toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Cunha, S.M.; de Costa, D.R.; Pereira Jr, J.M.; Costa Filho, R.N.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Band-gap formation and morphing in alpha-T-3 superlattices Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 104 Issue 11 Pages 115409  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electrons in alpha-T-3 lattices behave as condensed-matter analogies of integer-spin Dirac fermions. The three atoms making up the unit cell bestow the energy spectrum with an additional energy band that is completely flat, providing unique electronic properties. The interatomic hopping term, alpha, is known to strongly affect the electronic spectrum of the two-dimensional (2D) lattice, allowing it to continuously morph from graphenelike responses to the behavior of fermions in a dice lattice. For pristine lattice structures the energy bands are gapless, but small deviations in the atomic equivalence of the three sublattices will introduce gaps in the spectrum. It is unknown how these affect transport and electronic properties such as the energy spectrum of superlattice minibands. Here we investigate the dependency of these properties on the parameter a accounting for different symmetry-breaking terms, and we show how it affects band-gap formation. Furthermore, we find that superlattices can force band gaps to close and shift in energy. Our results demonstrate that alpha-T-3 superlattices provide a versatile material for 2D band-gap engineering purposes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000696091600003 Publication Date 2021-09-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:181544 Serial 6972  
Permanent link to this record
 

 
Author Man, L.F.; Xu, W.; Xiao, Y.M.; Wen, H.; Ding, L.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Terahertz magneto-optical properties of graphene hydrodynamic electron liquid Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 104 Issue 12 Pages 125420  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The discovery of the hydrodynamic electron liquid (HEL) in graphene [D. Bandurin et al., Science 351, 1055 (2016) and J. Crossno et al., Science 351, 1058 (2016)] has marked the birth of the solid-state HEL which can be probed near room temperature in a table-top setup. Here we examine the terahertz (THz) magneto-optical (MO) properties of a graphene HEL. Considering the case where the magnetic length l(B) = root h/eB is comparable to the mean-free path l(ee) for electron-electron interaction in graphene, the MO conductivities are obtained by taking a momentum balance equation approach on the basis of the Boltzmann equation. We find that when l(B) similar to l(ee), the viscous effect in a HEL can weaken significantly the THz MO effects such as cyclotron resonance and Faraday rotation. The upper hybrid and cyclotron resonance magnetoplasmon modes omega(+/-) are also obtained through the RPA dielectric function. The magnetoplasmons of graphene HEL at large wave-vector regime are affected by the viscous effect, and results in red-shifts of the magnetoplasmon frequencies. We predict that the viscosity in graphene HEL can affect strongly the magneto-optical and magnetoplasmonic properties, which can be verified experimentally.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704419300004 Publication Date 2021-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:182518 Serial 7029  
Permanent link to this record
 

 
Author Zhang, H.Y.; Xiao, Y.M.; N. Li, Q.; Ding, L.; Van Duppen, B.; Xu, W.; Peeters, F.M. url  doi
openurl 
  Title Anisotropic and tunable optical conductivity of a two-dimensional semi-Dirac system in the presence of elliptically polarized radiation Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 105 Issue 11 Pages 115423-115429  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the effect of ellipticity ratio of the polarized radiation field on optoelectronic properties of a two-dimensional (2D) semi-Dirac (SD) system. The optical conductivity is calculated within the energy balance equation approach derived from the semiclassical Boltzmann equation. We find that there exists the anisotropic optical absorption induced via both the intra-and interband electronic transition channels in the perpendicular xx and yy directions. Furthermore, we examine the effects of the ellipticity ratio, the temperature, the carrier density, and the band-gap parameter on the optical conductivity of the 2D SD system placed in transverse and vertical directions, respectively. It is shown that the ellipticity ratio, temperature, carrier density, and band-gap parameter can play the important roles in tuning the strength, peak position, and shape of the optical conductivity spectrum. The results obtained from this study indicate that the 2D SD system can be a promising anisotropic and tunable optical and optoelectronic material for applications in innovative 2D optical and optoelectronic devices, which are active in the infrared and terahertz bandwidths.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000802810700002 Publication Date 2022-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:188660 Serial 7125  
Permanent link to this record
 

