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The crystallographic structure and the distribution of orientations of molecular ions are studied near
the surface in an orientationally disordered crystal with the use of a Green-function formalism. The
orientational degrees of freedom are treated by means of symmetry-adapted functions of angular coordi-
nates. The structure of the (001) surface of KCN in its cubic fcc phase is then predicted using the exist-
ing data on the interaction of the ions K* and CN ™. A local antiferroelectric and antiferroelastic order
is shown to exist in the surface region. The magnitude of the order and the spatial extent of the ordered
region increase as the temperature approaches the point of the phase transition to the ordered phase.
The influence of the external electric field on the structure of the surface is predicted.

I. INTRODUCTION

The structure and the dynamics of crystal surfaces
have been subject recently to numerous experimental
and theoretical studies. In particular, the diffraction
techniques: low-energy electron diffraction, helium
diffraction, neutron and x-ray scattering at grazing an-
gles, as well as the recently developed tunneling micros-
copy techniques allow for a rather exact determination of
the arrangement of atoms in the surface regions.'

The main interest in the structure and the dynamics of
surface now concerns the metallic, semiconducting, and
simple ionic materials first because of their relative facili-
ty to prepare well-characterized surfaces and, second, be-
cause of their technological applications. Among the ma-
terials of more complex structure the ferroelectrics turn
out to be of the greatest interest with respect to surface
effects. It has been established that the surfaces play an
important role in the onset of the spontaneous polariza-
tion,? especially when the crystal has the form of a thin
layer. Only few works have appeared on the surfaces in
crystals possessing orientational degrees of freedom® and
the majority of them concern the orientationally ordered
phases.

It is generally accepted that the surfaces of ionic crys-
tals are smooth and the surfaces of orientationally disor-
dered crystals built up of neutral molecules called molec-
ular crystals are rough. It is, therefore, interesting to
study surfaces in ionic crystals, in which at least the ions
of one kind are polyatomic and show an orientational dis-
order in some range of temperatures. The tendencies to
the smoothness and to the roughness are then expected to
influence the real structure of such surfaces.

In the present paper a method of the theoretical treat-
ment of surfaces in ionic crystals exhibiting an orienta-
tional disorder of one type of the ions, practically almost
always the anions, is developed under the assumption
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that the surface is smooth from the point of view of
translational degrees of freedom. This means that the
ions, no matter whether monatomic or orientationally
disordered polyatomic, are supposed to occupy well-
defined sites at all the crystallographic planes, the top-
most plane of the crystal with surface included. Thus,
the effect of the surface on the structure of the system can
be described in terms of the translational displacements
of the ions’ centers of mass with respect to their positions
peculiar to the bulk crystal and in terms of the distortions
of the distribution of the orientational probability at the
sites occupied by the polyatomic ions. The physical
reason for the displacements and the distortions to occur
lies in the geometry of the crystal with surface. Indeed,
all the forces exerted on a given ion by the other ions
must sum to zero in the infinite crystal in equilibrium.
Near to the surface, however, the forces become unbal-
anced due to the lack of the ions beyond the surface
plane. Analogously, the lack of the ions beyond the sur-
face modifies the local orientational potential acting on
the polyatomic ions compared to the potential in the
bulk. The modification of the potential is a thermo-
dynamical force conjugate to the distribution of orienta-
tions. All the mentioned kinds of forces can be calculated
from the microscopic interatomic potentials. Within a
harmonic or a pseudoharmonic approximation the struc-
ture of the crystal-with-surface is defined by the linear re-
action of the truncated crystal to the above forces. The
structure is then called relaxed and the phenomenon sur-
face relaxation.! When the forces are very strong, non-
linear or anharmonic reaction has to be taken into ac-
count, which can in some cases produce a reconstruction
of the surface.! The equilibrium structure of the topmost
lattice plane is then different from that of the crystallo-
graphic planes in the bulk, e.g., it has a different spatial
periodicity. In the present work we calculate the expect-
ed surface relaxation of the translational and orientation-
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al degrees of freedom within a pseudoharmonic approxi-
mation.

