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Josephson effect as a signature of electron-hole superfluidity in bilayers
of van der Waals heterostructures
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We investigate a Josephson junction in an electron-hole superfluid in a double-layer transition metal dichalco-
genide heterostructure. The observation of a critical tunneling current is a clear signature of superfluidity. In
addition, we find the BCS-BEC crossover physics in the narrow barrier region controls the critical current across
the entire system. The corresponding critical velocity, which is measurable in this system, has a maximum when
the excitations pass from bosonic to fermionic. Remarkably, this occurs for the density at the boundary of the
BEC to BCS-BEC crossover regime determined from the condensate fraction. This provides, in a semiconductor
system, an experimental way to determine the position of this boundary.
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Recent experimental reports of quantum condensation with
bound pairs of spatially separated electrons and holes in dou-
ble layers of graphene [1] or transition metal dichalcogenide
(TMD) van der Waals heterostructures [2], have created a
flurry of new experimental and theoretical investigations.
Spatially separating the electrons and holes prevents them
from recombining, opening the way to a low-temperature
stable, long-lived superfluid [3–6]. By varying the equal
carrier densities in the two layers using metal gates, the
superfluid can be tuned from the strongly coupled Bose-
Einstein condensation (BEC) regime of compact bosonlike
particles to an intermediate-coupling regime, and to the
Bardeen-Cooper-Schrieffer (BCS) regime with more extended
fermionic pairs [7–9].

From an application viewpoint, a supercurrent in an
electron-hole superfluid can carry a particle flow without dis-
sipation. A current is independently injected in each layer with
opposite directions in order to have a stable dissipationless ex-
citon current and avoid the electron-hole recombination [10].
This directly leads to applications in dissipationless solid-state
electronics [10,11].

Up to now, proving a superfluid phase in exciton systems
has required painstaking analysis to merge Coulomb drag
resistance and counterflow experimental data [12]. On the
one hand, Coulomb drag [13–15] and interlayer tunneling
experiments [1,16] allow us to prove the presence of excitons,
and on the other hand, counterflow measurements [10,17]
can reveal dissipationless current in the system. Observing
the presence of excitons or the nondissipative counterflow
current by themselves is not sufficient to claim superfluidity.
The neutrality of the electron-hole pairs creates a challenge
to unambiguously identify the fluid as a superfluid [10]. The
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conventional criterion to identify superconductivity, the com-
bination of perfect conduction and the Meissner effect (perfect
diamagnetism), cannot be used with neutral pairs.

Here, we propose that the Josephson effect [18–21] can
provide an unambiguous signal of the electron-hole superflu-
idity. In a Josephson junction, two superfluids are separated
by a thin potential barrier, and a phase difference between
the superfluids leads to a steady current flow. The observation
of a dissipationless current through the barrier when there
is no driving potential present is regarded as an optimal di-
rect experimental way to confirm the existence of the single
amplitude and phase of the macroscopic wave function that
characterizes a quantum condensed state [22,23].

We find that the maximum value of the dissipationless cur-
rent exhibits a notable sensitivity to the bosonic or fermionic
nature of the low-lying excitations of the superfluid state
in the barrier region. We further show that this sensitivity
can be exploited to identify and distinguish in the barrier
region, the BEC regime of bosoniclike pairs from the weakly
bound fermion pairs of the BCS-BEC crossover and BCS
regimes [24].

The Josephson junction can be fabricated using a com-
bination of lateral stitching and vertical stacking of TMD
heterostructures [25–27], as represented in Fig. 1(a). A ver-
tical stacking of two different TMD monolayers, TMD1 and
TMD2, is separated by a thin barrier made of two different
undoped TMD monolayers, TMD3 and TMD4. The potential
barrier height is determined by the difference in energy of the
conduction (valence) bands in the doped TMDs and in the
undoped TMDs of the barrier [28].

The critical Josephson current can be measured in a coun-
terflow configuration [10], using the method of Anderson [29]
and Shapiro [30]. Unlike in superconductors, the total super-
fluid current is neutral. However, the excitons are formed by
charged particles, thus the independent currents injected in the
two layers are not neutral and they are dissipationless in the
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FIG. 1. (a) Schematic of Josephson junction with the different
layers labeled TMD1–TMD4. d is the layer separation, db the barrier
thickness, and L1 and L2 the transverse and longitudinal layer lengths.
Electron-hole pairs are shown. (b) Energy band alignments at the
type-II TMD1/TMD2 interface.

superfluid phase. Here, it is this single-layer current that is
used to study the current-voltage characteristic. Increasing the
current injected, the maximum current for which the voltage
drop is zero corresponds to the critical Josephson current. The
advantage of this proposal with respect to Ref. [12] is that
a counterflow measure of the Josephson current is enough
to claim the superfluid phase without the necessity for the
Coulomb drag experiment.