 
Author Mirzakhani, M.; da Costa, D.R.; Peeters, F.M. url  doi
openurl 
  Title Isolated and hybrid bilayer graphene quantum rings Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 105 Issue 11 Pages 115430-11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the continuum model, we investigate the electronic properties of two types of bilayer graphene (BLG) quantum ring (QR) geometries: (i) An isolated BLG QR and (ii) a monolayer graphene (MLG) with a QR put on top of an infinite graphene sheet (hybrid BLG QR). Solving the Dirac-Weyl equation in the presence of a perpendicular magnetic field and applying the infinite mass boundary condition at the ring boundaries, we obtain analytical results for the energy levels and corresponding wave spinors for both structures. In the case of isolated BLG QR, we observe a sizable and magnetically tunable band gap which agrees with the tight-binding transport simulations. Our analytical results also show the intervalley symmetry EeK (m) = ???EK??? h (m) between the electron (e) and the hole (h) states (m is the angular momentum quantum number) for the energy spectrum of the isolated BLG QR. The presence of interface boundary in a hybrid BLG QR modifies drastically the energy levels as compared with that of an isolated BLG QR. Its energy levels are tunable from MLG dot to isolated BLG QR and to MLG Landau energy levels as the magnetic field is varied. Our predictions can be verified experimentally using different techniques such as by magnetotransport measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000801209300006 Publication Date 2022-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:188703 Serial 7175  
Permanent link to this record
 

 
Author Cunha, S.M.; da Costa, D.R.; Pereira, J.M., Jr.; Costa Filho, R.N.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Tunneling properties in α-T₃ lattices : effects of symmetry-breaking terms Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 105 Issue 16 Pages 165402-165414  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The alpha-T3 lattice model interpolates a honeycomb (graphene-like) lattice and a T3 (also known as dice) lattice via the parameter alpha. These lattices are made up of three atoms per unit cell. This gives rise to an additional dispersionless flat band touching the conduction and valence bands. Electrons in this model are analogous to Dirac fermions with an enlarged pseudospin, which provides unusual tunneling features like omnidirectional Klein tunneling, also called super-Klein tunneling (SKT). However, it is unknown how small deviations in the equivalence between the atomic sites, i.e., variations in the alpha parameter, and the number of tunnel barriers changes the transmission properties. Moreover, it is interesting to learn how tunneling occurs through regions where the energy spectrum changes from linear with a middle flat band to a hyperbolic dispersion. In this paper we investigate these properties, its dependence on the number of square barriers and the alpha parameter for either gapped and gapless cases. Furthermore, we compare these results to the case where electrons tunnel from a region with linear dispersion to a region with a bandgap. In the latter case, contrary to tunneling through a potential barrier, the SKT is no longer observed. Finally, we find specific cases where transmission is allowed due to a symmetry breaking of sublattice equivalence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000805195200001 Publication Date 2022-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:188614 Serial 7222  
Permanent link to this record
 

 
Author Vizarim, N.P.; Souza, J.C.B.; Reichhardt, C.J.O.; Reichhardt, C.; Milošević, M.V.; Venegas, P.A. url  doi
openurl 
  Title Soliton motion in skyrmion chains : stabilization and guidance by nanoengineered pinning Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 105 Issue 22 Pages 224409-224412  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using a particle-based model we examine the depinning motion of solitons in skyrmion chains in quasi -onedimensional (1D) and two-dimensional (2D) systems containing embedded 1D interfaces. The solitons take the form of a particle or hole in a commensurate chain of skyrmions. Under an applied drive, just above a critical depinning threshold, the soliton moves with a skyrmion Hall angle of zero. For higher drives, the entire chain depins, and in a 2D system we observe that both the solitons and chain move at zero skyrmion Hall angle and then transition to a finite skyrmion Hall angle as the drive increases. In a 2D system with a 1D interface that is at an angle to the driving direction, there can be a reversal of the sign of the skyrmion Hall angle from positive to negative. Our results suggest that solitons in skyrmion systems could be used as information carriers in racetrack geometries that would avoid the drawbacks of finite skyrmion Hall angles. The soliton states become mobile at significantly lower drives than the depinning transition of the skyrmion chains themselves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000823038900004 Publication Date 2022-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 2 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:189671 Serial 7209  
Permanent link to this record
 

