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The α− T3 lattice model interpolates a honeycomb (graphene-like) lattice and a T3 (also known
as dice) lattice via the parameter α. These lattices are made up of three atoms per unit cell.
This gives rise to an additional dispersionless flat band touching the conduction and valence bands.
Electrons in this model are analogous to Dirac fermions with an enlarged pseudospin, which provides
unusual tunneling features like omnidirectional Klein-tunneling, also called super-Klein tunneling
(SKT). However, it is unknown how small deviations in the equivalence between the atomic sites,
i.e. variations in the α-parameter, and the number of tunnel barriers changes the transmission
properties. Moreover, it is interesting to learn how tunneling occurs through regions where the
energy spectrum changes from linear with a middle flat band to a hyperbolic dispersion. In this
paper we investigate these properties, its dependence on the number of square-barriers and the
α-parameter for either gapped and gapless cases. Futhermore, we compare these results to the
case where electrons tunnel from a region with linear dispersion to a region with a band-gap. In
the latter case, contrary to tunneling through a potential barrier, the SKT is no longer observed.
Finally, we find specific cases where transmission is allowed due to a symmetry breaking of sublattice
equivalence.

I. INTRODUCTION

The probability for a particle to cross potential bar-
riers even through a classically forbidden region with a
tiny probability is a quantum phenomenon. This coun-
terintuitive aspect of the transmission takes place when a
particle, with some probability, can create a ‘tunnel’ that
enables it to traverse a potential barrier even when it is
higher than the particle energy. Although such tunneling
is not expected in a classical particle dynamics approach,
an analogous effect called evanescent wave coupling takes
place in optics, in which an electromagnetic wave is trans-
mitted through a region where the solution of the corre-
sponding wave equation is exponentially decaying. In
quantum mechanics, likewise, the tunneling of a particle
can be said to arise due to the coupling of the propagating
solutions of Schrödinger’s equation at either sides of the
potential barrier with decaying solutions in the barrier
region, leading to non-zero transmission probabilities1.

However, counterintuitive effects emerge in the tunnel-
ing of relativistic particles2–5. One example is the total
transmission of relativistic particles through large poten-
tial steps at certain values of momentum which is known
as the Klein paradox 3–5. Although it was first described
by Klein, experimental realization of a similar effect
known as the “Klein tunneling” (KT), an usual tunneling
property characterized by the suppression of backscat-
tering by potential barriers6–8, has only recently been
observed9–12 following the isolation of stable-single layer
(graphene) and bilayer carbon crystals where the carbon
atoms are arranged on a honeycomb lattice (HCL)13–16.
Since electrons in graphene at low-energy are well de-
scribed by the two-dimensional (2D) massless Dirac equa-
tion, i.e. the Dirac-Weyl equation with pseudospin S =

1/2, graphene boosted the exploration of fundamental
research in 2D materials17, bridging condensed matter
physics, relativistic quantum mechanics, and quantum
field theory, resulting in the probing of interesting rela-
tivistic predictions, such as KT9–12,15,16 and Zitterbewe-
gung18–21.

The KT observed in graphene is strongly related to the
conservation of chirality for carriers in this material and
the nature of its pseudospin22,23. Instigated by such un-
usual properties lying on the 2D panorama, the search for
new graphene-based materials has been intensified in the
past two decades. Examples of these 2D materials is T3 or
dice lattice29, Lieb25 and Kagome26 lattices. These lat-
tices result from altering the HCL of graphene by adding
an atom at the center of the hexagons of the unit cell24–31.
As a consequence, the charge carriers are described as
enlarged pseudospin Dirac fermions28,29,32–34 and a flat-
band appears touching the top of the valence and the
bottom of the conduction linear bands in the energy spec-
trum35,36. This flatband has important and unusual ef-
fects on the electronic properties due to its dispersionless
nature34–41,43.

The α − T3 model interpolates between the HCL and
the dice lattice by varying the parameter α = tan θ, cor-
responding to the strength between the HCL and the
central site, from α = 0 to α = 1, respectively, with
the limiting cases of the HCL (θ = 0) and the dice lat-
tice (θ = π/4)35,39–41,43. Unlike graphene, charge car-
riers in α − T3 lattices are described as massless Dirac
fermions only in the limiting case α = 1, i.e. dice lattice.
For certain energy conditions, it presents an angular in-
dependent Klein tunneling through rectangular electro-
static barriers called super-Klein tunneling (SKT)33,43.
In addition, an extraordinary Snell law is found allowing
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a refracted particle beam to be focused at one point, such
as occurs in a Veselago lens44–46. Furthermore, there is a
general trend of enhanced transmission when increasing
the α-parameter33,42,43. Moreover, in the case of the dice
lattice the tunneling is less sensitive to the number of bar-
riers for certain values of energy48, whereas for graphene
the number of barriers strongly affects the tunneling49.

Nonetheless, for practical electronic applications such
as the fabrication of quantum information devices the
creation of a band-gap is necessary. It was demonstrated
that an additional mass term in α− T3 systems distorts
the linear bands around the Dirac cone and produces an
energy gap with a third band in it which could be flat or
dispersive40,41. In the present work and using the theo-
retical formalism developed in Ref. [47], we theoretically
study the emergence of SKT and under what conditions
this phenomena is affected when the equivalence between
the sublattices is broken and by increasing the number of
barriers. We find that as a consequence of the enlarged
pseudospin and the symmetry between the three sublat-
tices, for the dice lattice increasing the number of barriers
effects less the transmission properties for electrons with
incident energy around half the height of the potential
and omnidirectional tunneling is observed regardless the
number of barriers. Additionally, we investigate the role
of the location of the flat band in the transmission proper-
ties of charge carriers across potential barriers for partic-
ular values of α when different symmetry-breaking terms
are taken into account. In both cases we find that small
deviations in the symmetry between the sublattices, fol-
lowed by modifications in the electronic band structures
as discussed in Ref. [47], result in strong modifications
on the nature of wave-vectors inside the barriers, conse-
quently, affecting the tunneling properties of charge car-
riers. Subsequently, we analyze the transmission of chiral
electrons in α−T3 lattice through a region where the elec-
tronic spectrum changes from linear dispersion to hyper-
bolic dispersion with a band-gap and we compare these
results with those for HCL51. We highlight that KT is
prevented to take place and the transmission probability
is less than 1 for all values of θ for perpendicular incident
angles, although the peaks of resonant transmission be-
comes smooth as θ increases and a perfect transmission
is observed for larger values of incident angle.

