I close to Idc and worsens as I increases, but
maintains a qualitative agreement. The other configurations
studied present similar features.

One aspect which is observed in the rotation of shells
of vortices—and which is negligible in the configurations
with both vortices and antivortices—is that the peaks in ω

for the outer vortices do not appear at the same time. This
means that, contrary to our model assumption, here intrashell
motion is not negligible. Nonetheless, even without including
this effect, we find a qualitative agreement between the
simulations and the model.

VII. CONCLUSIONS

In this paper, we addressed theoretically the problem of the
vortex shell dynamics in superconducting disks in the Corbino
setup, focusing on configurations comprising only two vortex
shells. The cases with the vortex and the antivortex shells
(as found under magnetic dots) as well as with only vortices
were studied analytically and by numerical simulations. We
first developed an analytic model which treats each shell as
a RB interacting with the other shell. The model is exact
for shells with same numbers of vortices or antivortices (as
long as vortex images induced by the boundary condition
can be neglected). For the case of commensurate (but not
equal) numbers of vortices in the shells we provide an ansatz
for the intershell torque, which can describe reasonably well
the interactions between vortices in different shells. In the
numerical simulations, we subsequently considered the full
many-vortex problem, without the rigid-shell constraint.

Our calculations provide evidences for two different phases
of the rotating vortex system induced by the nonuniformity
of the radial current density in the Corbino geometry: a
RB rotation for I < Idc and an intershell relative rotation
for I > Idc, where Idc is the critical current separating both
phases. In the former, the whole configuration rotates with a
prescribed angular velocity ωRB, whose value is determined by
the total vorticity, L, and the vortex radial positions. Therefore,
if L = 0 (which is the case for equal number of vortices
and antivortices) the configuration does not rotate (ωRB = 0)
for I < Idc. Above Idc vortices in the inner shell, which are
submitted to stronger stresses, detach from the vortices (or
antivortices) in the outer shell, rotate faster, and reposition
themselves close to the next vortices (or antivortices) in the
outer shell. For the case of configurations containing vortices
and antivortices, the attractive vortex-antivortex interaction
drags the antivortex shell along with the vortex shell most
of the time for currents just above Idc. As the current is further
increased, the induced Lorentz force becomes stronger and the
dragging effect diminishes until a point where the antivortex
shell rotates (on average) in the direction opposite to the vortex
shell rotation.

For all the studied configurations (with vortices and antivor-
tices as well as those with only vortices), this process repeats
periodically with a frequency proportional to

√
I 2 − I 2

dc. The
detailed structure of each shell enters the model through Idc

and the proportionality factor. This result, as well as the time
evolution of the vortex angular velocities, was predicted by
our two-rigid-shell model and confirmed by the numerical
simulations. However, the quantitative agreement between
theory and simulation is poorer for the case of configurations
containing only vortices. This is, in part, due to significant
intrashell displacements within the outer vortex shell which
were not considered in our two-shell model. In spite of that,
the major features of the shell dynamics remains well described
by the model.

Finally, we would like to stress that the predictions of our
model can be tested in transport experiments performed on thin
disks of low-pinning superconductors in the Corbino geometry.
As we have pointed out in the text, the voltage drop between
suitably placed point contacts gives a direct measure of the
mean angular velocity of each vortex shell separately. For
instance, the linear (in RB phase) and the nonlinear (in the de-
coupled phase) behaviors of the V (I ) characteristics predicted
by our model are readily experimentally accessible. The sign
inversion of the voltage induced by the change of the rotation
direction of the outer antivortex shell in the disk-dipole system
could also be directly observed. We also note that, by Fourier
analyzing the noise spectra of the voltage measured at currents
above Idc, the intershell reconnection frequency could be
measured, thereby testing our predicted

√
I 2 − I 2

dc scaling law.
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APPENDIX A: TWO-SHELL CONFIGURATIONS
WITH COMMENSURATE NUMBER OF VORTICES

AND ANTIVORTICES

For shells with commensurate number of vortices and an-
tivortices, where N+/N− = 1, 2, 3 . . ., with the possibility of
one vortex (of vorticity L0) in the center of the disk, the vortex
and the antivortex shells can be divided in M = N+