 
Author Moura, V.N.; Dantas, D.S.; Farias, G.A.; Chaves, A.; Milošević, M.V. url  doi
openurl 
  Title Latent superconductivity at parallel interfaces in a superlattice dominated by another collective quantum phase Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 106 Issue 1 Pages 014516-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically examine behavior of superconductivity at parallel interfaces separating the domains of another dominant collective excitation, such as charge density waves or spin density waves. Due to their competitive coupling in a two-component Ginzburg-Landau model, suppression of the dominant order parameter at the interfacial planes allows for nucleation of the (hidden) superconducting order parameter at those planes. In such a case, we demonstrate how the number of the parallel interfacial planes and the distance between them are linked to the number and the size of the emerging superconducting gaps in the system, as well as the versatility and temperature evolution of the possible superconducting phases. These findings bear relevance to a broad selection of known layered superconducting materials, as well as to further design of artificial (e.g., oxide) superlattices, where the interplay between competing order parameters paves the way towards otherwise unattainable superconducting states, some with enhanced superconducting critical temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000834346000004 Publication Date 2022-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:189520 Serial 7179  
Permanent link to this record
 

 
Author Lazarevic, N.; Baum, A.; Milosavljevic, A.; Peis, L.; Stumberger, R.; Bekaert, J.; Solajic, A.; Pesic, J.; Wang, A.; Scepanovic, M.; Abeykoon, A.M.M.; Milošević, M.V.; Petrovic, C.; Popovic, Z.V.; Hackl, R. url  doi
openurl 
  Title Evolution of lattice, spin, and charge properties across the phase diagram of Fe1-xSx Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 106 Issue 9 Pages 094510-94519  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A Raman scattering study covering the entire substitution range of the FeSe1-xSx solid solution is presented. Data were taken as a function of sulfur concentration x for 0 <= x <= 1, of temperature and of scattering symmetry. All types of excitations including phonons, spins, and charges are analyzed in detail. It is observed that the energy and width of the iron-related B-1g phonon mode vary continuously across the entire range of sulfur substitution. The A(1g) chalcogenide mode disappears above x = 0.23 and reappears at a much higher energy for x = 0.69. In a similar way the spectral features appearing at finite doping in A(1g) symmetry vary discontinuously. The magnetic excitation centered at approximately 500 cm(-1) disappears above x = 0.23 where the A(1g) lattice excitations exhibit a discontinuous change in energy. The low-energy mode associated with fluctuations displays maximal intensity at the nematostructural transition and thus tracks the phase boundary.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000917933500004 Publication Date 2022-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:194397 Serial 7304  
Permanent link to this record
 

 
Author Nulens, L.; Dausy, H.; Wyszynski, M.J.; Raes, B.; Van Bael, M.J.; Milošević, M.V.; Van de Vondel, J. url  doi
openurl 
  Title Metastable states and hidden phase slips in nanobridge SQUIDs Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 106 Issue 13 Pages 134518-134519  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We fabricated an asymmetric nanoscale SQUID consisting of one nanobridge weak link and one Dayem bridge weak link. The current phase relation of these particular weak links is characterized by multivaluedness and linearity. While the latter is responsible for a particular magnetic field dependence of the critical current (so-called vorticity diamonds), the former enables the possibility of different vorticity states (phase winding numbers) existing at one magnetic field value. In experiments the observed critical current value is stochastic in nature, does not necessarily coincide with the current associated with the lowest energy state and critically depends on the measurement conditions. In this paper, we unravel the origin of the observed metastability as a result of the phase dynamics happening during the freezing process and while sweeping the current. Moreover, we employ special measurement protocols to prepare the desired vorticity state and identify the (hidden) phase slip dynamics ruling the detected state of these nanodevices. In order to gain insights into the dynamics of the condensate and, more specifically the hidden phase slips, we performed time-dependent Ginzburg-Landau simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000904657300007 Publication Date 2022-10-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:193393 Serial 7321  
Permanent link to this record
 