This paper is organized as follows. In Sec. II, we dis-
cuss the electronic properties of charge carriers in α−T3
lattices, and how this is affected by small deviations in
the atomic equivalence between the sites. The conse-
quences of the presence of mass terms on the energy
spectrum are discussed in Sec. III. In Sec. IV, we de-
velop the transfer-matrix approach to analyze the tun-
neling of Dirac fermions in α− T3 lattices through a 1D
periodic potential. In Secs. V and VI, we discuss the
transmission properties of massless fermions and the ef-
fects of symmetry-breaking on the tunneling properties.
In Sec. VII, we investigate the tunneling through spatial
regions where the energy spectrum of fermions in α− T3
changes from linear to hyperbolic dispersion. Conclu-

FIG. 1: (a) Illustration of the α−T3 lattice with three atomic
sites (A, B, and C) per unit cell (yellow rhombus) is shown.
α = 0 and α = 1 limits correspond to HC (graphene-like)
and dice lattices. A − B and B − C sites are connected by
the hopping amplitude t and αt, respectively. (b) Low energy
spectrum of massless Dirac fermions in the α − T3 lattice,
composed by a linear dispersion and a flat-band.

sions are presented in Sec. VIII.

II. FERMIONS IN α− T3 LATTICE

The low-energy Hamiltonian for the α − T3 model, a
crystallographic lattice composed by three atoms per unit
cell as illustrated in Fig. 1(a), around the K point in the
first Brillouin zone can be written as

Ĥkin =





0 fk(τ) cos θ 0
f∗k (τ) cos θ 0 fk(τ) sin θ

0 f∗k (τ) sin θ 0



 , (1)

where θ = tan−1 α is the angle that provides a continu-
ous evolution from the honeycomb graphene-like (α = 0)
to the dice (α = 1) lattice via the parameter α. The
tuning parameter is proportional to the strength of the
coupling between B sites with the additional atoms C at
the center of the HCL, as shown in Fig. 1(a), and the
other two atomic sites A and B are connected by the
hopping parameter t. In Eq. (1) we defined the function
fk(τ) = vF (τkx − iky), with vF = 3a0t/2~ the Fermi

velocity, a0 the lattice constant, ~k = (kx, ky) the wave
vector, and τ = +1(−1) is the valley index for the K
and K ′ valleys, respectively. In the absence of external
potentials, the eigenstates of the Hamiltonian are given
by

|Ψ±〉 =





cos θeiφk

±1
sin θe−iφk



 , (2)

with eigenvalues E± = ±~vF k, where +(−) indicates
the conduction and valence bands, respectively, resulting
in graphene-like conical energy bands. The angle φk =
tan−1(ky/kx) corresponds to the polar angle associated
with the momentum-vector. In additional to the linear
dispersion, a third energy band, with eigenvalue E = 0,
is also found, being a highly degenerate state, as shown
in Fig. 1(b). It is associated to the flat-band state

|Ψ0〉 =





cos θeiφk

0
sin θe−iφk



 , (3)
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(a)

FIG. 2: Energy spectrum of Dirac fermions around the K
point for different values of the parameter θ in the α − T3

lattices when (a) the sublattice symmetry-breaking term Û =

Û1 is taken in Eq. (4), and for the symmetry-breaking term

Û = Û2 when (b) θ = 0 (graphene-like), (c) θ = π/12, (d)
θ = π/6, and (e) θ = π/4 (dice).

with eigenvalues that do not depend on the θ parameter,
which affects only the eigenstates.

III. INTRODUCTION OF BAND-GAP

The degeneracy observed at E = 0 in the energy spec-
trum shown in Fig. 1(b) is lifted when the equivalence
between the three sub-lattices is broken, and a gap is in-
troduced into the energy spectrum. In general, we can
include this in the Hamiltonian by a term Û , as follows:

Ĥ = Ĥkin +∆Û , (4)

with the kinetic term Ĥkin given by Eq. (1), and ∆ mea-
sures the strength of the sublattice symmetry breaking.
We consider two different forms of the Û matrix, respec-
tively, given by

Û1 =





1 0 0
0 −1 0
0 0 1



 , Û2 =





1 0 0
0 −1 0
0 0 −3



 . (5)

The effects of the inclusion of the terms Û1 and Û2 on the
energy spectrum are shown in Fig. 2(a) and Figs. 2(b)-
2(e), respectively.

The solution of ĤΨ = EΨ when Û = Û1 gives the
eigenenergies

E0 = ∆, E = ±
√

∆2 + ~2v2Fk
2 . (6)

Correspondingly, the wave-functions in this case are
given by

|ψ0〉 =





cos θeiφk

0
sin θe−iφk



 , |ψ±〉 =





α cos θe−iφk

γ
α sin θeiφk



 , (7)

where α =
√
E +∆ and γ =

√
E −∆.

According to Eq. (6), one obtains an energy spectrum
with a band-gap opening of 2∆. It is worth mentioning
that the format of Û2 in Eq. (5) was chosen in order

that both sublattice symmetry-breaking terms Û1 and
Û2 give rise to the same 2∆ band-gap opening. This
results in massive Dirac fermions with an effective mass
defined as m = ∆/v2F . Since Eq. (6) does not depend on
the parameter θ, the energy spectrum remains the same
for all α − T3 lattices, as shown in Fig. 2(a). Moreover,
as long as the equivalence between the sites A and C
is maintained, the flat-band is shifted and touches only
the bottom of the conduction band. Notice that now the
bottom of the conduction band and the top of the valence
band are hyperbolic in k.
When we assume Û = Û2 in Eq. (4), the energy dis-

persion relation is obtained from a non-linear equation

(E + 3∆)(E2−∆2)−k2(∆ cos 2θ+E+2∆cos2 θ)=0, (8)

and the eigenstates for the conduction and valence bands
are given by

|ψ〉 =





α′ cos θeiφk

γ′

β sin θe−iφk



 , (9)

with α′ =
√

(E + 3∆)/(E −∆), γ′ =
√

(E +∆cos(2θ) + 2∆cos2 θ)/(E +∆), and

β =
√

(E −∆)/(E + 3∆).
Like the previous case, a 2∆ band-gap opening is still

observed for all values of θ, but now the previous flat-
band no longer touches the bottom of the conduction
band. In addition, the dispersion of the middle band de-
pends on the θ parameter, being flat only when θ = π/4
(dice lattice - Fig. 2(e)). Note that for the specific

case θ = 0 (graphene-like) the energy spectra for Û1

(Fig. 2(a)) and Û2 (Fig. 2(b)) differ only by the local-
ization of the flat band. As we shall discuss later, this
results in similar tunneling properties for both gapped
cases when one-dimensional square potentials are applied
to these systems.