There exist several kinds of theoretical treatment of the
structure and dynamics of solid surfaces. In the slab-
calculation method® one finds the equilibrium configura-
tion of atoms in a model crystal consisting of a finite
number of atomic planes parallel to the surface under
question. The vibrational frequencies of such a layer are
then determined by the diagonalization of the corre-
sponding dynamical matrix which is a function of the
wave vector parallel to the surface and whose dimension
depends on the thickness of the slab. This technique is
especially well adapted to the cases where the surface
effects do not penetrate very deep into the crystal. In
contrast to that, the Green-function technique allows one
to treat semi-infinite crystals and it is usually a question
of approximation how deep perturbations are taken into
account.* In both above-mentioned techniques the
thermal effects are accounted for by some statistical
averaging or, more often, by some phenomenological
temperature dependence of the interaction parameters.
Computer simulations provide a more realistic descrip-
tion of the atomic motions near to the surface.’

In the present paper the Green-function technique is
employed to predict equilibrium structure of the orienta-
tionally disordered ionic crystals with surfaces. The
choice of the method stems from the fact that these crys-
tals usually undergo a disorder-order phase transition
and, therefore, the surface effects are supposed to extend
deep into the bulk at temperatures close to the ordering
temperature. Formally, the Green function is in our case
a semi-infinite matrix inverse to the matrix, which defines
the quadratic form of the Landau free energy of the crys-
tal with the surface expressed as a function of the vari-
ables of interest, i.e., the translational displacements and
the distortions of the orientational distribution. There-
fore, the Green function defines the linear reaction of the
semi-infinite crystal to the external forces, also the men-
tioned forces related with the truncation of the crystal.
The elements of the Green-function matrix are calculated
here on the basis of the surface and interface response
theory due to Dobrzynski® with some modifications for
long-range interactions.”®

As a real example we select the orientationally disor-
dered cubic phase of KCN since the microscopic interac-
tions and the local properties of the orientational disor-
der are already well established in the bulk crystal.” !
The CN™ ion is of particular interest since it possesses at
the same time an electric dipole and a quadrupole mo-
ment.

In Sec. IT we present the construction of the free-
energy matrix for the semi-infinite crystal using micro-
scopic quantities and their bulk averages. The most im-
portant element of the theory is the replacement of the
angular variables of the reorienting molecules by corre-
sponding symmetry-adapted multipole functions.'> This
has been shown to make the problem of large angle rota-
tional motions tractable. The predicted structure is then
obtained with the use of the corresponding Green func-
tion. The specific form of the free-energy matrix for the
(001) surface of KCN is given in Sec. III. Advantage is
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taken of the symmetry of the problem to reduce the
number of coefficients. The numerical values of the
coefficients are obtained using the existing experimental
and theoretical data on the interactions of the ions K™
and CN~. The corresponding profiles of translational
displacements and the distortions of the orientational
probability distribution near to the (001) surface of KCN
are given in Sec. IV. The structure turns out locally anti-
ferroelectric with the polarization vector parallel to the
surface normal and antiferroelastic. The influence of the
external electric field parallel and perpendicular to the
surface is also presented. The range of applicability and
the possible differences between the predictions of the
present theory and the real structure are discussed in Sec.
V.

II. GREEN-FUNCTION DESCRIPTION
OF THE SURFACES IN ORIENTATIONALLY
DISORDERED CRYSTALS

Any crystal with a surface cleaved in a given crystallo-
graphic orientation can be regarded as a semi-infinite suc-
cession of mutually parallel atomic or ionic lattice planes.
In the bulk or far enough from the surface the lattice
planes are identical and equidistant so that the three-
dimensional spatial periodicity of the crystal is ensured.
The truncation of the series of the lattice planes at the
surface lifts the periodicity in the direction perpendicular
to the surface. At the same time, the forces acting on the
individual atoms, which all vanish in the equilibrium
state of the bulk material, become noncompensated in the
vicinity of the surface. As a result, the mutual distances
of the lattice planes undergo a variation, usually called
surface relaxation. For the same reason the arrangement
of the atoms or ions within the planes close to the surface
also change giving rise to so-called surface reconstruc-
tion. The extent of the phenomena depends on the mag-
nitude of the forces with respect to the restoring forces
tending to enhance the bulk structure. Thanks to the di-
periodicity of the system in the directions parallel to the
surface all the variations of the structure can be charac-
terized by the two-dimensional wave vector k| from the
corresponding two-dimensional Brillouin zone. In what
follows we shall concentrate on the variations of the
structure corresponding to k=0, first because the forces
arising at the (001) surface of the KCN crystal taken as
the example are also characterized by k =0 and, second-
ly, because the Green-function technique for this wave
vector requires a special treatment of variables.

