|
Record |
Links |
|
Author |
Spadaro, M.C.; Luches, P.; Bertoni, G.; Grillo, V.; Turner, S.; Van Tendeloo, G.; Valeri, S.; D'Addato, S. |
|
|
Title |
Influence of defect distribution on the reducibility of CeO2-x nanoparticles |
Type |
A1 Journal article |
|
Year |
2016 |
Publication |
Nanotechnology |
Abbreviated Journal |
Nanotechnology |
|
|
Volume |
27 |
Issue |
27 |
Pages |
425705 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Ceria nanoparticles (NPs) are fundamental in heterogeneous catalysis because of their ability to store or release oxygen depending on the ambient conditions. Their oxygen storage capacity is strictly related to the exposed planes, crystallinity, density and distribution of defects. In this work a study of ceria NPs produced with a ligand-free, physical synthesis method is presented. The NP films were grown by a magnetron sputtering based gas aggregation source and studied by high resolution- and scanning-transmission electron microscopy and x-ray photoelectron spectroscopy. In particular, the influence of the oxidation procedure on the NP reducibility has been investigated. The different reducibility has been correlated to the exposed planes, crystallinity and density and distribution of structural defects. The results obtained in this work represent a basis to obtain cerium oxide NP with desired oxygen transport properties. |
|
|
Address |
Dipartimento FIM, Universita di Modena e Reggio Emilia, via G. Campi 213/a, I-41125 Modena, Italy. CNR-NANO, via G. Campi 213/a, I-41125 Modena, Italy |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Wos |
000385483900004 |
Publication Date |
2016-09-15 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0957-4484 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.44 |
Times cited |
11 |
Open Access |
|
|
|
Notes |
The authors gratefully acknowledge financial support by the Italian MIUR under grant FIRB RBAP115AYN (Oxides at the nanoscale: multifunctionality and applications). The activity is performed within the COST Action CM1104 'Reducible oxide chemistry, structure and functions'. The research leading to these results has received funding also from the European Union Seventh Framework Programme under Grant Agreement 312483—ESTEEM2 (Integrated Infrastructure Initiative–I3).; esteem2_ta |
Approved |
Most recent IF: 3.44 |
|
|
Call Number |
EMAT @ emat @ c:irua:135424 |
Serial |
4130 |
|
Permanent link to this record |