IV. TRANSMISSION THROUGH

ONE-DIMENSIONAL PERIODIC BARRIERS

First, we investigate the transmission probability of
fermions in α − T3 lattice through a finite number N
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FIG. 3: Schematic illustration (see top insets) of the wavevec-
tors in the tunneling process through an electrostatic finite
superlattice formed by rectangular barriers of height V0 and
width d. The well width, i.e. the inter-barrier distance, is
s− d.

of electrostatic rectangular barriers of constant height
V0, width d and inter-barrier distance s− d, as depicted
in Fig. 3. We consider both gapless and gapped cases
as obtained from the presence of sublattice symmetry-
breaking terms given by Eq. (5). The general Hamil-
tonian taking into account both the presence of the
symmetry-breaking term and electrostatic potential is
now given by

Ĥ = Ĥkin + V (x)Î +∆Û , (10)

where Ĥkin is given by Eq. (1), V (x) denotes the su-
perlattice potential with translational symmetry break-
ing along the x-direction, and ∆Û represents the pre-
vious sublattice symmetry-breaking term assumed here
by Eq. (5). Due to the translation invariance in the y-
direction the wave-functions have the form Ψ(x, y)j =
Ψj(x)e

ikyy, where the j index is related to the differ-
ent potential regions along the x-direction being outside
(j = w) and inside (j = b) of the barrier. Therefore, the
wave-function can be written as

ψj(x)=
Aj√
2





αj cos θe
iφj

γj
βj sin θe

−iφj



eikjx+
Bj√
2





−αj cos θe
−iφj

γj
−βj sin θeiφj



e−ikjx.

(11)

The angles φj = tan−1(ky/kj) (with j = ω, b) are the
angles associated with the direction of the momentum of
the electron in the regions inside and outside of the po-
tential, as depicted in the insets of Fig. 3. In addition, the
terms αj , γj , and βj , are obtained from the eigenstates
equation using the Hamiltonian Eq. (10).
In order to obtain the transmission probability through

electrostatic barriers, we need to solve the scattering
problem by matching wave functions given in Eq. (11)
at the interfaces inside and outside the barrier. We as-
sume potential variations that are smooth on the length
scale of the lattice constant a0 but sharp on the scale of
the Fermi wavelength λF = 2πvF/|E|.

Writing the wave-functions given by Eq. (11) in its
general form as Ψ(x) = [ψA(x), ψB(x), ψC(x)]

T and by

integrating the eigenvalue equation ĤΨ = EΨ over a
small interval x = [−ǫ, ǫ], in the limit ǫ → 0, we obtain

the following matching conditions for the wave-function
in each region

ψB(−ǫ) = ψB(ǫ), (12a)

cos θψA(−ǫ) + sin θψC(−ǫ) = cos θψA(ǫ) + sin θψC(ǫ).
(12b)

Applying these matching conditions into Eq. (11), we
obtain the transfer matrix for a single-barrier

T (1) = Mb(d) · Mw(0) =

(

w z
z∗ w∗

)

, (13)

where Mb and Mw correspond to the transfer matrix
into the well and barrier, respectively, and are given by

Mb(d) = Ω−1
kw

(d)Ωkb
(d), (14a)

Mw(0) = Ω−1
kb

(0)Ωkw
(0), (14b)

with

Ωkj
(x) =

(

γje
ikjx γje

−ikjx

λje
ikjx − λ∗je

−ikjx

)

, (15)

and λj = αj cos
2 θeiφj + βj sin

2 θe−iφj . Using Eqs. (14)
and (15), one can obtain explicitly the terms w and z in
Eq. (13) as

w =
1

a
[e−i(kw−kb)d (λ∗wλ

∗

b + η1λ
∗

wλw + η2λ
∗

bλb + λwλb)

+e−i(kw+kb)d (λwλ
∗

b − η1λ
∗

wλw − η2λ
∗

bλb + λ∗wλb)],
(16a)

z =
1

a
[e−i(kw−kb)d

(

λ∗wλ
∗

b − γ2bλ
∗

wλ
∗

w + γ2wλ
∗

bλb − λ∗wλb
)

+e−i(kw+kb)d
(

λ∗wλb + γ2bλ
∗

wλ
∗

w − γ2wλ
∗

bλb − λ∗wλ
∗

b

)

],

(16b)

where a = (λ∗w + λw)(λ
∗

b + λb), η1 = γb/γw and η2 =
γw/γb.
Correspondingly, the transfer matrix considering dou-

ble barriers with an inter-distance s between them is

T (2) = Mb(2d+ s) · Mw(s+ d)T (1). (17)

Thus, we can extend this result to N identical barriers
which is given by the product of transfer matrices:

T (N) =

N
∏

l=1

Mb(l(d+ s)− s) · Mw((l − 1)(d+ s)). (18)

Once T (N) is an unimodular matrix and the electron
wave originates from the left of the system in Fig. 3, the

transmission probability is obtained as T = 1/|T (N)
22 |2.

After some algebraic calculations, we found the trans-
mission probability through N barriers as

T =
1

1 + |z|2
(

sinNξ
sin ξ

)2 , (19)
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where ξ corresponds to the Bloch wave-function of the
whole system and is given by

ξ = cos−1[R(w) cos(kw(d+ s))− C(w) sin(kw(d+ s))],
(20)

with z given by Eq. (16b), R(w) and C(w) correspond
respectively to the real and imaginary terms of w in
Eq. (16a).
It is important to highlight that the role of the parame-

ter θ is buid-in in the terms λj of the matrix in Eq. (15),
such as when we assume the limiting cases θ = 0 and
θ = π/4 in the term λj , Eq. (15) coincides with that one
for dice and graphene, as discussed in Refs. [38, 49].