We select the TMD1 and TMD2 of the vertical stacking
to have a type-II interface, with the edges of the conduction
and valence band at different energies [Fig. 1(b)]. This keeps
the electrons and holes spatially separate without the need
for an insulating barrier. We consider a single band with one
interaction channel.

The coupled BCS mean-field equations for the superfluid
gap �k and density n [31] remain a good approximation in
the BCS-BEC crossover and BEC regimes at zero temperature
also in two dimensions (2D) [32,33],
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We set the electron and hole densities n equal, and take
equal effective masses m∗ in the TMD single-particle
parabolic bands εk = h̄2k2/2m∗. The excitation energy Ek =√

ξ 2
k + �2

k , with ξk = εk − μs and μs the single-particle
chemical potential. The form factor F1,2 accounts for the
overlap between the single-particle wave functions in TMD1

and TMD2. The spin degeneracy is gs = 2, and L1 and L2 the
transverse and longitudinal layer lengths.

In Eq. (1), V sc
k−k′ is the effective self-consistent screened

Coulomb attraction between electrons and holes. Because
of the long-range nature of Coulomb interactions, screen-
ing plays a crucial role here [34]. We use the expression

in Ref. [31], which self-consistently takes into account the
weakening of the screening in the presence of a superfluid
energy gap,

V sc
q = V D

q

1 − 2V S
q [�n(q) + �a(q)] + AqBq

. (3)

V S
q and V D

q are the bare Coulomb interactions within a layer
and between layers, respectively. �n(q) and �a(q) are the
normal and anomalous polarizabilities. For brevity, in Eq. (3)
we write Aq = (V S

q )2 − (V D
q )2 and Bq = �2

n(q) − �2
a(q).

The critical velocity of the superfluid is given by the Lan-
dau criterion [35],

vc = min
k

Ek

h̄k
. (4)

There are two types of excitation energy Ek in this system,
Anderson-Bogoliubov modes [36] associated with the bosonic
behavior of the pairs, and the fermionic modes associated with
pair-breaking excitations [37].

In the bosonic excitation branch, Ek is given by the dis-

persion relation Ek =
√

h̄2c2
sfk

2 + ε2
k [37,38], where csf =√

μsf/2m [39] is the speed of sound, with superfluid chemi-
cal potential μsf = 2μs + εB, and εB the binding energy of a
single electron-hole pair. From Eq. (4), the critical velocity for
bosonic excitations is thus the speed of sound,

v(BEC)
c = csf =

√
μsf

2m
. (5)

Instead, for single-particle fermionic excitations Ek =
Ek =

√
ξ 2

k + �2
k , and the critical velocity is the pair-breaking

(p-b) velocity [37],

v(p-b)
c = min

k

√
(εk − μs)2 + �2

k

h̄k
, (6)

is numerically evaluated for given values of μs and �k to
determine the value of k = kmin that minimizes Eq. (6). As
the density is increased and the superfluid regimes are scanned
from BEC to BCS-BEC crossover to BCS, the critical velocity
should switch from v(BEC)

c to v
(p-b)
c , whichever is the lesser.

We consider only sufficiently wide barriers for the
Thomas-Fermi local approximation to be valid, db > ξ , where
ξ = h̄/mvc is the superfluid coherence length [37,40]. In the
barrier region, the single-particle chemical potential μb

s and
the superfluid chemical potential μb

sf will be reduced com-
pared with their values outside the barrier,

μb
s = μs − V0,

μb
sf = μsf − 2V0 = 2(μs − V0) + εB. (7)

Using μb
s in Eqs. (1) and (2) gives the superfluid gap �b

k and
the density nb inside the barrier region. For a low rectangu-
lar potential barrier, V0 < μs f /2, current can flow over the
barrier across a superfluid region in the barrier with density
nb < n. For high potential barriers, V0 � μsf/2, μb

s < −εB/2,
and nb = 0, so the current across the barrier is given purely by
quantum tunneling of the electron-hole pairs [41,42].