 
Author Gurel, T.; Altunay, Y.A.; Bulut, P.; Yildirim, S.; Sevik, C. url  doi
openurl 
  Title Comprehensive investigation of the extremely low lattice thermal conductivity and thermoelectric properties of BaIn₂Te₄ Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 106 Issue 19 Pages 195204-195210  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently, an extremely low lattice thermal conductivity value has been reported for the alkali-based telluride material BaIn2Te4. The value is comparable with low-thermal conductivity metal chalcogenides, and the glass limit is highly intriguing. Therefore, to shed light on this issue, we performed first-principles phonon thermal transport calculations. We predicted highly anisotropic lattice thermal conductivity along different directions via the solution of the linearized phonon Boltzmann transport equation. More importantly, we determined several different factors as the main sources of the predicted ultralow lattice thermal conductivity of this crystal, such as the strong interactions between low-frequency optical phonons and acoustic phonons, small phonon group velocities, and lattice anharmonicity indicated by large negative mode Gruneisen parameters. Along with thermal transport calculations, we also investigated the electronic transport properties by accurately calculating the scattering mechanisms, namely the acoustic deformation potential, ionized impurity, and polar optical scatterings. The inclusion of spin-orbit coupling (SOC) for electronic structure is found to strongly affect the p-type Seebeck coefficients. Finally, we calculated the thermoelectric properties accurately, and the optimal ZT value of p-type doping, which originated from high Seebeck coefficients, was predicted to exceed unity after 700 K and have a direction averaged value of 1.63 (1.76 in the y-direction) at 1000 K around 2 x 1020 cm-3 hole concentration. For n-type doping, a ZT around 3.2 x 1019 cm-3 concentration was predicted to be a direction-averaged value of 1.40 (1.76 in the z-direction) at 1000 K, mostly originating from its high electron mobility. With the experimental evidence of high thermal stability, we showed that the BaIn2Te4 compound has the potential to be a promising mid- to high-temperature thermoelectric material for both p-type and n-type systems with appropriate doping.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000918954800001 Publication Date 2022-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:194384 Serial 7290  
Permanent link to this record
 

 
Author Pascucci, F.; Conti, S.; Neilson, D.; Tempère, J.; Perali, A. url  doi
openurl 
  Title Josephson effect as a signature of electron-hole superfluidity in bilayers of van der Waals heterostructures Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 106 Issue 22 Pages L220503-6  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract We investigate a Josephson junction in an electron-hole superfluid in a double-layer transition metal dichalco-genide heterostructure. The observation of a critical tunneling current is a clear signature of superfluidity. In addition, we find the BCS-BEC crossover physics in the narrow barrier region controls the critical current across the entire system. The corresponding critical velocity, which is measurable in this system, has a maximum when the excitations pass from bosonic to fermionic. Remarkably, this occurs for the density at the boundary of the BEC to BCS-BEC crossover regime determined from the condensate fraction. This provides, in a semiconductor system, an experimental way to determine the position of this boundary.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000903924400007 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:193402 Serial 7316  
Permanent link to this record
 

 
Author Ahmadkhani, S.; Alihosseini, M.; Ghasemi, S.; Ahmadabadi, I.; Hassani, N.; Peeters, F.M.; Neek-Amal, M. url  doi
openurl 
  Title Multiband flattening and linear Dirac band structure in graphene with impurities Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 107 Issue 7 Pages 075401-75408  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Flat bands in the energy spectrum have attracted a lot of attention in recent years because of their unique properties and promising applications. Special arrangement of impurities on monolayer graphene are proposed to generate multiflat bands in the electronic band structure. In addition to the single midgap states in the spectrum of graphene with low hydrogen density, we found closely spaced bands around the Fermi level with increasing impurity density, which are similar to discrete lines in the spectrum of quantum dots, as well as the unusual Landau-level energy spectrum of graphene in the presence of a strong magnetic field. The presence of flat bands crucially depends on whether or not there are odd or even electrons of H(F) atoms bound to graphene. Interestingly, we found that a fully hydrogenated (fluoridated) of a hexagon of graphene sheet with six hydrogen (fluorine) atoms sitting on top and bottom in consecutive order exhibits Dirac cones in the electronic band structure with a 20% smaller Fermi velocity as compared to the pristine graphene. Functionalizing graphene introduces various C-C bond lengths resulting in nonuniform strains. Such a nonuniform strain may induce a giant pseudomagnetic field in the system, resulting in quantum Hall effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000994364500006 Publication Date 2023-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number UA @ admin @ c:irua:197431 Serial 8822  
Permanent link to this record
 