V. TRANSMISSION OF MASSLESS DIRAC

FERMIONS

Initially, we consider the symmetry-breaking free case,
i.e. taking Ûi = 0 in Eq. (10). The solution of ĤΨj =
EΨj in this case leads to αj = γj = βj = 1, as can be
seen by comparing Eqs. (11) and Eqs. (2) for the wave-
functions of the dispersion bands, and consequently, it
implies η1 = η2 = 1 in Eq. (16a). Moreover, from the

secular equation det(Ĥ − E) = 0 we obtain the wave-
vectors in the x−direction in the well and barrier regions,
kw and kb, respectively as

kw =

√

(

E

~vF

)2

− k2y , kb =

√

(

E − V0
~vF

)2

− k2y, (21)

with the eigenvalues in each region respectively given by

E = ±
√

~2v2F(k
2
w + k2y), (22a)

E − V0 = ±
√

~2v2F(k
2
b + k2y). (22b)

Figure 4 shows the transmission probabilities using
Eq. (19) for a single barrier as a function of the inci-
dent wave energy E and its transverse wave vector ky
for different values of the θ parameter: (a) θ = 0, (b)
θ = π/12, (c) θ = π/6, and (d) θ = π/4. The poten-
tial height is set to V0 = 0.2 eV and the barrier width is
d = 30 nm. The possible non-null transmission regions in
the (kyd,E/V0) plane of Fig. 4 can be explained by iden-
tifying which modes are propagating inside and outside
the potential barrier. The borders between these regions
are indicated by dashed curves superimposed on the den-
sity plots, where the black and grey lines correspond to
the energy spectrum outside and inside of the barrier
which are given by Eqs. (22a) and (22b), respectively.
Since wave-functions interfere inside the barrier, we ob-
serve for all values of θ when E/V0 < 1 the appearance of
resonance peaks marked by T = 1. In addition, when the
incoming wave-function is perpendicular to the barrier,
the transmission is total and the barrier is completely
transparent regardless of the potential width and height,
as observed by the red color in the contour plots in Figs. 4

FIG. 4: Transmission probability through a single-barrier
in the (ky, E/V0) plane for (a) θ = 0 (graphene-like), (b)
θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) in the

symmetry-breaking free case (Û = 0) for barrier height and
width assumed as V0 = 0.2 eV and d = 30 nm, respectively.

FIG. 5: Contour plot of transmission probability through a
single-barrier in the (φw, E/V0) plane for (a) θ = 0 (graphene-
like), (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) for
the same potential parameters as in Fig. 4.

and 5 for kyd = 0 and φw = 0, respectively. This per-
fect transmission at normal incidence is a consequence of
the conservation of the pseudo-spin at scattering on the
barrier which results in the absence of backscattering of
wave-functions, an effect referred as KT which has been
noted previously for the two limiting cases θ = 022 and
θ = π/439.

We note that for 0 < E/V0 < 0.5 sharp resonances
in the transmission probabilities become softer and less
pronounced as θ increases, leading to a general enhance-
ment trend of transmission probability for θ 6= 0. This
result is more evident in Fig. 5, which shows the trans-
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FIG. 6: Transmission probability through a single-barrier as
function of incident angle φw at incident energy values (a)
E/V0 = 0.25, and (b) E/V0 = 0.5 for θ = 0 (solid black
curve), θ = π/12 (dotted magenta curve), θ = π/6 (dashed
red curve), and θ = π/4 (dash-dotted blue curve) assuming
the same potential parameters as in Fig. 4.

mission probability in the (φw, E/V0)−plane. We observe
the broadening of transmission as θ increases in the en-
ergy region 0 < E/V0 < 0.5, indicating that the barrier
becomes more transparent, as depicted in Fig. 6(a) for a
fixed energy E/V0 = 0.25. Furthermore, the special case
θ = π/4 (dice) at E/V0 = 0.5 the barrier becomes fully
transparent leading to an omnidirectional total transmis-
sion, as observed in Fig. 5(d) and Fig. 6(b) and discussed
in Refs. [39,43].
However, as shown in Fig. 5 when the energy of incom-

ing waves is 0.5 < E/V0 < 1 for all values of θ there is
a reduction of the transmission probability with increas-
ing incident energy and the transmission curves almost
coincide, indicating that, analogously to the total reflec-
tion effect observed in optics, there is an incident critical
angle such that above it the incident wave-function is
fully reflected and an evanescent wave-function is found
inside the potential. This angle is determined from the
conservation of momentum in the y direction

sinφk =
V0 − E

E
sinφq. (23a)

Since the condition for total reflection of incoming wave-
function is sinφq = 1, the incident critical angle φkc is
determined by

sinφkc =
V0 − E

E
. (24)

Note that the critical angles do not depend on the pa-
rameter θ, and the transmission probabilities are almost
the same for E/V0 > 0.5 regardless of θ.

From Eq. (19) we analyze the effects of the number
N of barriers on the transmission probabilities in the
(φw, E/V0)−plane. The results for transmission assum-
ing N = 2 and N = 6 are depicted in Figs. 7 and 8,
respectively. For all these cases the inter-barrier dis-
tance is 30 nm. One notices more resonance peaks in
the transmission as the number of barriers increases as
a consequence of the fact that the wave-function inter-
feres more with itself inside the barriers. Beside that,

FIG. 7: Contour plot of transmission probability, shown in
the (φw, E/V0) plane, through a double-barrier (N = 2) for
(a) θ = 0 (graphene-like), (b) θ = π/12, (c) θ = π/6, and (d)
θ = π/4 (dice) for the same potential parameters as in Fig. 5
and with a inter-barrier distance of 30 nm.

a perfect transmission T = 1 for normal or near-normal
incidence is observed, which is a signature of the KT.
Unlike graphene-like and for intermediate values of θ,
the increase in the number of barriers is much less ef-
fective for dice when 0 < E/V0 < 1 and the SKT at
E/V0 = 0.5 is still observed regardless the number of
barriers, as shown in Figs. 7(d) and 8(d). However, for
incident energies E/V0 > 1 and E/V0 < 0 the effect of
the number of barriers in the transmission is evident for
all values of θ.

Moreover, like the single-barrier case and for 0 <
E/V0 < 0.5, as θ increases there is a broadening of the
transmission resonant peaks. Since the increase of the
number of barriers does not affect the nature of pseudo-
spin, which depends only on the crystal structure, the
KT and the SKT, beside the enhancement of transmis-
sion as θ increases, are maintained regardless the number
of barriers.