Figure 2(a) shows for different barrier heights V0 in the
low barrier regime, the superfluid density in the barrier nb
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FIG. 2. (a) Density nb inside the barrier as a function of the
single-particle chemical potential μs outside the barrier. V0 is the bar-
rier height with εB = 1.42 Ry∗. In the shaded area, strong screening
suppresses the superfluidity. (b) Superfluid gap �b inside the barrier.
The nb and �b have been calculated using μb

s in Eqs. (1) and (2).

as a function of the μs outside the barrier. We use effective
Rydbergs Ry∗ for the energy scale and effective Bohr radii a∗

B
for the length scale. Table I gives values for Ry∗ and a∗

B for
different TMD heterostructures to connect with experimen-
tal results. For d = 0.6 nm, the typical layer separation of a
TMD type-II interface, εB = 1.42 Ry∗. The color-coded dots
indicate the value μs = −εB/2 + V0 below which nb is zero.
The BEC regime is characterized by negative values of μs.
As μs increases and becomes positive, the system enters the
BCS-BEC crossover regime, but μs remains well below the
Fermi energy. Only in the weak-coupled BCS limit would μs

approach the Fermi energy. However, for sufficiently large μs,
strong screening of the electron-hole pair interaction in the
superfluid outside the barrier region suppresses the superflu-
idity leading to a first-order phase transition in the mean-field
approximation [31] (the shaded regions in Fig. 2). The V0 = 0
curve in Fig. 2(a) gives as a reference the superfluid density
n in the absence of a barrier. This reaches a maximum at the
value μs = 0.31 Ry∗ for density n = nb = 0.105(a∗

B)−2. This
defines the onset density n0 for the superfluidity.

Figure 2(b) shows the maximum of the superfluid gap �b

inside the barrier as a function of μs. The curve for V0 = 0 also

gives the maximum of the superfluid gap �k in the superfluid
regions outside any barrier and, as n, this gap vanishes when
μs reaches −εB/2. For V0 > 0, �b for the barrier vanishes at
the same value of μs at which nb vanishes.

The barrier height V0 can be varied by suitable material
choice of TMDs with type-II interfaces. Table I gives ex-
amples. As a final example, WS2|WSe2—MoSe2|WSe2, the
barrier is inserted only in the electron monolayer, a configura-
tion which may be more straightforward to fabricate.

For low potential barriers V0 < μsf/2 there is significant
superfluid flow over the barrier. The critical current in the
barrier region is

Ib
c = nbL1v

b
c . (8)

The critical velocity vb
c in the barrier is the lesser of vb(BEC)

c

and v
b(p-b)
c , obtained from Eqs. (5) and (6) with μb

sf and �b
k .

For high potential barriers, V0 > μsf/2, quantum tunneling
of the electron-hole pairs through the barrier determines the
critical current [42],

h̄Ib
c = nc tsf(μsf )L1L2. (9)

nc = Cn is the density of the superfluid condensate, with C
the condensate fraction of the superfluid state, which can be
calculated as [43,44]

C =
∑
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kv

2
k∑

k v2
k

= 1

2n

∑
k

�2
k

E2
k

. (10)

Replacing in Eq. (10) �b
k , nb, and μb

s , it is possible to obtain
the condensate fraction Cb in the barrier region for the low
potential barrier. The transfer matrix element [41],

tsf(μsf ) = f (V0/μsf )
μsf

kμsf L1
e−kμsf db, (11)

is the probability for an electron-hole pair to tunnel across the
barrier, where k−1

μsf
= h̄/

√
2m(V0 − μsf ) is the wave-function

decay length in the barrier, and the expression for f (V0/μsf )
was derived in Ref. [41],

f (V0/μsf ) =
⎡
⎣1 − V0

μsf
−

√(
V0

μsf

)2

− 1

⎤
⎦

2

. (12)

So for V0 > μsf/2, the final expression for the critical current
is

Ib
c = nc μsf f (V0/μsf )e−kμsf db L2

h̄kμsf

. (13)

TABLE I. Material parameters and barrier heights V0. The V0 has been calculated by the difference in energy of the conduction (valence)
bands in the doped TMDs and in the undoped TMDs of the barrier [28].

TMD1|TMD2 – TMD3|TMD4 a∗
B (nm) Ry∗ (meV) εB (meV) V0 (εB )

MoS2|MoSe2 – MoSe2|WSe2 1.3 100 140 0.04
MoS2|WSe2 – MoTe2|WTe2 1.7 77 108 0.05
WS2|WSe2 – MoTe2|MoTe2 1.8 71 99 0.10
MoS2|WS2 – WS2|MoSe2 1.7 77 108 0.20
MoSe2|MoTe2 – MoS2|MoSe2 1.1 116 162 0.33
MoS2|MoSe2 – WTe2|WSe2 1.3 100 140 0.71
WS2|WSe2 – MoSe2|WSe2 1.9 71 99 0.33
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FIG. 3. (a) Critical current Ic obtained with Eq. (8) in the barrier
for barrier height V0, as a function of density n. Inset: Details of the
critical current at very low densities; continuous lines in the upper
part of the inset are a zoom-in of (a), the continuous line in the lower
part of the inset obtained with Eq. (13), and dashed lines interpolate
high barrier and low barrier results. (b) Critical velocity vb

c in the
barrier [Eq. (4)]. (c) Condensate fraction Cb in the barrier [Eq. (10)].
The asterisk symbols in (c) match the position of the maximum of
the critical velocity vb

c in (b).