A. The variables

Let the lattice planes making up the crystal with sur-
face consist of cations and anions. [In the rocksalt struc-
ture of KCN this is the case for the (001) surface and not,
e.g., for the (111) surface).] At k=0 the displacements
of cations u*(/) and anions u™ (/) are identical at all the
equivalent sites belonging to the same lattice plane .
Since a translation of all the ions by the same vector costs
no energy, every Hamiltonian involving the variables
ut (/) and u™ (/) has one vanishing eigenvalue and there-
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fore the corresponding Green function does not exist.’
To avoid this difficulty it is convenient to introduce the
new variables

x(D=1u" U+ D+u (U+D—u (D—u" (D] (la)
and
y(D=1[u"(Hh—u"(D]. (1b)

The variable x(/) corresponds to the local strain. In case
of the z axis perpendicular to the surface one has
x (=€ 3(Da, x,(1)=€y(1)a, and x;(I)=¢€;5(])a, where a
is the distance between the lattice planes in the bulk.
When the masses of anions and cations are equal the
Fourier transform of the variables y(/) are directly equal
to the displacements involved in the optical phonons
propagating perpendicular to the surface.

The rotational degrees of freedom in the orientational-
ly disordered crystals are accounted for with the use of
the symmetry-adapted functions.!' '3 The orientational
disorder is then characterized by the single-particle angu-
lar distribution Py(Q),

PO(Q)=ZO_'exp[—BW§(Q)] R (2)
where

Z, [ exp[—pWE(Q)1dQ ,

(3)
B=1/T .

Q stands for the polar angles (6,¢) which specify the
orientation of the linear CN~ ion. WZX(Q) is the
effective, single-particle potential which in the bulk ma-
terial possesses the full symmetry of the site point group.
When an external field E, is applied so that the symmetry
of the site is broken the local potential changes,

wRkQ)=wgQ)— 3 ELYE(Q) 4)
Ap

and, consequently, the single-particle orientational distri-
bution becomes to the first order in E¥,

P(Q)=Py(Q) [1+B8 ELYR(Q) | . (5)
Ap

Here Y%(Q) denote linear combinations of spherical har-
monics which have the full symmetry of the reorienting
molecule but a lower symmetry than is required by the
site point group in the bulk of the crystal. In the case of
CN~ molecular ions the field Ef (u=1,2,3) stands for
any interaction enhancing a head tail order, i.e., it is a
field conjugate to the dipolar orientational distribution.
It encompasses the local electric field but also some
short-range forces which distinguish both ends of the
anion. Similarly, the field E4 (u=1,...,5) enhances a
quadrupolar ordering of the anions. It will be shown that
the truncation of the KCN crystal produces both kinds of
fields.

When considering the structural distortions caused by
the surface and corresponding to k =0 one assumes that
the modification of the orientational distribution Y4 (Q)
is identical at all the equivalent sites belonging to the
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same lattice plane / and depends on the label / only:
YR(Q))=Y4(]). Taking into account all the above-
defined variables and assuming that only the anions have
orientational degrees of freedom of the dipolar and qua-
drupolar type, one can characterize the state of the crys-
tal by the following 14-component vector w(/) of general-
ized displacements ascribed to every lattice plane
I=1,...,0,

w()=(x(]),y(D),P(]),Y(])) . (6)

One should remark that the displacement components

x(I) and y(/) have the dimension of length, while the

orientational variables P(/) and Y(/) are dimensionless.
To avoid too many indices we have defined

P(h=Y{;(D), i=1,...,3 (7a)
which specify the dipolar orientations,

Y.(H=Y3,(D), i=12 (7b)
which specify the quadrupolar orientation of the E, sym-
metry, and

Y=Y}, oD, i=3,...,5 (7c)

which specify the quadrupolar orientations of the T,
symmetry. The symmetry-adapted harmonics Y/},
a=u,e,f are explicitly given in Ref. 11. In Cartesian
coordinates, these functions read

L =(3/4m)" %,

¥, =(3/4m)"%y | (7a’)
3=(3/4m)'"z ,
1 =(5/16m)""%(3z— 1),
(76"
§,=(15/16m)"2(x2—p?) ,
Y{,=(15/4m)"?xy ,
Y{,=(15/4m)"?xz , (7c")

Y{,=(15/4m)" %z ,

where x =sinf cos¢, y =sinf sing, z =cos¢.