VI. SYMMETRY-BREAKING EFFECTS INTO

THE TUNNELING PROPERTIES

As discussed in Sec. III, within the low-energy ap-
proach, the presence of small deviations in the equiva-
lence of the atoms generate a band-gap in the energy
spectrum resulting in charge carriers that are described
as massive Dirac fermions. Now, we shall discuss the
tunneling properties of those massive fermions in α− T3
lattices under the presence of single and multiple barriers
by considering the symmetry-breaking terms Û1 and Û2

given by Eq. (5).
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FIG. 8: The same as Fig. 7, but now for N = 6 barriers.

A. Case Û = Û1

FIG. 9: Schematic illustration of the electronic energy spec-
trum in the α − T3 lattice considering the inclusion of the
symmetry-breaking term Û1 and the square potential V (x) =
V0Θ(x)Θ(d− x).

Assuming Û = Û1 in Eq. (10), we obtain the wave-
functions expressed in Eq. (11) in the barrier and
well regions with αw = βw =

√
E +∆, αb = βb =√

E − V0 +∆, γw =
√
E −∆, and γb =

√
E − V0 −∆.

The schematic illustration of this junction is shown in
Fig. 9. The wave-vectors in the x−direction inside and
outside of the barrier are

kw =

√

E2 −∆2

~2v2F
− k2y, (25a)

kb =

√

(E − V0)2 −∆2

~2v2F
− k2y. (25b)

The transmission probability is given by Eq. (19), and

FIG. 10: Transmission probability through a single-barrier
in the (ky, E/V0) plane for (a) θ = 0 (graphene-like), (b)
θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) by assuming

the symmetry-breaking term as Û = Û1, with sublattice un-
balance strength ∆ = 0.04 eV, for barrier height V0 = 0.2 eV
and width d = 30 nm.
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FIG. 11: Contour plot of transmission probability through a
single-barrier in the (φw, E/V0) plane for (a) θ = 0 (graphene-
like), (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) for
the same system parameters as in Fig. 10.

the terms η1 and η2 in Eq. (16a) are

η1 =

√

(E +∆)(E − V0 −∆)

(E − V0 +∆)(E −∆)
, (26a)

η2 =

√

(E −∆)(E − V0 +∆)

(E − V0 −∆)(E +∆)
. (26b)

The transmission probabilities for single-barrier as
function of (kyd,E/V0), assuming V0 = 0.2 eV, d =
30 nm, and ∆ = 0.04 eV for different values of θ are
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FIG. 12: Transmission probability through a single-barrier as
function of incident angle φw at incident energy values (a)
E/V0 = 0.25 and (b) E/V0 = 0.5 for θ = 0 (solid black
curve), θ = π/12 (dotted magenta curve), θ = π/6 (dashed
red curve), and θ = π/4 (dash-dotted blue curve) for the same
system parameters as in Fig. 10.

shown in Fig. 10. The non-zero transmission zones are
bounded by the energy levels inside and outside of bar-
rier, corresponding to the grey and black dashed curves,
respectively. It is clearly seen that the presence of the
sublattice symmetry-breaking induced band-gap in the
energy spectrum lead to a suppression of the transmission
for all values of the parameter θ, as well as the “fishbone”
transmission shape in the energetic region ∆ < E < 4∆
is suppressed. Beside, the conservation of chirality does
not take place due to the introduction of small deviation
in the equivalence between the atoms and total transmis-
sion for normal or near-normal incident angles, or equiv-
alently smaller kyd, is no longer observed indicating that
for all values of θ KT is destroyed, as depicted in Figs. 10
and 11.

However, while the KT is no longer observed, from
Fig. 10(d) one notices perfect transmission when θ = π/4
at 0 < E/V0 < 0.5 for large kyd values, or equivalently for
large incident angles as shown in Fig. 11(d). In fact, when
θ is tuned from the correspondent value of graphene-like
to dice at incident energy E/V0 = 0.25 the transmission
curves tend to exhibit a completely opposite feature: in-
cident waves nearly parallel to the barrier are completely
transmitted, as shown in Fig. 12(a). On the other hand,
for θ = 0 and oblique incident angles at incident en-
ergy E/V0 = 0.5 there is a narrow resonance peak which
widens as θ increases, whereas for dice lattice beyond the
broadening of this peak a new total transmission peak
appears for incident angles parallel to the barrier as no-
ticed in Fig. 12(b). The appearance of this new peak
of total transmission at large values of incident angle is
due to the presence of degenerate states in the electronic
band structure assuming multiples barriers at energies
around E = 0.3V0 at large values of ky , or equivalently
to incidence angles parallel to the barrier, as shown in
Fig. 15, which will be discussed further in more details.

Figure 13 shows the transmission contour plots consid-
ering now double-barrier systems with the same width
and potential height used in single-barrier case and an
inter-distance barrier of 30 nm. Comparing to Fig. 11,
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FIG. 13: Contour plot of transmission probability through
a double-barrier in the (φw, E/V0) plane for (a) θ = 0
(graphene-like), (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4

(dice) when Û = Û1, V0 = 0.2 eV, ∆ = 0.04 eV, d = 30 nm,
and an inter-barrier distance s = 30 nm.

we observe that beyond total reflection of waves for
smaller incident angles at E/V0 = 0.5, the energy scale
where there is non-null transmission is reduced and for
graphene-like and intermediate values of θ there is no
transmission at incident energies close to the value of ∆,
i.e E/V0 = 0.2. Nonetheless, for dice lattice the perfect
transmission of waves near-parallel or parallel to barri-
ers is still observed in the range E/V0 ∈ [0.2, 0.5] and
for energies immediately above the potential energy, i.e.
1.2 < E/V0 < 1.3 a peak of transmission occurs for crit-
ical incident angle, like in the single-barrier case. This
result is clear when we analyse the transmission curves
in Fig. 14 for incident energies E/V0 = 1.3 for single and
double-barriers. While for θ = π/4 and N = 1 there is
a peak of total transmission for incident angles around
±10◦, which corresponds to the critical angle for this
value of incident energy. For the other values of θ the
transmission is reduced and falls to zero. Moreover, when
N = 2, beyond the peak of total transmission for dice,
there is a peak of almost-total transmission for θ = π/6.

The perfect transmission at large values of kyd, or in-
cident angles parallel and near-parallel to the barrier, for
θ = π/4 as observed in Figs. 11 and 12 is explained when
we analyse Fig. 15(a), where we depict the electronic
band structure along kyd direction of a system consisting
of an infinite number of barriers with the same parame-
ters of potential height, width and inter-barrier distance
used in Fig. 13. We note that for energies at the interval
0.2 < E/V0 < 0.5 the mini-bands touch each other at
large values of kyd, indicating the presence of degenerate
states, which is represented by prominent peaks in the
density of states (DOS) at energies around E/V0 = 0.5.
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FIG. 14: Transmission probability through a (a) single-barrier
(N = 1) and (b) double-barrier (N = 2) as function of inci-
dent angle φw at incident energy E/V0 = 1.3 for θ = 0 (solid
black curve), θ = π/12 (dotted magenta curve), θ = π/6
(dashed red curve), and θ = π/4 (dash-dotted blue curve) for
the same system parameters as in Fig. 10 and an inter-barrier
distance of 30 nm for double-barrier system.

(a) (b)

FIG. 15: (a) Electronic band structure along the kyd direction
for θ = π/4 (dice case) superlattices taking the same system
parameters as in Fig. 13. (b) The corresponding DOS of (a)
using Eq. 27 is shown.

The DOS was calculated using

D(E) =
∑

n,ky

δ(E − En,ky
), (27)

where the sums runs over all states. Therefore, since
more allowed states arise for that particular energy it re-
sults in a peak in the DOS in Fig. 15(b), which leads to
an enhancement of the transmission probability of elec-
trons.
It is interesting to mention similar results were ob-

tained considering a single potential step for the Lieb
lattice in Ref. [50].

B. Case Û = Û2

For the other symmetry-breaking term denoted by
Û = Û2 in Eq. (10), we have αw =

√

(E + 3∆)/(E −∆),

αb =
√

(E − V0 + 3∆)/(E − V0 −∆), γw =
√

(E +∆cos(2θ) + 2∆cos2 θ)/(E +∆), γb =
√

(E − V0 +∆cos(2θ) + 2∆cos2 θ)/(E − V0 +∆),

βw =
√

E −∆/(E + 3∆), and βb =
√

E − V0 −∆/(E − V0 + 3∆). This system formed

by the square potential barrier and the presence of
energy spectrum considering the symmetry-breaking
term Û2 is represented in Fig. 16.
Consequently, the wave-vectors kw and kb are given by

kw =

√

(E2 −∆2)(E + 3∆)

~2v2F(E +∆cos 2θ + 2∆cos2 θ)
− k2y,

(28a)

kb =

√

((E − V0)2 −∆2)(E − V0 + 3∆)

~2v2F(E − V0 +∆cos 2θ + 2∆cos2 θ)
− k2y.

(28b)

For this case, the transmission of fermions through N
one-dimensional barriers is obtained using Eq. (19) with
η1 and η2 in Eq. (16a) given by

η1 =

√

[

E − V0 +∆cos 2θ + 2∆cos2 θ

E +∆cos 2θ + 2∆cos2 θ

]

η12, (29a)

η2 =

√

[

E +∆cos 2θ + 2∆cos2 θ

E − V0 +∆cos 2θ + 2∆cos2 θ

]

η21, (29b)

with η12 = E+∆
E−V0+∆ and η21 = E−V0+∆

E+∆ . The transmis-

sion probabilities as function of (kyd,E/V0) for this case
are depicted in Fig. 17. Similar to previous cases, the
zones where waves are able to propagate and therefore
the transmission is non-null are bounded by the energy
levels inside and outside of the barrier indicated by the
grey and black dashed curves superimposed on the trans-
mission contour plot. As observed in Figs. 2(a) and 2(b),
the energy spectrum for both symmetry-breaking terms
Û1 and Û2 for θ = 0 differs only by the position of the
flat band maintaining the conduction and valence bands
with the same dispersion and position. Since the dis-
persionless bands do not contribute to the transmission,
the effects observed in the tunneling properties for both
symmetry-breaking terms for θ = 0 are similar, as no-
ticed when we compare Fig. 17(a) and Fig. 10(a). How-
ever, for θ 6= 0 the transmission contour plots are quite
different from the previous gapped case, as depicted in
Figs. 17(b)-17(d). We note that for incident energies
0 < E/V0 < 1 depending on θ new zones where there is
no propagation of waves appear in the (ky, E/V0) plane.
To understand this result we plot in Fig. 18 a diagram for
the wave-vector kb inside the barrier using the relation
given in Eq. (28a) for the same parameters used in Fig.
17. The blue zones indicate where the transmission is
due to propagating waves, i.e. kb is real, in that case the
incoming waves might interfere with itself between the
two interfaces of barrier-well, leading to the transmission
resonances.
When kb is purely imaginary, indicated by the grey

zone in the phase diagram, the transmission is still possi-
ble via evanescent waves but with a reduced amplitude.
Furthermore, the condition to have an evanescent wave
is determined by the incident critical angle, so from the
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FIG. 16: Schematic illustration of the electronic energy spectrum in the α−T3 lattice considering the inclusion of the symmetry-
breaking term Û2 and the square potential V (x) = V0Θ(x)Θ(d−x) when (a) θ = 0, (b) θ = π/12, (c) θ = π/6 and (d) θ = π/4.

FIG. 17: Transmission probability through a single-barrier
in the (ky, E/V0) plane for (a) θ = 0 (graphene-like), (b)

θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) when Û = Û2,
V0 = 0.2 eV, ∆ = 0.04 eV, and d = 30 nm.

conservation of momentum in the y direction and using
Eq. (28) we get the expression of a critical incident angle
φkc

sinφkc =

√

Eθ

[

((E − V0)2 −∆2)(E − V0 + 3∆)

(E2 −∆2)(E + 3∆)

]

,(30)

FIG. 18: Diagram obtained from the relation given in Eq.
(28a) representing the wave nature inside the barrier plotted
in the (ky, E/V0) plane for (a) θ = 0 (graphene-like), (b)

θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) when Û =

Û2, ∆ = 0.04 eV, V0 = 0.2 eV, and d = 30 nm. The blue
area is the zone of propagating waves corresponding to a real
wave-vector kb, the grey area is the zone where kb is purely
imaginary indicating evanescent waves.
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FIG. 19: Contour plot of transmission probability through a
single-barrier in the (φw, E/V0) plane for (a) θ = 0 (graphene-
like), (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) when

Û = Û2, V0 = 0.2 eV, ∆ = 0.04 eV, and d = 30 nm.

FIG. 20: Transmission probability through a single-barrier as
function of incident angle φw at incident energy values (a)
E/V0 = 0.25, and (b) E/V0 = 0.5 for θ = 0 (solid black
curve), θ = π/12 (dotted magenta curve), θ = π/6 (dashed

red curve), and θ = π/4 (dash-dotted blue curve) when Û =

Û2, V0 = 0.2 eV, ∆ = 0.04 eV, and d = 30 nm.

where

Eθ =
(E +∆cos 2θ + 2∆cos2 θ)

(E − V0 +∆cos 2θ + 2∆cos2 θ)
. (31)

According to Eq. (30) and as shown in Fig. 19, unlike
the gapless and previous gapped case, the critical incident
angle for transmission and consequently the condition for
evanescent or propagating waves depends on the value of
θ, indicating the appearance of new transmission zones
as θ is tuned from graphene-like to dice.
In Fig. 19 we observe at E/V0 = 0.25 that while the

transmission probability is nearly perfect for θ = π/12
and θ = π/4, for θ = π/6 it becomes smaller, as shown in
Fig. 20(a). In addition, in Fig. 20(b) we note that there is
no transmission for θ = π/6 and θ = π/4 at E/V0 = 0.5.
we note that there is no transmission for θ = π/6 and
θ = π/4 at E/V0 = 0.5. To understand these results

-1

-0.5

0

1.5

1

0.5

-1

-0.5

0

1.5

1

0.5

FIG. 21: Contour plot of transmission probability through
a double-barrier in the (φw, E/V0) plane for (a) θ = 0
(graphene-like), (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4

(dice) when Û = Û2, V0 = 0.2 eV, ∆ = 0.04 eV, d = 30 nm,
and inter-barrier distance s = 30 nm

we analyze the regions where the transmission is allowed
from the diagram in Fig. 18. Where for θ = π/6 and
θ = π/4 at E/V0 = 0.5 the incident waves are localized
in the grey zone of Fig. 18, and therefore are evanescent
waves, and consequently the transmission is zero. On the
other hand, for θ = π/12 at this same value of incidence
energy E/V0 = 0.5 the transmission is almost perfect
since the incident waves are propagating waves regardless
the initial momentum ky, as shown in Fig. 18(b).

Furthermore, for double-barrier systems assuming
graphene-like and intermediate values of θ, the trans-
mission is in general reduced for large incident angles
and there are more resonant peaks, as shown in Fig. 21.
However, for dice lattice we observe the enhancement of
the transmission, which is almost perfect for all values
of incident energy 0.2 < E/V0 < 0.4 and large values of
incident angle, as shown in Fig. 21(d).

VII. TUNNELING THROUGH SPATIAL

REGIONS OF FINITE MASS

Now we investigate the tunneling properties of elec-
trons in α − T3 lattices when we assume a region where
the electronic spectrum changes from the usual linear dis-
persion to a hyperbolic dispersion, due to the presence
of a gap originating from the presence of the symmetry-
breaking term Û1, as depicted in Fig. 22. The transmis-
sion expression is obtained in a similar way as in previous
section. The wave-function Ψ(x) corresponding to eigen-
states with linear dispersion in region I and III depicted



12

FIG. 22: Schematic illustration of the electronic energy spec-
trum in α − T3 lattice at different spatial regions. In Re-
gion II (0 ≤ x ≤ d), there is a band-gap in the energy spec-
trum induced by the presence of the symmetry-breaking term
∆Ûi = Û1.

in Fig. 22 is

ψ(x)I,III =
A√
2





cos θeiφk

1
sin θe−iφk



 eikxx +

B√
2





− cos θe−iφk

1
− sin θeiφk



 e−ikxx. (32)

Consequently, the wave-function in region II correspond-
ing to the hyperbolic and gapped energy spectrum at
0 ≤ x ≤ d is given by

ψII(x) =
A′

√
2





α cos θeiφq

γ
α sin θe−iφq



 eiqxx +

B′

√
2





−α cos θe−iφq

γ
−α sin θeiφq



 e−iqxx, (33)

The incident angles into the different regions with linear
dispersion and band-gap are φk = tan−1 ky/kx and φq =
tan−1 ky/qx, respectively, with momentum along the x−
direction given by

kx =

√

E2

~2v2F
− k2y, qx =

√

E2 −∆2

~2v2F
− k2y. (34)

Using the matching conditions in Eq. (12) and the same
procedure to get the transfer matrix in Eq. (13), we de-
termine the transmission probability through the spatial

regions of finite mass using the relation T = 1/|T (1)
22 |2:

T =
1

akaq

[

ei(kx+qx)d
(

ΛkΛ
∗

q − η1ΛkΛ
∗

k − η2ΛqΛ
∗

q + Λ∗

kΛq

)

+ ei(kx−qx)d
(

ΛkΛq + η1ΛkΛ
∗

k + η2ΛqΛ
∗

q + Λ∗

kΛ
∗

q

) ]

,

(35)

where Λj = cos2 θeφj + sin2 θe−φj , aj = Λj + Λ∗
j with

j = k and j = q denoting the linear energy spec-
trum and gapped regions, respectively. In that case
η1 =

√

(E −∆)/(E +∆) and η2 =
√

(E +∆)/(E −∆).
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FIG. 23: Transmission contour plots as function of kyd of
electrons in α−T3 lattice through a spatial region that begins
at x = 0 and width d = 30nm where there is a band-gap
2∆ in the energy spectrum induced by the presence of the
symmetry-breaking term ∆Ûi = Û1 with ∆ = 0.1eV and for
(a) θ = 0, (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4.

Figure 23 shows the transmission probabilities plotted
in the (kyd,E/2∆) plane for different θ, using d = 30
nm, and ∆ = 0.1 eV, resulting in a band-gap opening
of 2∆ = 0.2 eV into Region II. Since our motivation is
to compare the transmission results obtained in this sec-
tion to the previous one assuming transmission through
potential barriers, here we assume a band-gap with the
same energy of that height of potential used in the pre-
vious sections.