 
Author Linard, F.J.A.; Moura, V.N.; Covaci, L.; Milošević, M.V.; Chaves, A. url  doi
openurl 
  Title Wave-packet scattering at a normal-superconductor interface in two-dimensional materials : a generalized theoretical approach Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 107 Issue 16 Pages 165306-165309  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract A wave-packet time evolution method, based on the split-operator technique, is developed to investigate the scattering of quasiparticles at a normal-superconductor interface of arbitrary profile and shape. As a practical application, we consider a system where low-energy electrons can be described as Dirac particles, which is the case for most two-dimensional materials, such as graphene and transition-metal dichalcogenides. However, the method is easily adapted for other cases such as electrons in few-layer black phosphorus or any Schrodinger quasiparticles within the effective mass approximation in semiconductors. We employ the method to revisit Andreev reflection in mono-, bi-, and trilayer graphene, where specular-and retro-reflection cases are observed for electrons scattered by a steplike superconducting region. The effect of opening a zero-gap channel across the superconducting region on the electron and hole scattering is also addressed, as an example of the versatility of the technique proposed here.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000974675700006 Publication Date 2023-04-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number UA @ admin @ c:irua:196709 Serial 8954  
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title High Chern number in strained thin films of dilute magnetic topological insulators Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 107 Issue 19 Pages 195119-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The quantum anomalous Hall effect was first observed experimentally by doping the Bi2Se3 materials family with chromium, where 5% doping induces an exchange field of around 0.1 eV. In ultrathin films, a topological phase transition from a normal insulator to a Chern insulator can be induced with an exchange field proportional to the hybridization gap. Subsequent transitions to states with higher Chern numbers require an exchange field larger than the (bulk) band gap, but are prohibited in practice by the detrimental effects of higher doping levels. Here, we show that threshold doping for these phase transitions in thin films is controllable by strain. As a consequence, higher Chern states can be reached with experimentally feasible doping, sufficiently dilute for the topological insulator to remain structurally stable. Such a facilitated realization of higher Chern insulators opens prospects for multichannel quantum computing, higher-capacity circuit interconnects, and energy-efficient electronic devices at elevated temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000995111000003 Publication Date 2023-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number UA @ admin @ c:irua:197295 Serial 8820  
Permanent link to this record
 

 
Author Santos-Castro, G.; Pandey, T.; Bruno, C.H.V.; Santos Caetano, E.W.; Milošević, M.V.; Chaves, A.; Freire, V.N. url  doi
openurl 
  Title Silicon and germanium adamantane and diamantane monolayers as two-dimensional anisotropic direct-gap semiconductors Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 3 Pages 035302-35310  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Structural and electronic properties of silicon and germanium monolayers with two different diamondoid crystal structures are detailed ab initio. Our results show that, despite Si and Ge being well-known indirect gap semiconductors in their bulk form, their adamantane and diamantane monolayers can exhibit optically active direct gap in the visible frequency range, with highly anisotropic effective masses, depending on the monolayer crystal structure. Moreover, we reveal that gaps in these materials are highly tunable with applied strain. These stable monolayer forms of Si and Ge are therefore expected to help bridging the gap between the fast growing area of opto-electronics in two-dimensional materials and the established silicon-based technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001074455300012 Publication Date 2023-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200348 Serial 9089  
Permanent link to this record
 

 
Author Claes, J.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title Decoupled DFT-1/2 method for defect excitation energies Type A1 Journal Article
  Year 2023 Publication Physical Review B Abbreviated Journal Phys. Rev. B  
  Volume 108 Issue 12 Pages 125306  
  Keywords A1 Journal Article; Condensed Matter Theory (CMT) ;  
  Abstract The DFT-1/2 method is a band-gap correction with GW precision at a density functional theory (DFT) computational cost. The method was also extended to correct the gap between defect levels, allowing for the calculation of optical transitions. However, this method fails when the atomic character of the occupied and unoccupied defect levels is similar as we illustrate by two examples, the tetrahedral hydrogen interstitial and the negatively charged vacancy in diamond. We solve this problem by decoupling the effect of the occupied and unoccupied defect levels and call this the decoupled DFT-1/2 method for defects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001089302800003 Publication Date 2023-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access Not_Open_Access  
  Notes This work was supported by the FWO (Research Foundation-Flanders), Project No. G0D1721N. This work was performed in part using HPC resources from the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government department EWI (Economie, Wetenschap & Innovatie). Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number CMT @ cmt @c:irua:201287 Serial 8976  
Permanent link to this record
 

 
Author Verbist, G.; Smondyrev, M.A.; Peeters, F.M.; Devreese, J.T. url  doi
openurl 
  Title Strong-coupling analysis of large bipolarons in 2 and 3 dimensions Type A1 Journal article
  Year 1992 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 45 Issue 10 Pages 5262-5269  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract In the limit of strong electron-phonon coupling, we use either a Pekar-type or an oscillator wave function for the center-of-mass coordinate and either a Coulomb or an oscillator wave function for the relative coordinate, and are able to reproduce all the results from the literature for the large-bipolaron binding energy. Lower bounds are constructed for the critical ratio eta(c) of dielectric constants below which bipolarons can exist. It is found that, in the strong-coupling limit, the stability region for bipolaron formation is much larger in two dimensions (2D) than in 3D. We introduce a model that combines the averaging of the relative coordinate over the asymptotically best wave function with a path-integral treatment of the center-of-mass motion. The stability region for bipolaron formation is increased compared with the full path-integral treatment at large values of the coupling constant alpha. The critical values are alpha(c) almost-equal-to 9.3 in 3D and alpha(c) almost-equal-to 4.5 in 2D. Phase diagrams for the presented models are also obtained in both 2D and 3D.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1992HJ68900016 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 68 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:103051 Serial 3178  
Permanent link to this record
 