B. The equilibrium structure of the crystal with surface

The free energy per two-dimensional unit cell of the
crystal with surface can be generally written as follows:

F({w(D)},T)=Fy(T)+1 3 (WKL I5T){w1")
LI'=1

©

— (W, ®)

=1

where (w([)) are the thermal averages of the generalized
displacement vector w(/) [Eq. (6)]. h(/,!’;T) is a semi-
infinite temperature-dependent matrix whose elements
will be defined in Sec. II for the KCN (001) surface. f(/)
are the forces arising as the result of the truncation of the
crystal or the external forces applied to the system. The
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free energy [Eq. (8)] is expanded to the second order in
w([) only and does not account for nonlinear phenomena.

The structure of the crystal with surface is defined by
the minimum of the free energy with respect to the vari-
ables w(l),

h(Z, 1")w()—f(1)=0 . 9)

The formal solution of the system of equations [Eq. (9)]

w()= I 8,1l T)f1") (10)

I'=1

involves the static Green function g{!’,!/’; T') defined by

S gL TR T)=18, . , (11)
I"=1

where T is a 14 X 14 unit matrix.

The scheme of the determination of the surface struc-
ture presented in this section is a discrete version of the
continuum theory due to Kroll and Lipowsky'* and Til-
ley and Zeks." In those theories the free-energy matrix
h(I'l’; T) is represented by a squared gradient term (V7)?
of the order parameter 7. Such an approximation would
correspond in the present case to a one-component vector
w(l)=n(l) and to only nearest-neighbor interactions.
The differential equations of the continuum theory are
now replaced by the difference equations [Eq. (9)].

III. THE FREE ENERGY FOR THE (001)
SURFACE OF THE CUBIC KCN CRYSTAL

A. Symmetry considerations

By cleaving a rocksalt crystal perpendicular to the
(001) direction one obtains a system of the symmetry of
the two-dimensional space group p4mm.'® At k=0 all
the changes of the structure expressed by nonzero values
of the variables given in Eq. (6) can be classified accord-
ing to the irreducible representations of the point group
4mm.

The translational displacements x;(/), y;(/), the polar-
ization P;(/), and the quadrupole variable Y, (/) show the
full symmetry 4mm and thus transform according to the
representation A4,. The transverse translations x;(/),
y;(1), and the polarization P;(I) for i=1,2 as well as the
quadrupole distortions Y5 and Y, (in this order) consti-
tute the basis functions of the two-dimensional represen-
tation E. The remaining symmetry-adapted harmonics
Y, and Y; belong to the representations B, and B,, re-
spectively. From this symmetry analysis it follows that
the 14X 14 matrices h(/,/’;T) decouple into a block-
diagonal form, every block corresponding to one irreduc-
ible representation. Moreover, the block of the symmetry
E also consists of two decoupled identical 4 X4 blocks
corresponding to every basis function of this representa-
tion.

The forces arising as a result of the truncation of the
ideal (001) surface in this structure have all the full sym-
metry of the group 4mm, i.e., correspond to the represen-
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tation 4,. This means that without external fields the
vector f(I) of Eq. (8) has only nonvanishing components
conjugated to the variables x3(/), y;(I), P5(I), and Y,(1).
Qualitatively, therefore, the clean surface (001) of KCN
and of all isostructural materials can show a longitudinal
relaxation expressed by x;(/), a 1X 1 reconstruction y;(I)
consisting of a mutual shift of the cations and anions per-
pendicular to the surface, a perpendicular orientational
polarization P;(l) and, finally, a variation of the orienta-
tional distribution of the quadrupoles. The latter varia-
tion has a cylindrical symmetry with respect to the z axis.

An external electric field perpendicular to the surface
will produce an l-independent force acting on y;(/) and
P;(1). An electric field parallel to the surface will analo-
gously produce an l-independent force acting on y,(/),
y,(1), P,(I), and P,(l), thus revealing the features of the
corresponding Green function [Eq. (11)].

The magnitude of the above-mentioned distortions is
determined by the numerical values of the elements of the
matrix h(/,/’; T) and of the forces f(!).

B. Numerical values of the free-energy coefficients

The microscopic parameters of the interionic interac-
tions in the KCN bulk crystal have been obtained in Ref.
11. They can be immediately related to the coefficients of
the matrix h(l,!’;T).

The 4X4 block of the 4, symmetry has the following

general form:

af! 0 —D 24
- 0 of —R O
hLED=|_, _p 54 0| (12a)
24 0 0 J&
af! 0 D 24
. 0 off —D —24
hy(LIALT)=| o _p 57 0 | (12b)
0 24 0o J{
h,(LI—1,T)=hT(,I+1;T), (12¢)

where R=2D +4E. All the other elements of the matrix
h ,(1,I';T) vanish.
The 4X4 block corresponding to the transverse vari-
ables x (1), y, (1), P,(I), and Y(I) has a similar form,
af 0 —E —B
0 of —R O

hp(,1;T)= “E —R 8 o0 |’ (13a)
-B 0 o JE
af 0 E -B
- 0 of —E B
he(LI+LT)=| o _ 55 o | (13b)
0 —B 0 JE
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hp(1,1—1;T)=hL(,I+1;T) . (13¢)
Finally

R L1 T)=J 58 +J 18y g1 +8 ) (14)
for A=B,,B,.

Following the convention applied in Refs. 10 and 11
we express the free energy per two-dimensional unit cell
in units of K. Correspondingly in Egs. (12)-(14), the
coefficients a?‘ and a),}»‘ have the units K/AZ, the
coefficients 6% and J} have the units K, and the
coefficients 4, R, B, D, and E the units K/A.

The rotation-translation coupling coefficients A4, B, D,
and E have been evaluated in Ref. 11. The parameters
a*E wME i =1,2 characterize the bare translational in-
teractions. In the present calculations they have been ex-
tracted from the “bare” dispersion relations fitted to the
experimental phonon frequencies by Strauch, Schroder,
and Bauerfeind.!” To achieve this extraction the follow-
ing reasoning has been applied. The bare dispersion
curves result from an interplay between the masses of the
K™ and CN~ ions and some effective force constants en-
compassing the polarizability of the ions. However, the
shell-model calculations of Strauch, Schroder, and Bauer-
feind contains all kinds of polarizability, the orientational
polarizability of the disordered polar anions CN ™ includ-
ed, whereas in the present work the orientational interac-
tions of the molecular permanent dipoles are treated sep-
arately. Consequently, the force constants ag'f, af'E,
od"E, o{"E used here were deduced under the assumption
that the “bare” phonon frequencies given by Strauch,
Schroder, and Bauerfeind result from the coupling of the
really bare phonons with the dipoles whose interaction is
given by 85"£ and 8{*£ and whose coupling to the phonon
coordinates is determined by the coefficients D and E.
This procedure has shown that af and of are af! are
negligibly small compared to af, o, and o (see Table I),
which means that the transverse- and the longitudinal-
acoustic phonons show practically no spatial dispersion.
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The diagonal terms of the purely orientational part of
the free-energy matrix contribute to the entropy of the
crystal and are temperature-dependent.!* One has

- T
JALL Ty =T+ ———+C3 (), (15)
0 O (Y, Py ™

SMILT) =8+ —L s (D) (16)
o\Esty 0 ([P}\(l)]2> PA )

where Jj and &) are the contributions to the direct
quadrupole-quadrupole and dipole-dipole interactions
coming from the anions located in the same lattice plane.
In the bulk the self-interaction terms Cf,k and C,’,A are

equal for every / and for every symmetry-adapted func-
tion of a given rank and belonging to the same irreducible
representation of the site group m3m of the position oc-
cupied by the anion. When this symmetry is lifted by the
truncation of the surface the self-interaction terms be-
come [/ dependent and are equal for the symmetry-
adapted functions belonging to the same irreducible rep-
resentation of the group 4mm. Consequently, in our case
the self-interactions have different values for (P,,P,), P;,
Y,,Y,,Y;,(Ys,Y,). These dependencies have been indi-
cated in formulas (15) and (16). The same symmetry
properties pertain to the one-particle susceptibilities
([Y:(D]*) and ([P;(1)]*), which are the corresponding
thermal averages calculated with the lattice field with
subtracted self-interaction terms (see Ref. 13 for a de-
tailed discussion).

The terms J ’l\ and 8? are the direct quadrupole-
quadrupole and dipole-dipole interactions of the anions
belonging to the neighboring lattice planes. In the
present work only nearest-neighbor quadrupole-
quadrupole interactions have been taken into account,
which leads to the following values:

-

TABLE I. Parameters entering the free-energy matrix h(/,/’;T) [Egs. (12), (13), and (14)] for / and I’

far from the surface. (a) T=160 K, (b) T=300 K.

o af of of ag o
(K/A?) (K/A?) (K/A?) (K/A?) (K/A?) (K/A?)
21054.7 —927.4 98231.4 33708.5 2349.3 —246.6

of wf 56 5! 5 8F
(K/A?) (K/A?) (K) (K) (K) (K)
44563.5 —1861.6 782.7 —62.1 —539.0 —31.0
Q*/a’ C,v, C3, vy, C}

(K) (K) (K) (K)

154.83 1536.2 928.1 2820.0
(Y, ((Y345)%) (P?)
0.116* 0.096° 0.058* 0.068° 4
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TABLE II. The surface forces conjugate to the variables x3(1), P;(1), and Y,(1) calculated with the

microscopic interaction parameter from Ref. 11.

BM*® VAV Ce Sum
f,‘3 (K/A) 11114.2 —1659.6 —2358.0 7096.7
fp3 (K) 1295.3 —178.7 187.3 1303.9
fy1 (K) 2858.7 —314.6 —5921.8 —3404.7
“Born-Mayer.
van der Waals.
°Coulomb.
FA— 97Q? JA—_ 397Q? IV. STRUCTURE OF THE (001) IDEAL
0" §v/245° ! 40V 2q5 SURFACE OF KCN
-B, _ _ 167Q> 8, _ 117Q> The Green function ‘g’(l,l.’;T) [Egs. (10) and (11)] ht'IS
Jo =— 57245 ° Jio = 20V 22" the same symmetry properties as the free-energy matrix
a a 17 h(l,1’;T). Therefore, the variables transforming accord-
=B, _ 197Q? B, 6mQ? ing to different irreducible representation§ Ay, B, B,,
0 T 558 0 U1 T - 5245 and E of the group p4mm can be treated independently.
To evaluate the Green function for every block we use
FE—_ 67rQ2 E_ 131rQ2 the surface response theory due to Dobrzynski.6 The first

0 5v2¢5 7 T 10v2e’

where Q is the electric quadrupole constant of the anion.

Because of the long range of the dipole-dipole interac-

tions the dipolar energy is shape dependent.!® In the
present calculations we have adopted a geometry of a
semi-infinite slab, in which the lattice sums have been
first taken over the dipoles lying within lattice planes.
Such a summation is known to be unambiguous.'” The
interactions between parallel lattice planes then turn out
to decrease with the planes’ separation faster than ex-
ponentially.” Therefore, the limitation to first neighbor-
ing planes implicit in Egs. (12) and (13) does not intro-
duce a large error.
., All the coefficients needed to construct the matrix
h(1,I',T) for 1,l' far from the surface are collected in
Table I. The quadrupole constant Q has been put
Q0=0.6Q,, where Q, is the quadrupole constant of the
free CN™ anion. As has been discussed in Ref. 11, the
magnitude of the quadrupole moment of the CN ™ in the
bulk (and also at the surface) is not well known. Very
likely it depends on the instantaneous orientation of the
ion with respect to its crystalline surrounding. The value
Q0 =0.8Q, used in Ref. 11 seems to be too high compared
to other interaction parameters applied here, since it
leads to an instability of the lattice at k%0, contrary to
the experimental instability at k=0.

The values of the forces f(I) are opposite to the first
derivatives of the lattice energy with respect to the vari-
ables x3(/), y;(1), P5(l), and Y,(l), the other derivatives
being zero by symmetry. By using the microscopic in-
teraction parameters from Ref. 11 and applying the ap-
proximations used above, one obtains significant values
for I =1 only. The microscopic forces being central, the
value of f », vanishes. The remaining forces are gathered

in Table II, where contributions from different kinds of
interactions are given separately.

step then is the bulk Green function. The explicit formula
for the one-dimensional blocks B, and B, is analogous to
that used by Mazur and Maradudin?! and Zielifiski,?

[I=r|+1
1 Z)
G, (Ll')=———,
A Jb oz2—1
(18)
A=B,B, ,
where
—r =02 ifr >1
= —r— (2 =D"2 ifr, <—1 (19)
while
r=J5 204 . (20)

In the case of the four-dimensional blocks 4, and E
the formula for the bulk Green function is analogous to
that used in Ref. 22. To get it one passes to the Fourier
transform

Bk= S W1+ADe*sa 1)
Al=—

Replacing e*2%@ by z one obtains h,(k)=h,(z). The
Green function G A’ap(l ,1') then reads

TABLE III. The parameters z, of formulas (18) and (22) for
the (001) surface of KCN at 7' =300 K.

A 4, B, B, E
z —0.499 0.023
0.207 —0.268 0.061 0.250—i0.309
—0.058 0.250+i0.309




4812

Akypa(z,, )Z,{_I M

1 M
G, LI =—
Aop HA n§1 (22_1)

—x

(z, =2z, Nz, — 2, 1)

m=1
m¥#n
(22)
where z,:[z,| <1 are the roots of the equation

det[HA(z)]=O. H, is the coefficient of the highest power
of z in the function det[h,(z)], 4, ,, is the cofactor of
the matrix element h, ,,(z). For more details of this for-
mula see Ref. 22. In our case M =3 for A= A4, and A=E.
The quantities z, which depend on A and on temperature
define the rate of the decrease in the distortions caused by
a local force with the distance |/ —1’|. The values of the
parameters z, at T =300 K obtained with parameters of
Table I are given in Table III.

The Green function for the system with surfaces is
determined by the bulk Green function and by a cleavage
operator®?? which accounts for the changes of the in-
teraction parameters near to the surface. As a first ap-
proximation we have assumed that the self-interaction C3
and the orientational susceptibilities are not affected by
the surface. The resulting profiles of x,(/) and y,(/) ac-
cording to formula (10) are shown in Fig. 1 and the
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FIG. 1. Perpendicular surface relaxation at the (001) surface
of KCN at T=300 K. Open circles (O) represent the relative
displacement x;(/) [see Eq. (1a)] of the consecutive neighboring
lattice planes (001) in the direction perpendicular to the surface.
Solid circles (@) represent the relative displacements y;(/) of
the cations K * with respect to the anions CN~ in the direction
perpendicular to the surface within the consecutive lattice
planes /. The lines are to guide the eye.
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FIG. 2. Profiles of the distortions of the orientational distri-
bution at the (001) surface of KCN at T =300 K. Open boxes
(O) represent the orientational variable P;(I) [see Egs. (7a) and
(7a’)] proportional to the polarization perpendicular to the sur-
face at the consecutive lattice planes [. Solid boxes (H)
represent the orientational variable Y (/) [see Egs. (7b) and
(7b")], which describes the increase in the probability of the
orientation of the long axis of the anion CN™ in the direction
(001).
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FIG. 3. Same as in Fig. 1 but at T =160 K.
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profiles of the orientational variables P;(/) and Y,(/) in
Fig. 2. In similarity to atomic crystals the predicted sur-
face relaxation of the (001) surface of KCN increases the
distance between the two first lattice planes: x;(1)>0.
Then an oscillating behavior can be seen. This can be
called local antiferroelasticity.

The negative value of Y,(1) is the result of the prevail-
ing electrostatic forces between the cations and the nega-
tive end charges of the CN ™~ anion, which tend to keep
the anion oriented parallel to the surface in opposition to
the repulsive Born-Mayer forces (see Table II). The dis-
tortion of the orientational distribution at /=1 then is an
oblate ellipsoid.

The permanent dipoles of the CN ™ ions have a tenden-
cy to align perpendicular to the surface thus transforming
the neutral lattice plane into a double electrostatic layer.
It is seen from Fig. 2 that the arrangement of the dipoles
form a local antiferroelectric structure. This property is
to be related to the reactivity of the surface with polar
molecules, e.g., H,O.

To illustrate the influence of the temperature on the
structure of the surface the same profiles of x;(/), y;(I),
P;(1), and Y,(I) are plotted in Figs. 3 and 4 at T=160 K,
i.e., near to the bulk phase transition. At this tempera-
turez, = —0.663, zA2=O.377, and Z4,= —0.086.

One can notice an important increase in x;(1) which
becomes half as large as the bulk lattice plane separation
a=3.26 A. This indicates that this surface may undergo
a first-order relaxation phase transition’ within the disor-
dered bulk phase.

Figures 5 and 6 show the influence of an external elec-
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FIG. 4. Same as in Fig. 2 but at T =160 K.
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FJG. 5. Same as in Fig. 3 but under the electric field E =3000
K/A perpendicular to the surface.
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F}G. 6. Same as in Fig. 4 but under the electric field E = 3000
K/A perpendicular to the surface.
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tric field applied perpendicular to the surface at T =160
K. The value of the external field has been chosen
E =3000 K/A to be comparable with the local fields act-
ing on the ions (see Table II). The external field which is
assumed homogeneous, i.e., / independent, couples linear-
ly to the variable y;(/) and P;(l). The latter coupling is
related with the electric dipole of the anion CN~ only
and not with the steric forces distinguishing its both ends.
With the value of the permanent dipole 0.0776e A the
field coupled to the variable P(/) and produced by the
external electric field E =3000 K/A is 476 K/AZ.

Since no microscopic forces of symmetry E arise at the
ideal (001) surface of KCN there is no / dependence of
the corresponding variables predicted without external
influences. Figures 7 and 8 show the profiles of x,(/),
Y](g), P,(]), and Ys(I) under the electric field E = 3000
K/A parallel to direction (100) at 7"=300 K. Having no
exact data on the self-interactions Cy and Cp as well as
on the orientational susceptibilities near to the surface we
have illustrated the influence of their changes by making
hg33(1,1) and hg 44(1,1) 20% lower than the correspond-
ing matrix elements in the bulk. The resulting profiles
are given in Figs. 9 and 10. It should be noted that the
changes of the interaction parameters near the surface
may lead to a surface reconstruction phase transition.
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FIG. 7. Parallel surface relaxation at the (001) surface of
KCN at T =300 K and under electric field E =3000 K/A in the
direction (100). Open circles (O ) represent the relative displace-
ments x (/) [see Eq. (1a)] of the consecutive neighboring lattice
planes / in the direction (100) parallel to the surface. Solid cir-
cles (@) represent the relative displacement y,(/) [see Eq. (1b)]
of the cation K* with respect to the anion CN ™ in the direction
(100) within the consecutive lattice planes /.
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FIG. 8. Profiles of the orientational variables P,(/) and Ys(/)
at the (001) surface of KCN at 77=300 K and under electric
field E=3000 K/A in the direction (100). Open boxes (O)
represent the orientational variable P, (/) [see Egs. (7a) and (7a")]
proportional to the polarization in the direction (100) parallel to
the surface within consecutive lattice planes /. Solid boxes (H)
represent the orientational variable Ys(/) [see Egs. (7c) and
(7¢')] which describes the increase in the orientation probability
in the direction (011) for the consecutive lattice planes /.
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FIG. 9. Same as in Fig. 7 but with the surface matrix ele-
ments hg 33(1,1) and hg44(1,1) [see Eq. (13a)] 20% smaller than
in the bulk.
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FIG. 10. Same as in Fig. 8 but with the surface matrix ele-
ments hy33(1,1) and hg4(1,1) [see Eq. (13a)] 20% smaller than
in the bulk.

V. DISCUSSION

The above analysis is an attempt to predict theoretical-
ly the structure and the orientational disorder of an ideal
surface of the orientationally disordered crystal of KCN
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on the basis of the microscopic parameters determined by

experiments and model calculations for the bulk material.

Whereas such analyses are known for ordered crystals

with the use of the lattice energy calculations® the present

theory requires rather the lattice free energy [Eq. (8)].

The neglect of the higher-order terms in w(/) in Eq. (8)

makes the present analysis valuable for unreconstructed

surface under relatively small forces f(/). In the case of
strongly reconstructed surfaces only the asymptotic be-
havior of the variables w(/) relatively far from the surface
is predicted correctly and determined by the parameters z
from the Table III. No instabilities leading to a recon-
struction have been obtained here, but this is liable to be
changed when more exact data on the self-interactions
and the one-particle susceptibilities of the surface anions
were known. The experimental data on the real structure
of the (001) surface of the cubic KCN are not known for
the moment so that an immediate comparison with ex-
periment cannot be made. The present results are, never-
theless, also interesting as a basic step towards the crystal
growth theory and the theory of chemical reactivity of
the surface.
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