Figure 3(a) shows the critical current in the barrier Ib
c as

a function of the density n outside the barrier. The colored
dots again mark the value of n at which nb drops to zero and
the switch occurs from predominantly flow over to tunneling.
The inset shows in detail the critical current in the tunneling
region. This is seen to connect smoothly (dashed lines) with
the critical current in the flow over region. We recall that
the existence of a nonzero tunneling current in this region is
accepted as a clear signature of superfluidity. The flattening
of Ib

c at high densities reflects the drop in �b
k from the strong

screening [Fig. 2(b)].
We note that Ib

c is everywhere less than the critical current
outside the barrier Ic = nL2vc, shown by the V0 = 0 curve. For
this reason, the overall critical current in the system is given
by Ib

c . Thus the BCS-BEC crossover physics in the barrier
region controls the transport properties of the entire device.

FIG. 4. Driving mechanisms for the Josephson critical current
at different barrier heights V0. In the fermionic excitation area the
critical current is determined by the pair-breaking branch, and in the
bosonic excitation area it is determined by the Anderson-Bogoliubov
branch. The tunneling area corresponds to the high potential barrier
regime.

Figure 3(b) shows the critical velocity vb
c across the barrier.

The maxima in vb
c result from the switch from Anderson-

Bogoliubov bosonic excitations to single-particle fermionic
excitations, v

(p-b)
c increasing with density while v(BEC)

c de-
creases with density [45]. As expected, the positions of the
maxima are sensitive to the barrier height. Figure 3(c) shows
that the maximum of vb

c for each value of V0 matches the
density at which the condensate fraction Cb = 0.8. Remark-
ably, this value agrees with the conventional criterion used
to identify the crossover to the BEC boundary given by the
vanishing of the single-particle chemical potential [9,46]. It
is an attractive concept and relevant for experiments, that
the switchover from bosonic excitations to single-particle
fermionic excitations lines up with the BEC and BCS-BEC
crossover regime boundary. In contrast to the condensate
fraction which is not observable, the critical velocity vb

c =
Ib
c /n is a directly experimentally measurable quantity in these

electron-hole Josephson devices: Ib
c = Ic, the overall critical

current of the system, and the density n is precisely controlled
by gate potentials. This remarkable result provides a way of
experimentally locating the BCS-BEC crossover boundary in
2D exciton systems.

In Fig. 4, we show the nature of the driving mecha-
nisms of Ib

c for different V0 and n. The density n is capped
at the superfluid onset density n0. For very small V0, as
we increase density, we go from bosonic excitations to
fermionic pair-breaking excitations. On increasing V0, a re-
gion of tunneling of electron-hole pairs appears at small n.
When V0 > 0.3εB, strong screening preempts vb

c from reach-
ing the maximum, so there are no pair-breaking fermionic
excitations. For high potential barriers, V0 > 0.7εB, there are
no bosonic excitations, and only tunneling through the barrier
remains.

We have demonstrated that measurements of the critical
current across a Josephson-junction barrier can yield sig-
nificant additional information on electron-hole superfluid
properties in a double-layer TMD heterostructure. The barrier
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can be fabricated and its height adjusted by suitable combina-
tions of TMD layers. The additional information is as follows.
(i) The existence of a Josephson effect below a critical tunnel-
ing current is per se a direct signature of superfluidity. We
note that this could be used to distinguish between a phase
of excitons in a normal or superfluid state. Up to now, this
has required painstaking analysis to merge Coulomb drag
resistance and counterflow experimental data [12]. (ii) For low
barriers, the crossover physics in the barrier region controls
the transport properties of the entire device. (iii) One can
experimentally observe the maximum of the critical veloc-

ity at the density where excitations switch from bosonic to
fermionic, the density in this system controlling the coupling
strength. This maximum can be used to identify the bound-
ary separating the BEC and BCS-BEC crossover regimes of
the electron-hole superfluidity, and in fact, remarkably, the
density at the maximum matches the density at which the
condensate fraction passes through 0.8.

The work was partially supported by the projects
G061820N, G060820N, G0H1122N, and by the Flemish Sci-
ence Foundation (FWO-Vl).
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