 
Author Verbist, G.; Smondyrev, M.A.; Peeters, F.M.; Devreese, J.T. url  doi
openurl 
  Title Strong-coupling analysis of large bipolarons in two and three dimensions Type A1 Journal article
  Year 1992 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 45 Issue Pages 5262-5269  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1992HJ68900016 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 68 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:2891 Serial 3179  
Permanent link to this record
 

 
Author Backes, W.H.; Peeters, F.M.; Brosens, F.; Devreese, J.T. url  doi
openurl 
  Title Dispersion of longitudinal plasmons for a quasi-two-dimensional electron gas Type A1 Journal article
  Year 1992 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 45 Issue 15 Pages 8437-8442  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract Confinement of electrons in ultrathin metallic films leads to subbands. By increasing the thickness of the electron layer, the subbands will dissolve into a quasicontinuum, with the number of electrons per unit volume kept constant. Within the random-phase approximation, the two-dimensional plasmon, which originally follows Stern's dispersion relation, becomes a longitudinal surface plasmon. The plasmon excitations of a model metallic film are investigated by including all subbands. Single-particle excitations, which exhibit the depolarization shift, converge into the plasma excitation spectrum. With further increases in the film thickness, the bulk plasmon arises and the surface plasmon remains. Our analysis shows how quantum size effects evolve into hydrodynamical classical size effects with increasing thickness of the film.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1992HR33600028 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 37 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:2738 Serial 737  
Permanent link to this record
 

 
Author Peeters, F.M.; Vasilopoulos, P. url  doi
openurl 
  Title Electrical and thermal-properties of a 2-dimensional electron-gas in a one-dimensional periodic potential Type A1 Journal article
  Year 1992 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 46 Issue 8 Pages 4667-4680  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the influence of a periodic weak modulation along the x direction on the electrical and thermal properties of a two-dimensional electron gas in the presence of a perpendicular magnetic field. The modulation lifts the degeneracy of the Landau levels and leads to one-dimensional magnetic bands whose bandwidth oscillates as a function of the magnetic field. At weak magnetic fields this gives rise to the Weiss oscillations in the magnetoresistance, discovered recently, which have a very weakly temperature-dependent amplitude and a period proportional to square-root n(e), when n(e) is the electron density. Diffusion-current contributions, proportional to the square of the bandwidth, dominate rho(xx), and collisional contributions, varying approximately as the square of the density of states, dominate rho(yy). The result is that rho(xx) and rho(yy) oscillate out of phase as observed. Asymptotic analytical expressions are presented for the conductivity tensor. Similar oscillations, of much smaller amplitude, occur in the thermodynamic quantities, such as the magnetization, the susceptibility, and the specific heat. We also predict oscillations in the Hall resistance, the cyclotron resonance position, the linewidth, as well as in the thermal conductivity and thermopower. The components of the thermal-resistance tensor have a magnetic-field dependence similar to that of the electrical-resistivity tensor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1992JK72500032 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 148 Open Access  
  Notes Approved INSTRUMENTS & INSTRUMENTATION 31/56 Q3 # NUCLEAR SCIENCE & TECHNOLOGY 9/32 Q2 # PHYSICS, PARTICLES & FIELDS 24/28 Q4 # SPECTROSCOPY 28/43 Q3 #  
  Call Number UA @ lucian @ c:irua:103028 Serial 889  
Permanent link to this record
 

 
Author Peeters, F.M.; Vasilopoulos, P. url  doi
openurl 
  Title Electrical and thermal properties of a two-dimensional electron gas in a one-dimensional periodic potential Type A1 Journal article
  Year 1992 Publication Physical review: B Abbreviated Journal Phys Rev B  
  Volume 46 Issue Pages 4667-4680  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1992JK72500032 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 148 Open Access  
  Notes Approved INSTRUMENTS & INSTRUMENTATION 31/56 Q3 # NUCLEAR SCIENCE & TECHNOLOGY 9/32 Q2 # PHYSICS, PARTICLES & FIELDS 24/28 Q4 # SPECTROSCOPY 28/43 Q3 #  
  Call Number UA @ lucian @ c:irua:2998 Serial 890  
Permanent link to this record
 