The energy spectrum in the different regions, i.e. in
the region with linear dispersion and in the region with
hyperbolic dispersion are indicated by dashed curves su-
perimposed on the contour plots. We note that due to
the band-gap opening in Region II, when incident ener-
gies are inside the gap −0.1 < E < 0.1 the transmission
is exponentially small and for kyd = 0 the transmission
T < 1. Unlike the case of tunneling through barriers dis-
cussed in Sec. V, there is absence of KT. Moreover, be-
yond the enhancement of the transmission as θ increases,
the transmission curves are almost the same as incident
energy increases only for smaller incident angles φk, as
observed in Fig. 24. From Fig. 24 we observe, in gen-
eral, that there is a broadening of transmission curves
for greater values of θ, like the barrier system case. How-
ever, for energies E < 2∆, which is analogous to incident
energies bellow the potential barrier in the previous sec-
tions, the number of peaks in the transmission curves
is the same regardless of the parameter θ, as shown in
Fig. 24(a). In addition, the transmission continues to
be enhanced even for incident energy above the band-
gap energy 2∆, as represented in Fig. 24(b) and 24(c).
This result is opposite to the one observed for tunneling
through potential barriers, where the transmission is re-
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FIG. 24: Transmission probability as function of incident angle φk, and incident energy (a) E = 0.15 eV, (b) E = 0.20 eV,
(c) E = 0.30 eV for θ = 0 (solid black curve), θ = π/12 (dotted magenta curve), θ = π/6 (dashed red curve), and θ = π/4

(dash-dotted blue curve) when Û = Û1 in the Region II in Fig. 22 with ∆ = 0.1 eV and d = 30 nm.

duced for energies above the one associated to the critical
angle. Besides, the difference between the transmission
curves as θ is tuned from graphene-like to dice is more
evident for values E > 2∆, as shown in Fig. 24(c), where
for θ = π/4 the transmission curve is more smooth for
larger values of φk.

VIII. CONCLUSIONS

In summary, using the transfer matrix approach, we
investigated the tunneling properties in α − T3 lattices
of electrons across square barriers and through regions
of space where the energy spectrum has a finite band-
gap. For tunneling across one-dimensional square barri-
ers, we consider both the case of equivalence between the
three sub-lattices, and the ones where band-gaps origi-
nate due to small deviations of this equivalence by in-
cluding symmetry-breaking terms. We also investigated
tunneling of electrons from regions with a linear to a hy-
perbolic dispersion.
For the massless Dirac fermion case, when no

symmetry-breaking terms are present, besides a general
trend of enhanced transmission with increasing α, KT at
normal incidence is found for all values of θ, regardless
the number of barriers. At oblique incidence, the trans-
mission increases with increasing θ. For a particular case,
E/V0 = 0.5 and θ = π/4 (dice), an omnidirectional trans-
mission is observed which is called super-Klein tunneling

(SKT) effect, and preserved regardless of the number of
barriers. Although the increase in the number of barriers
gives rise to additional resonances in the transmission for
all values of θ, this increase is much less pronounced for
the dice lattice, whereas for a graphene-like lattice the
transmission probability is strongly modified. Moreover,
we found that, similar to total reflection in optics, above
an incident angle φk there is total reflection of the in-
cident wave-functions. This critical angle depends only
on the incident energy and potential barrier and remains

the same for all values of θ. Our findings concerning the
robustness of the omnidirectional transmission observed
at E = 0.5V0 for the dice lattice was also predicted in
Ref. [41] using the WKB method.
The presence of an additional symmetry-breaking term

in the Hamiltonian distorts the linear dispersion around
the Dirac point and changes the location of the flat band,
whose occurrence depends on the deviation of the equiv-
alence between the three sublattices. The symmetry-
breaking term destroys the KT and SKT in the α − T3
model. It is demonstrated that the additional term in
general suppresses the transmission probabilities for both
cases Û1 and Û2. When the flat band is located at the
band edge, i.e. when Û1 = diag(1,−1, 1), resonant tun-
neling is considerably suppressed and at incident energies
0 < E/V0 < 0.5 the transmission is perfect for larger val-
ues of incident angle, as a consequence of the presence
of degenerate states around large values of ky observed
from the electronic band structure. In addition, when
we consider the double-barrier system at E/V0 = 0.5,
unlike the single-barrier, the transmission is reduced for
smaller φw, and perpendicular or near-perpendicular in-
cident wave-functions are totally reflected.
When Û2 = diag(1,−1,−3), since the nature of wave-

vector kb inside the potential depends on the coupling
parameter we note that for 0 < E/V0 < 1 and interme-
diate values of θ new zones with total reflection of the
wave-function appears as θ is tuned from graphene-like
to dice, indicating the strong relation between the trans-
mission properties and both location and distortion of
the energy band inside the gap. However, the transmis-
sion probabilities are much less affected by an increase of
the number of barriers as θ increases.

We also discussed the tunneling properties of electrons
in α − T3 lattices when they traverse a region of space
where the spectrum exhibits a finite energy gap. In the
case we considered here, the gap is induced by inclusion of
a symmetry-breaking term Û1, rendering the sub-lattice
C non-equivalent. The consequence is the opening of a
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gap in the energy spectrum. We have shown that the
existence of an energy gap prevents the KT and SKT
from taking place for all values of θ, and the transmis-
sion for perpendicular or near-perpendicular waves are
less than 1, unlike the transmission through a potential
barrier. Moreover, at larger values of incident energy we
noted a broadening of the transmission curves as θ in-
creases. For dice the transmission peaks are smoothed
as incident energy increases, and at large incident angles
the transmission is perfect as a consequence of degenerate
states at large values of ky, as observed in the potential

barrier case when the Û1 term was considered.
The results obtained in this work are useful to un-

derstand the effects in the transmission properties due
to small deviations in the equivalence between the three
sublattices in α − T3 lattices, as well as the role of lo-
cation and dispersion of the band-inside the gap in the

occurrence of KT and SKT. We discussed a versatile en-
gineering to control and prevent the SKT and KT, which
is a necessary condition for nanoelectronic applications,
by changing the symmetry between the atomic sites of
the crystal and consequently, controlling the dispersion
of the middle band.
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