N−
+ 1groups

of vortices. Further, it is reasonable to assume the vortices
in a shell form a regular polygon concentric with the disk
main axis [62]. Therefore, the system has N−-fold rotational
symmetry, with vortices and antivortices placed at the vertices
of coaxial regular polygons of N− sides. Each vortex position
and vorticity can be described by (Rm cos φm,i, Rm sin φm,i)
and νm = 1 (νm = −1 for an antivortex), respectively. Here
φm,i = ϕm + 2πi/N−,ϕm is an angular arbitrary position for
the mth shell, and m = 1, 2, . . . ,M and i = 1, 2, . . . , N−.
This vortex distribution is depicted in Fig. 16 for the case of
a configuration with six (three) vortices (antivortices) in the
inner (outer) shell. This configuration has threefold rotational
symmetry and two different groups of vortices. ϕ1, ϕ2, and ϕ3
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FIG. 16. The two-vortex-shell model for commensurate con-
figurations is represented schematically for the (0, 6, −3) vortex
state as an example. Circles with dots (crosses) represent vortices
(antivortices). Different background colors depict the threefold
rotational symmetry of the system. The antivortices are located at
radius R3 = R− and angular positions φ2 + 2πj/3 for j = 0, 1, 2.
The vortices in the inner shell are grouped in N+/N− = 2 groups at
radii R1 and R2. In each group the angular positions of the vortices
are given by φs + 2πi/3 for i = 0, 1, 2 and s = 1, 2.

represent arbitrary angular positions in each shell (which we
place at the positions of the given vortex and antivortex).

The following equations of motion describe the dynamics
of each vortex ring:

vm,r = − νmm0Rm(
R2

m + z2
0

)3/2 + N− − 1 + 2νmL0

Rm

+ 2N−R
2N−−1
m

1 − R
2N−
m

+
M∑
n=1

n�=m

fimn, (A1)

R2
mωm = −νmI +

M∑
n=1

n�=m

τimn, (A2)

where vm,r is the radial velocity of the vortices in the mth ring,
ϕmn = ϕm − ϕn,

τimn = 2N−νmνnR
N−
m RN−

n sin N−ϕmn

×
[

1

DN−(Rm,Rn,ϕmn)
− 1

DN−(1,RmRn,ϕmn)

]
,

(A3)

are the torques produced by the nth ring on the ith vortex (or
antivortex) in the mth ring, and

fimn = 2N−νmνn

[
R

N−−1
m

(
R

N−
m − R

N−
n cos N−ϕmn

)
DN−(Rm,Rn,ϕmn)

− R
N−−1
m R

N−
n

(
R

N−
m R

N−
n − cos N−ϕmn

)
DN−(RmRn,1,ϕmn)

]
. (A4)

is the radial force acting on this vortex. For N− > 1 the
symmetry of the model yields zero force acting on the central
vortex, which means this vortex remains static and its equation
of motion need not be considered. Moreover, all the vortices
within the same ring in the inner shell and all the antivortices
in the outer shell move together.

The above equations allow us to find the stable positions
of vortices and antivortices in the case of zero applied current
(I = 0) by setting vm = 0 and ωm = 0 for each ring. First, it is
reasonable to suppose that the vortices are aligned angularly
with the antivortex due their mutual attraction. Therefore,
ϕ+ − ϕ− = ϕ = 0 and the equations related to the angular
positions are disregarded, leaving one to solve a system of
two equations,

− νmm0R
2
m(

R2
m + z2

0

)3/2 + N− − 1 + 2N−R
2N−
m

1 − R
2N−
m

+ 2N−νmνnR
N−
m

[
1

R
N−
m − R

N−
n

− R
N−
n

1 − RmRn

]
= 0, (A5)

for m = +,− and n = −,+, respectively.
The radial positions of configurations containing two shells

with the same number of vortices and antivortices for I =
0 were found by solving the above system of equations.
Specifically, we solved for L0 = 0, 1, and N = 2, 3, 4, 5, 6,
i.e., the vortex states (0, 2,−2), (0, 3,−3), (1, 3,−3);
(0, 4,−4), (1, 4,−4); (0, 5,−5), (1, 5,−5); (0, 6,−6); and
(1, 6,−6). m0 and z0 were varied in order to find the regions
were these states are stable. Therefore, we find the radial
positions of the two vortex shells as a function of m0 and z0.

APPENDIX B: INTEGRATION OF THE INTERSHELL
EQUATION OF MOTION

In order to solve Eq. (23), one can substitute ϑ = 2 arctan ζ .
Therefore, dϑ

dt
= 2 dζ

dt
/(1 + ζ 2), sin ϑ = 2ζ/(1 + ζ 2), and the

equation can be rewritten as

2
dζ

dt
= KI

[(
ζ − Idc

I

)2

+ c2

]
, (B1)

where c2 = 1 − ( Idc
I

)
2
. By making u = ζ − Idc

I
we finally find

KIt

2
=
∫

du

u2 + c2
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−arctanh (u/c)

c
, for I < Idc,

−u−1, for I = Idc,
arctan (u/c)

c
, for I > Idc.

(B2)

After rewriting this equation back in terms of ϑ = Nϕ, we
arrive at Eqs. (25), (26), and (27).

APPENDIX C: STATIONARY INTERSHELL SEPARATION

In order to show that Eq. (24) is the limit of Eqs. (25),
(26), and (27) for t � T and I < Idc, we first notice that
f (I < Idc,t � T ) ≈ (1 − Ĩ 2)−1/2. Therefore,

ζ (t � T ) = tan
ϑstat

2

=
√

1 − Ĩ 2 tan ϑ0
2 + Ĩ − tan ϑ0

2√
1 − Ĩ 2 + 1 − Ĩ tan ϑ0

2

, (C1)
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where ϑ = Nϕ. If we add and subtract Ĩ /(1 +
√

1 − Ĩ 2) to
the RHS of the above equation, we find

tan
ϑstat

2
= Ĩ

1 +
√

1 − Ĩ 2
. (C2)

Therefore,

sin ϑstat = Ĩ , (C3)

which results in Eq. (24).

APPENDIX D: MOTION OF SHELLS WITH ARBITRARY
RADII FOR N+ = N−

The intershell dynamics can be understood for same number
of vortices and antivortices by solving Eq. (20). Here we find
the solution of Eq. (20) valid for any R+ < R−.

In the stationary regime we have ω+ − ω− = 0 = dϑ
dt

. By
using this condition, and Eqs. (21) and (22), we obtain

Nϕstat = arctan

⎧⎨
⎩
√[(

I
Idc

)2 + (
I
N

)2][
1 − (

I
Idc

)2]− I
N

1 − (
I
Idc

)2 − (
I
N

)2

⎫⎬
⎭,

(D1)

which is the intershell angular displacement dependence on
I for I < Idc in the stationary regime. The approximated
expression given by Eq. (24) holds for � = R+/R− 	 1 or,
equivalently, for Idc 	 N .

The time dependence of the intershell angular displacement
can be obtained by solving Eq. (20). This equation can be put
in the form

KIt − �ϑ =
∫ ϑ(t)

ϑ0

sin ϑ dϑ
I

Idc sin ϑc
− I

N
cos ϑ − sin ϑ

, (D2)

where �ϑ = N [ϕ(t) − ϕ0] and ϕ0 = Nϕ(0). The integral
in the RHS is tabulated [63] and after some algebraic
manipulation we arrive at an equation which relates ϕ with
time,(

1 + I 2

N2

)
Kt

= (ϕ − ϕ0)I

N
+ g(ϕ) − g(ϕ0)

+ ln

[
NI − Idc sin ϑc(I cos Nϕ + N sin Nϕ)

NI − Idc sin ϑc(I cos Nϕ0 + N sin Nϕ0)

]
, (D3)

where

g(ϕ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 arctan
[
Z(ϕ)/sin ϑc

√
I 2 − I 2

dc

]
sin ϑc

√
I 2 − I 2

dc

, for I > Idc,

−2 arctanh
[
Z(ϕ)/sin ϑc

√
I 2

dc − I 2
]

sin ϑc

√
I 2

dc − I 2
, for I < Idc,

− 2
Z(ϕ) , for I = Idc,

(D4)

FIG. 17. The intershell angular displacement ϕ as a function of
time for several values of the applied current for N = 3 and R+ = 0.1
and R− = 0.2. (a) ϕ(t) for I > Idc, depicting the periodic dependence
of ϕ on t . (b) For I < Idc the initial intershell displacement converges
to the stationary values at times of the order 2π/K

√
I 2

dc − I 2. The
behavior of ϕ is similar to the ones shown for R+ 	 R−, although
the oscillatory motion has a small deviation from the expected period
T = 2π/K

√
I 2 − I 2

dc.

with

Z(ϕ) =
(

1 + Idc

N
sin ϑc

)
I tan

Nϕ

2
− Idc sin ϑc. (D5)

The time dependence of ϕ is shown in Fig. 17 for N = 3,
and R+ = 0.1 and R− = 0.2 (these values where chosen with
the purpose of presenting the case of arbitrary � = R+/R−,
in spite of the fact that they are not related to any stable
configuration). As in the case for R+ 	 R−, there are two
regimes corresponding to the RB rotation (I � Idc) and to
relative intershell motion (I > Idc). In the former [depicted
in Fig. 17(b)] any initial value of ϕ will converge to its
stationary values [given by Eq. (D1)] as soon as t approaches
2π/K

√
I 2

dc − I 2. On the other hand, for I > Idc [cf. Fig. 17(a)]
ϕ keeps increasing with time, which is a signature of the
intershell angular periodic motion. In fact, ϕ(t) behaves
similarly to the R+ 	 R− case (see Sec. III), although with
a period slightly different from T = 2π/K

√
I 2 − I 2

dc [see
Eq. (28)] calculated for R+ 	 R−.
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