 
Author Zieliński, P.; Michel, K.H. url  doi
openurl 
  Title Microscopic model of surfaces in orientationally disordered ionic crystals : the (001) surface of KCN Type A1 Journal article
  Year 1992 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 46 Issue 8 Pages 4806-4815  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The crystallographic structure and the distribution of orientations of molecular ions are studied near the surface in an orientationally disordered crystal with the use of a Green-function formalism. The orientational degrees of freedom are treated by means of symmetry-adapted functions of angular coordinates. The structure of the (001) surface of KCN in its cubic fcc phase is then predicted using the existing data on the interaction of the ions K+ and CN-. A local antiferroelectric and antiferroelastic order i shown to exist in the surface region. The magnitude of the order and the spatial extent of the ordered re ion increase as the temperature approaches the point of the phase transition to the ordered phase. The,influence of the external electric field on the structure of the surface is predicted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1992JK72500049 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 4 Open Access  
  Notes Approved PHYSICS, CONDENSED MATTER 16/67 Q1 #  
  Call Number UA @ lucian @ c:irua:2974 Serial 2029  
Permanent link to this record
 

 
Author Xu, W.; Peeters, F.M.; Devreese, J.T. url  doi
openurl 
  Title Streaming-to-accumulation transition in a 2-dimensional electron-system in a polar semiconductor Type A1 Journal article
  Year 1992 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 46 Issue 12 Pages 7571-7580  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract Hot-electron transport is studied for a two-dimensional electron gas coupled to longitudinal-optical phonons in crossed electric and magnetic fields. At low electric and high magnetic fields the electrons are accumulated, while at high electric fields they are in a streaming state. We develop a streaming-to-accumulation transition model and compare the results with that from a Monte Carlo simulation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1992JQ37800028 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 13 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:103023 Serial 3174  
Permanent link to this record
 

 
Author Wen, X.; Peeters, F.M.; Devreese, J.T. url  doi
openurl 
  Title Streaming-to-accumulation transition in a two-dimensional electron system in a polar semiconductor Type A1 Journal article
  Year 1992 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 46 Issue Pages 7571-7580  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1992JQ37800028 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 13 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:2913 Serial 3175  
Permanent link to this record
 

 
Author Hai, G.Q.; Peeters, F.M.; Devreese, J.T. url  doi
openurl 
  Title Polaron-cyclotron-resonance spectrum resulting from interface- and slab-phonon modes in a GaAs/AlAs quantum well Type A1 Journal article
  Year 1993 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 47 Issue 16 Pages 10358-10374  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract The effects of interface optical-phonon and confined slab LO-phonon modes on the polaron cyclotron-resonance frequency are investigated for a GaAs/AlAs quantum well. Using degenerate second-order perturbation theory, the polaron Landau levels are calculated and the polaron resonant region is investigated. In order to know the relative importance of the different resonant frequencies we present a full calculation of the magneto-optical absorption spectrum. At a fixed magnetic field we found four different peaks in the absorption spectrum. The relative oscillator strength of the different peaks changes with increasing magnetic field. For comparative purposes, the polaron Landau levels and cyclotron mass are also calculated using only the bulk LO-phonon modes. The influence of the finiteness of the confinement potential is investigated. We found that the interface-phonon modes influence the magnetopolaron resonance considerably near the optical-phonon frequencies for narrow wells. In the limit of zero magnetic field we recover our previous results and in the case of an infinite-barrier quantum well we are able to recover the results for a two- and three-dimensional system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1993LA29800034 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 69 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:5739 Serial 2663  
Permanent link to this record
 

 
Author Peeters, F.M.; Vasilopoulos, P. url  doi
openurl 
  Title Quantum transport of a two-dimensional electron gas in a spatially modulated magnetic field Type A1 Journal article
  Year 1993 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 47 Issue 3 Pages 1466-1473  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electrical transport properties of a two-dimensional electron gas axe studied in the presence of a perpendicular magnetic field B modulated weakly and periodically along one direction, B = (B + B0 cos Kx)z, with B0 much less than B, K = 2pi/a, and a being the period of the modulation. B0 is taken constant or proportional to B. The Landau levels broaden into bands and their width, proportional to the modulation strength B0, oscillates with B and gives rise to oscillations in the magnetoresistance at low B. These oscillations reflect the commensurability between the cyclotron diameter at the Fermi level and the period a and consequently hey are distinctly different from the Shubnikov-de Ha.as ones, at higher B, in period and temperature dependence. The bandwidth at the Fermi energy can be one order of magnitude larger, at low B, than that of the electric case for equal modulation strengths. The resulting magnetoresistance oscillations have a much higher amplitude than those of the electric case with which they are out of phase. Explicit asymptotic expressions are derived for the temperature dependence of the transport coefficients. The case when both electric and magnetic modulations are present is also considered. The position of the resulting oscillations depends on the ratio delta between the two modulation strengths. When the modulations are out of phase there is no shift in the position of the oscillations when delta varies and for a particular value of delta the oscillations are suppressed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1993KJ51800042 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 169 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:5787 Serial 2795  
Permanent link to this record
 

 
Author Xu, W.; Peeters, F.M.; Devreese, J.T. url  doi
openurl 
  Title Electrophonon resonances in a quasi-two-dimensional electron system Type A1 Journal article
  Year 1993 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 48 Issue 3 Pages 1562-1570  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract When the energy difference between two electric subbands in a quasi-two-dimensional electron system equals a LO-phonon energy, resonant scattering will occur. This leads to an enhancement of the scattering rate and, consequently, to a suppression of the conductivity. Changing the energy difference between the electric subbands (e.g., through a gate) leads to a series of electrophonon resonances in the conductivity. A detailed study is made of this effect for different confinement potentials. We found that the scattering processes where the emission of a phonon is involved are very important for the electrophonon resonance and that the size of the effect decreases with increasing temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1993LP05000024 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 45 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:5747 Serial 1022  
Permanent link to this record
 

 
Author Vansant, P.; Smondyrev, M.A.; Peeters, F.M.; Devreese, J.T. url  doi
openurl 
  Title One-dimensional bipolaron in the strong coupling limit Type A1 Journal article
  Year 1994 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 50 Issue 17 Pages 12524-12532  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1994PR26100027 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 15 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:9277 Serial 2461  
Permanent link to this record
 

 
Author Smondyrev, M.A.; Vansant, P.; Peeters, F.M.; Devreese, J.T. url  doi
openurl 
  Title Nonlinear Schrödinger equation on a circle Type A1 Journal article
  Year 1995 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 52 Issue 15 Pages 11231-11237  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract The nonlinear Schrodinger equation is solved on an infinitesimal thin ring or circle. We obtained the exact real wave functions with their corresponding energies for the ground state and the excited states. Critical values of the circle perimeter are found at which the ground state changes its structure and additional higher excited states appear. Also, the complex wave functions that correspond to energy levels with finite angular momentum are studied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1995TA85200087 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 5 Open Access  
  Notes Approved PHYSICS, APPLIED 47/145 Q2 #  
  Call Number UA @ lucian @ c:irua:11697 Serial 2356  
Permanent link to this record
 

 
Author van der Burgt, M.; Karavolas, V.C.; Peeters, F.M.; Singleton, J.; Nicholas, R.J.; Herlach, F.; Harris, J.J.; Van Hove, M.; Borghs, G. url  doi
openurl 
  Title Magnetotransport in a pseudomorphic GaAs/Ga0.8In0.2As/Ga0.75Al0.25As heterostructure with a Si \delta-doping layer Type A1 Journal article
  Year 1995 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 52 Issue 16 Pages 12218-12231  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Magnetotransport properties of a pseudomorphic GsAs/Ga0.8In0.2As/Ga0.75Al0.25As heterostructure are investigated in pulsed magnetic fields up to 50 T and at temperatures of T = 1.4 and 4.2 K. The structure studied consists of a Si delta layer parallel to a Ga0.8In0.2As quantum well (QW). The dark electron density of the structure is n(c) = 1.67 x 10(16) m(-2). By illumination the density can be increased up to a factor of 4; this way the second subband in the Ga0.08In0.2As QW can become populated as well as the Si delta layer. The presence of electrons in the delta layer results in drastic changes in the transport data, especially at magnetic fields beyond 30 T. The phenomena observed are interpreted as (i) magnetic freeze-out of carriers in the delta layer when a low density of electrons is present in the delta layer, and (ii) quantization of the electron motion in the two-dimensional electron gases in both the Ga0.8In0.2As QW and the Si delta layer in the case of high densities. These conclusions are corroborated by the numerical results of our theoretical model. We obtain satisfactory agreement between model and experiment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1995TB96600102 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 43 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:99708 Serial 1933  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: