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We theoretically examine behavior of superconductivity at parallel interfaces separating the do-
mains of another dominant collective excitation, such as charge density waves or spin density waves.
Due to their competitive coupling in a two-component Ginzburg-Landau model, suppression of the
dominant order parameter at the interfacial planes allows for nucleation of the (hidden) supercon-
ducting order parameter at those planes. In such a case, we demonstrate how the number of the
parallel interfacial planes and the distance between them are linked to the number and the size of the
emerging superconducting gaps in the system, as well as the versatility and temperature evolution
of the possible superconducting phases. These findings bear relevance to a broad selection of known
layered superconducting materials, as well as to further design of artificial (e.g. oxide) superlat-
tices, where the interplay between competing order parameters paves the way towards otherwise
unattainable superconducting states, some with enhanced superconducting critical temperature.
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I. INTRODUCTION

Controlling and enhancing the thresholds of supercon-
ducting (SC) phase have been challenging physicists since
the very discovery of superconductivity. Over the past
decades, different approaches have been proposed to en-
hance the critical temperature Tc of different supercon-
ducting materials by, for instance, reducing the sample
dimensionality1–4, curving its surface5, applying shear
strain effects6 or by imposing hydrostatic pressure7–10.
Understanding and tailoring the mechanism behind the
unconventional high-Tc superconductivity, exhibited by
cuprates and iron pnictides, for example, may provide
additional pathways to enhance the temperature domain
of superconducting phase. In these materials, the high
critical temperature is intimately connected with the
interplay between different collective quantum states,
namely charge and spin density waves and the super-
conducting state11–14. These additional ordered quan-
tum phases may suppress superconductivity by compet-
ing for the same electrons wrapped in the Cooper-pairing
mechanism, but may also assist Cooper-pairing through
e.g. coupling between charge ordered states and the
crystal lattice vibrations, enhancing the superconduct-
ing state13. In fact, unlike conventional superconductiv-
ity, where the pairing mechanism is mediated solely by
the phonon interaction, in high-Tc superconductors the
superconducting ground state is formed in presence of
strong fluctuations of the charge/spin ordered state, as
discussed in Ref. 15.

The coexistence of superconductivity and other collec-
tive states has been experimentally observed in several
materials, such as in Na(Fe,Co)As14, in the underdoped
Ba(Fe0.953Co0.047)2As2 compound16, in (Ba,K)Fe2As2

systems17, in LaPt2(Si,Ge)2
18,19, La2xSrxCuO4

20,21 in
the quasi-one-dimensional material HfTe3

22, in Pd-
doped 2H-TaSe2

23, 2H-TaSe2 under pressure24, in NbSe2

films25, etc. Besides the bulk layered materials, the coex-
istance/competition of quantum phases in the context of
superconductivity is highly relevant to artificially com-
posed superlattices, be it thin films26,27, consecutive ox-
ide interfaces28,29 or van der Waals heterostructures30,31.
Even within selected monolayer 2D materials (especially
transition-metal dichalcogenides (TMDs))32,33, competi-
tion of quantum phases is expected - strongly depen-
dent on the sample thickness34. In that context, in a
recent work a two-component Ginzburg-Landay (GL) ap-
proach along with an extension of McMillan theory has
been used to describe the interplay between charge den-
sity waves (CDW) and superconducting phases in layered
TMDs35. Using a similar GL model, a more general anal-
ysis was provided by Moor et al.36 to describe the rise of
interface superconductivity as a hidden order parameter
only at the interface between two separate regions where
another collective phenomenon, such as charge/spin den-
sity wave, is dominant. However, a model where super-
conductivity rises at several parallel interfaces, which is
a case of practical interest,28–31 requires an extension of
the single interface model developed in Ref. [36] that
has yet to be properly developed, in order to allow one
to investigate the role of interface coupling on parame-
ters such as superconducting critical temperatures and
Cooper pair densities at the interfaces.

In this paper, motivated by many (bulk or artificial)
layered systems where competition of superconductivity
with other quantum orders is relevant, we apply the two-
component GL model to address physics stemming from
the proximity of parallel material interfaces. We inves-
tigate how the controllable geometric parameters of the
system, such as the number of parallel interfaces and the
distance between them, can be used to tune the possible
superconducting states and the overall critical tempera-
ture of interface superconductivity competing with an-
other bulk order. Our results demonstrate the existence
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of “bands” of emerging superconducting gaps (i.e. range
of achievable critical temperatures) as the number of par-
allel interfaces (translating to the thickness of the overall
system) is increased. Furthermore, we establish thresh-
olds for the constructive/destructive crosstalk of super-
conducting order between the adjacent interfaces, and
show different states emerging when manipulating the
distance between interfaces, each with different tempera-
ture dependence and different contribution to the overall
critical temperature of the system as a whole.

The paper is organized as follows. In Sec. II, we
present the theoretical framework for the study of inter-
face superconductivity in a system with competing den-
sity wave (DW) and SC order parameters, within the
linearized and the fully non-linear GL formalism. In Sec.
III, we detail the eigenfunctions and eigenvalues of the
linearized equations for the SC order parameter, where
we also propose an approximate minimal tight-binding
model that allows one to predict results for an arbitrary
number of parallel interfaces. Results obtained using the
full non-linear two-component GL approach are discussed
in Sec. IV. Our main findings and conclusions are sum-
marized in Sec. V.

II. THEORETICAL MODEL

We consider two order parameters, ∆ and W , de-
scribing, respectively, a (hidden) superconducting phase
and another collective excitation, such as CDW or spin
density wave (SDW). The corresponding two-component
Ginzburg-Landau (GL) free energy F is then defined as

F =

∫
dx

{
ξ2
s (∇∆)

2 − αs∆
2 +

βs
2

∆4+

+ ξ2
w (∇W )
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2
W 4 + γW 2∆2

}
,

(1)

where αw and βw are the usual phenomenological ex-
pansion parameters in the derivation of the GL formal-
ism, while γ is the coupling between condensate densities.
This free energy can be written in a dimensionless form
F as

F =

∫
dx

{
1

δ2
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+
ξ2
r

δ2

[
−αs∆

2 +
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where unit of energy is F0 = α2
w0/βw (αw0 is the density

wave parameter αw in the bulk), and δ = Wb/∆b, with
Wb and ∆b as the maximum values of the respective or-
der parameters. The coefficient ξ2

r = ξ2
w/ξ

2
s relates the

coherence lengths ξw = ~/
√

2mαw0 and ξs = ~/
√

2mαs

of the (charge/spin) density wave (DW) and supercon-
ducting phases, respectively, σ = γδ2/αw0, and αs =
1 − T/T∆, where T∆ is the bulk critical temperature of

the superconducting phase. ξw is taken as the unit for
distances and for the space coordinate x. The parame-
ter Ωw(x) is used to induce suppression of W (x) at the
interfaces, such that

Ω(x) =

{
−α0, |x− χj | < L,

+1, |x− χj | ≥ L
, (3)

where α0 ≥ 0, L is the width of the interfacial regions,
and χj (j = 1, 2, 3, ...N) is the position of the j-th inter-
face in a system with N interfaces.

Minimizing F with respect to ∆ and W leads to two
coupled Ginzburg-Landau equations

−d
2W

dx2
+
[
−Ωw(x) +W 2 + σ∆2

]
W = 0, (4)

− 1

ξ2
r

d2∆

dx2
+

[
−αs + ∆2 +

σδ2

ξ2
r

W 2

]
∆ = 0. (5)

Even though the numerical solution of Eqs. (4) and (5),
based on a self-consistent relaxation procedure, will be
eventually provided in Sec. IV, we will also discuss here
the solutions based on the following linearized GL formal-
ism, to gain insights in the physics behind the complete
solution of the system of GL equations. Assuming a weak
superconducting gap at the interface, higher-order terms
in ∆ can be neglected in Eqs. (4) and (5), so that36

−d
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dx2
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W = 0, (6)
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ξ2
r

W 2

]
∆ = 0. (7)

Equation (6) is then discretized on a uniform Cartesian
grid (with spacing 0.1 ξw) in a finite-difference scheme
and numerically solved by means of a relaxation method.
An initial (arbitrary) trial function for W (x) evolves in
time as

W t+1
i = W t

i +dt

[
W t

i+1 − 2W t
i +W t

i−1

dx2
− Ωi

wW
t
i + (W t

i )3

]
,

(8)
with a (dimensionless) time step dt = 0.01, until conver-
gence is reached up to tolerance |W t+1

i −W t
i | ≤ 10−8 at

any point in space xi. The converged solution for W (x)
is then used as input in Eq. (7)

−d
2∆

dx2
+ σδ2|W |2∆ = ε∆, (9)

where ε = ξ2
rαs and the equation is discretized in the

same spatial grid. Notice the resemblance of this equa-
tion with Schrödinger equation for a σδ2|W (x)|2 po-
tential. We numerically solve this eigenvalue equation,
which yields a series of solutions for the superconduct-
ing order parameter, each with an eigenvalue εn and a
gap distribution ∆n(x) that is non-zero at the interfa-
cial regions, thus describing interface superconducting
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states. This situation is sketched in Fig. 1, illustrat-
ing the suppressed W (x) and increased ∆(x) at a pair of
parallel interfaces. Given the temperature dependence of
αs and the value of ξ2

r , one can obtain the critical tem-
perature Tcn for the n−th superconducting eigenstate of
this system, as we will demonstrate in what follows. Al-
ternatively, one can solve Eq. (7) through a relaxation
procedure for different temperatures, to reveal the tem-
perature dependence of ∆n(x). The full solution of the
non-linearized GL Eqs. (4) and (5), to be discussed in
Sec. IV, is also obtained by the same relaxation pro-
cedure, assuming convergence is achieved as the error
reaches |∆t+1

i −∆t
i| ≤ 10−11 at any point in space xi.

In general, the model proposed here is applicable to
superconductors with co-existing SDW, such as Fe-based
pnictides, as well as to those with a CDW, or cuprates.
The correspondence between the αs(w), βs(w), and γ
paramaters in Eq. (1) and the microscopic parameters for
these materials is discussed in Refs. [36–40]. However,
a proper application of such a phenomenological model,
as the one in Eq. (1), to these materials is currently not
possible, due to the lack of experimental data on the spa-
tial dependence of the order parameters involved in our
model for actual samples in the literature.36 Therefore,
in what follows, all discussions will be made in terms of
dimensionless units and conclusions will be mostly drawn
in a qualitative way.

III. INTERFACE EIGENSTATES AND THEIR
CRITICALITY

To begin with, we recall that Ref. 36 readily contains
an extensive study of the single interface case, and shows
that the eigenstates of Eq. (9) represent different possi-
ble distributions of the superconducting order parameter

x

L

L
d

FIG. 1: (color online) Sketch of a system with two adjacent in-
terfaces, based on the single-interface system proposed in Ref.
[36]. Here, the order parameter W (x) (dashed line) describes
a collective excitation (e.g. spin or charge density waves)
dominating in the bulk (green), that is suppressed along par-
allel interfaces (blue) of width L, separated by distance d (see
Eq. (3)). The hidden order parameter ∆(x), which describes
the superconducting phase, arises at these interfaces (plotted
as a solid line).

∆(x), each with a different eigenvalue (critical tempera-
ture) εn, which are reminiscent of the eigenstates of the
Schrödinger equation for a particle confined in a quantum
well.

We therefore start our analysis from one pair of par-
allel interfaces. In what follows, all interfaces will have
the same width L = 2 ξw, where the ground state of each
interface is well separated in energy from the first excited
state, thus allowing us to interpret the behavior of the
system only using the ground state of the SC order pa-
rameter in each interface. The density wave W (x) and
superconducting ∆(x) order parameters in this case are
shown in Figs. 2(a) and 2(b), respectively. The two inter-
faces are separated by distance d = 12 ξw, and we assume
ξr = 1.0 (i.e. ξs = ξw). Notice the two dips in W (x),
calculated by Eq. (8) with Ω(x) given by Eq. (3) with
χ1 = −6 ξw and χ2 = +6 ξw, exactly at the position of
the interfaces, representing suppression of the DW phase
at these regions. Increasing the value of α0 then leads to a
stronger suppression of the order parameter W . We con-
sider α0 = 1 for a weak DW suppression, and α0 = 5 for
strong suppression. The two lowest-lying eigenfunctions
of the SC order parameter in the α0 = 5 case peak at the
interfaces, thus representing the rise of interface super-
conductivity. The symmetric/anti-symmetric character
of these solutions are reminiscent of the double quantum
well problem.

As in a double quantum well, the eigenvalues of Eq.
(9) are expected to be degenerate if the interfaces are
sufficiently far from each other (i.e. d → ∞), whereas
this degeneracy is lifted as they are brought closer to
each other. This is exactly shown in Fig. 3, represent-
ing the eigenvalues ε of the SC states with symmetric
(black solid) and anti-symmetric (red dashed) eigenfunc-
tions. One easily verifies that even a small suppression
of the DW order gives rise to interface superconductivity.
Interestingly, the dependence of the eigenvalues on the
distance between interfaces d is affected by how strongly
the DW phase is suppressed at the interfaces. As shown
in Fig. 3(a), when the DW order is strongly suppressed,
a sharp kink appears at d = 2 ξw. Similar features are
observed in systems with more interfaces as well, as will
be discussed later.

In fact, in the case where α0 in Eq. (3) is set to a high
value to produce strong DW suppression at the inter-
faces, as the distance between interfaces is made shorter,
the DW order parameter no longer reaches its maximum
value in the region between adjacent interfaces. This is
shown in the inset of Fig. 3(a), which shows W (x) for the
two parallel interfaces system, assuming two values for
the distance between the interfaces. One notices that for
d < 2 ξw, in the case of strong suppression, the crosstalk
between the suppressions of the DW order parameter at
the interfaces suppresses the order parameter between
the interfaces as well, creating effectively a single region
of weakly modulated DW order parameter. This maxi-
mizes the induced superconducting order parameter ∆.
For further shortened distance d the area of (nearly fully)
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FIG. 2: (color online) Spatial distribution of the order param-
eters (a) of the density wave W , assuming its strong (α0 = 5,
solid line) and weak (α0 = 1, dashed line) suppression at the
interfaces, and (b) lowest-lying eigenfunctions of the SC state
∆n in the strong DW suppression case, for two interfaces of
width L = 2 ξw, separated by d = 12 ξw (cf. Fig. 1).

suppressed DW order is reduced, reducing the maximal
emergent ∆.

The lift of the eigenstates degeneracy, observed in Fig.
3(a,b), allows us to propose an approximate tight-binding
model for the system, where we re-write the eigenvalue
equation (9) as D∆ = ε∆, and the eigenvalues are ob-
tained simply by diagonalization of the matrix D with
diagonal terms given by the ground state eigenvalue of
each interface, D11 = D22 = ε0, and the off-diagonal
terms D21 = D12 = −τ , where the latter plays the role of
a hopping parameter between the adjacent interfaces. Di-
agonalization of D leads to eigenvalues ε± = ε0±τ along
with symmetric/anti-symmetric eigenfunctions, qualita-
tively similar to those shown in Fig. 2(b). The hopping
parameter τ increases as the distance d between inter-
faces decreases, thus controlling the separation between
eigenvalues. Results of this model are shown as open
symbols in Figs. 3(a,b), where very good agreement with
the actual numerical results is verified in the case of weak
suppression. In the strong suppression case, the made ap-

FIG. 3: (color online) Eigenvalues of Eq. (9) as a function
of distance d between two interfaces, assuming strong (a) and
weak (b) suppression of the DW order parameter W , i.e. with
α0 = 5 and α0 = 1, respectively. Lines show the numeri-
cally obtained results for symmetric (black solid) and anti-
symmetric (red dashed) eigenfunctions, while open symbols
plot results of a tight-binding approach for the same states.
(c) The calculated hopping parameter τ as a function of dis-
tance d for a weak suppression case (open symbols), with an
analytical fitting function plotted as well (solid curve). Inset
in (a) shows the DW order parameter with α0 = 5 assuming
d = 4ξW (red dashed) and d = 6ξW (black solid).

proximation and its results are describing the numerical
data very well for larger interface separations.

The dependence of the hopping parameter τ on the
interface separation d is plotted as open symbols in Fig.
3(c) for the weak suppression case. In order to facilitate
the practical use of the tight-binding model proposed
here, the numerically obtained hopping parameters are
fitted by the function

τ(d) = τmaxe−
d
2 . (10)

The fitting function is plotted as a solid curve in Fig.
3(c), using τmax = 0.24. The importance of such a sim-
plistic model as a convenient way to estimate the eigen-
values of Eq. (9) for any number of interfaces will be
discussed further on.

We next proceed with the case of multiple parallel in-
terfaces. The DW order parameter W (x) is shown in
Figs. 4(a) and 4(b), for a system consisting of 3 and 4
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FIG. 4: (color online) DW order parameter W for a system
consisting of (a) 3 and (b) 4 parallel interfaces, separated by
distance d = 12 ξw. The SC order parameters ∆n of the first
3 and 4 low-lying eigenstates of these systems are shown in
panels (c) and (d), respectively.

parallel interfaces, respectively, separated by d = 12 ξw.
The first 3 and 4 low-lying eigenfunctions ∆n(x) are
shown in Figs. 4(c) and 4(d) for 3 and 4 interfaces,
respectively. Interestingly, different eigenvalues produce
eigenfunctions ∆n(x) describing higher superconducting
gaps at specific interfaces. For example, considering
four interfaces, ∆0 and ∆3 (∆1 and ∆2) states exhibit
higher peaks at the two internal (external) interfaces.
This suggests that, as the temperature of the system is
decreased, the critical temperatures associated with εn
states (n = 1, 2, ...) are exceeded sequentially and, conse-
quently, the ∆n superconducting states become available
one-by-one, each with a different spatial distribution of
superconducting gaps among the interfaces. The actual
solution of the non-linearized GL Eqs. (4) and (5) for ∆
is a linear combination of the available eigenstates ∆n,
therefore, as the temperature decreases, one may find sta-
ble solutions where ∆ contains contributions of higher n
eigenstates that lead to non-trivial spatial distributions
of the Cooper-pair condensate among the interfaces, as
we will discuss in greater detail in the next Section.

The numerically obtained εn eigenstates in the systems
with 3 and 4 interfaces are plotted as solid lines in Figs.
5(a) and 5(b), respectively, for the weak DW suppression
case. Results obtained with the tight-binding model, us-
ing hopping parameters given by Eq. (10), are shown
as open symbols, where good agreement is observed only
for interface separations beyond d ≈ 4 ξw. As previously
discussed, the disagreement between the numerical and
the tight-binding results for shorter d stems from the fact
that, for small separations, the DW order parameter W
decreases in the regions between the interfaces (see the
inset of Fig. 3(a)), so that the problem of several inter-
faces with short separation can no longer be described

FIG. 5: (color online) Eigenvalues of the SC order parame-
ter, from Eq. (9), assuming (a,b) weak and (c,d) strong DW
suppression, in a system with (a,c) 3 and (b,d) 4 interfaces.
For separation larger than d ≈ 4 ξw, the tight-binding model
(symbols) predicts the eigenvalues reasonably well in all cases.

as a combination of several single-interface problems in
a tight-binding approach. For instance, in the case of
3 interfaces, even the intermediate eigenvalue state ε1,
which in the tight-binding model is a constant ε0 for any
d, starts to decrease as d becomes smaller in the actual
system as a consequence of the decreasing W (x) between
the interfaces. This situation expectedly worsens in the
strong DW suppression regime, and yields further depar-
ture of the approximate tight-binding model from the
actual numerical results of Eq. (9), as shown in 5(c) and
5(d). The sharp kinks seen in these figures result from
the strong suppression of DW in between the interfaces at
small separations d, similar to those observed for the 2 in-
terfaces case in Fig. 3(a). Nevertheless, the tight-binding
model proposed here still yields a good quantitative pre-
diction for d > 4 ξw in all cases, while preserving at least
good qualitative predictions of the eigenvalues behavior
in the weak-suppression regime even for smaller d.

The maximum value of the SC order parameter ∆max,n

provides us an estimate of the superconducting gap at the
interfaces. This value raises from zero as the tempera-
ture is decreased below the critical temperature of the
n-th eigenstate of Eq. (9). Notice that although Eq.
(9) provides the critical temperature Tcn of each eigen-
state, through the relation between the eigenvalue and
the critical temperature εn = ξ2

r (1−Tcn/T∆), it does not
provide the actual temperature dependence of each eigen-
state ∆max,n. In order to obtain this value, we solve Eq.
(7) through a relaxation procedure for different temper-
atures. The result is shown in Fig. 6(a) (6(b)), plotting
∆max,n for the first three (four) states of a system with
three (four) interfaces as a function of temperature.

At this point we can employ the reasonable reliability
of our tight-binding model to extend our results to the
case of N → ∞ interfaces. For an arbitrary N , the pro-
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FIG. 6: Maximum values of the superconducting order pa-
rameter ∆n(x) as a function of temperature, for the first (a)
three eigenstates of a three-interfaces system, and (b) four
eigenstates of a four-interfaces system. (c) The same as (a,b),
but for an infinite superlattice of equally spaced parallel in-
terfaces. In all cases, interfaces are separated by d = 3.5 ξw,
assuming weak DW suppression α0 = 1.

posed tight-binding matrix D assumes the tri-diagonal
Toeplitz form41, whose eigenvalues are

εn = ε0 − 2τ(d) cos

(
nπ

N + 1

)
. (11)

It is straightforward to verify that previous results for
N = 2−4 are specific cases of this general expression. As
N →∞, an infinite series of states form a band of eigen-
values ε(k) = ε0−2τ(d) cos (kd), limited within the range
[ε0 − 2τ, ε0 + 2τ ]. Consequently, there will be a range of
critical temperatures so that, as the system cools down,
a series of SC eigenstates at the interfaces sequentially
become energetically favorable, for temperatures within
this range. This is illustrated by the shaded area in Fig.
6(c). Most importantly, the upper bound of this range
of critical temperatures is controlled by the strength of
the coupling between interfaces, τ , which depends e.g.
on the separation between the interfaces. This can thus
be seen as a mechanism to effectively enhance critical
temperature of interface superconductivity in a system
consisting of a large number of parallel interfaces, as we

b
b

FIG. 7: (color online) The Cooper-pair density associated
with eigenfunctions (a) ∆0, (b) ∆1, (c) ∆2, and (d) ∆3 of the
SC order parameter in a system with 10 interfaces separated
by d = 3 ξw. The number of nodes, where the SC order
parameter reaches zero in between adjacent layers, increases
with n, where each node coincides with a phase shift by π.

will discuss further on. Notice that the critical temper-
atures obtained here are enhanced as compared to those
expected either for a single interface or for multiple non-
coupled interfaces (i.e. far apart from each other), al-
though they are still smaller than the critical tempera-
ture expected for the same order parameter in the bulk
case.

For instance, Fig. 7 shows the square modulus of the
SC order parameter (Cooper-pair density) correspond-
ing to the (a) first, (b) second, (c) third and (d) fourth
eigenstate of a N = 10 interfaces system. Different eigen-
states exhibit diverse probability density distributions of
Cooper pairs: the first eigenstate, with higher critical
temperature, shows higher probability density in the cen-
tral interfaces, and SC persists in-between the interfaces.
For higher n, on the other hand, the odd-even nature
of the eigenfunctions causes the SC order parameter to
reduce to zero in between some interfaces, due to ap-
pearance of the nodes in the order parameter (i.e. slips
of phase by π). In Fig. 7(b), the eigenfunction for n = 1
exhibits zero SC order parameter at x = 0, effectively
forming a π Josephson junction between the left and the
right side of the 10 interfaces system. The number of such
nodes increases with n, which is reminiscent of eigenfunc-
tions in a finite square quantum well. Since for large
interface separation d all the eigenstates are degenerate,
i.e. having same critical temperature, one expects to be
able to observe stable nontrivial states such as those with
SC stronger in some interfaces than in other, as well as
states with π Josephson junctions formed between some
interfaces, as we discuss in what follows.
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FIG. 8: (color online) Color maps of the Cooper pairs density
∆ as a function of the reduced temperature T/T∆, calculated
by the self-consistent solution of Eqs. (4) and (5), for two
interfaces separated by (a) d = 6 ξw, (b) 12 ξw and (c) 40 ξw.
For shorter separations, the SC order parameter in the in-
terfaces is enhanced and the effective critical temperature,
marked by the horizontal dashed lines, increases, in accor-
dance with the predictions from the linearized GL formalism.

IV. SUPERCONDUCTING STATES AS A
FUNCTION OF TEMPERATURE - THE

COMPLETE SOLUTION

The solutions obtained from our linearized GL formal-
ism suggest an interesting interplay of superconductivity
among the interfaces, namely, there is a critical temper-
ature degeneracy of different SC eigenstates if there is
more than one interface, and this degeneracy is lifted as
the interfaces are brought closer to each other. However,
these results do not represent the complete solution of
the GL equation. Actually, these states rather form a
basis in which one can express the complete solutions.
For instance, assuming only two interfaces, the complete
solution can be written as a linear combination of ∆0

and ∆1 eigenstates. It is now important to discuss the
impact of these eigenstates on the actual solution, i.e. as
we consider the full non-linear form of the GL equation
for the SC order parameter. To answer this question,
the coupled equations Eq. (4) and Eq. (5) are solved
self-consistently using a relaxation method.

First, let us consider the simplest case of two inter-
faces. According to the eigenstates shown in Fig. 2(b),
the complete solutions must be either symmetric, anti-
symmetric or a combination of the two. Nevertheless,
Fig. 3 shows that the symmetric and anti-symmetric
eigenstates have different critical temperature, depend-
ing of the separation d, with ∆0 always having a higher
critical temperature. Figure 8 shows the reduced tem-
perature T/T∆ below which the SC order parameter ∆
emerges from zero. Notice that, in our model, if the
sample was entirely superconducting, the reduced tem-
perature where superconductivity appears is T/T∆ = 1.
Instead, our sample is in the DW state, which competes
with superconductivity and suppress it across the sys-
tem. It is the suppression of the DW order parameter
at the interfaces that gives rise to superconductivity, and
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FIG. 9: (color online) Color map of the Cooper-pair density in
two parallel interfaces, obtained by solving the full nonlinear
GL set of equations, as a function of (a) temperature, for a
fixed interface separation distance d = 40 ξw, and (b) as a
function of d, for a fixed temperature T = 0. The metastable
solution where SC is active only in one of the interfaces (left)
is obtained only for larger separation between the interfaces,
and is expected to be experimentally achieved after a rapid
quench to low temperatures.

this is expected to occur at temperatures that are only
a fraction of the critical temperature T∆. Indeed, inter-
faces separated by d = 6 ξw become superconducting at
T ≈ 0.09T∆ in Fig. 8(a), whereas this effective critical
temperature decreases to T ≈ 0.058T∆ and ≈ 0.052T∆

for larger separations d = 12 ξw and 40 ξw in Figs. 8(b)
and 8(c), respectively. In fact, this dependence of the ef-
fective SC critical temperature on the separation d is ex-
pected from the results of the linearized equations: as the
interfaces get closer, the critical temperature of the sym-
metric eigenstate ∆0, which is the highest one, increases.
This demonstrates the potentially practical enhancement
of the SC critical temperature by creating superlattices
with interfaces stacked closer together or, alternatively,
by increasing the number of stacked interfaces, since the
critical temperature of the eigenstate ∆0 also increases
with N – as verified in Fig. 6.

For further reduced temperature, the critical temper-
ature of the anti-symmetric eigenstate ∆1 is reached,
which triggers its role as a possible basis state for the SC
order parameter. As both eigenstates are now achievable,
solutions in the form ∆ = a0∆0 + a1∆1 are possible. A
combination e.g. with a0 = a1 results in superconductiv-
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FIG. 10: (color online) Color map of the Cooper-pair den-
sity in 10 parallel interfaces separated by d = 6 ξw, obtained
by solving the full nonlinear GL set of equations as a func-
tion of temperature. Panels (a)-(c) exemplify three different
metastable states at low temperatures, obtained after initial-
ization from many different initial conditions (simulating nu-
cleation from the normal state).

ity nucleating only in one interface. This is shown in Fig.
9(a), where a solution with superconductivity active only
in one interface is found metastable up to T/T∆ ≈ 0.01.
Even at zero temperature, this solution is only stable
when the interfaces are far from each other (beyond 35
ξw in this case), so that the energies of either symmetric,
anti-symmetric, or a combination of the two eigenstates
are practically the same. As the interfaces get closer, the
single-interface SC state is no longer stable, see Fig. 9(b).
This is due to the tunneling of Cooper pairs through the
DW region that separates the interfaces, so that if one in-
terface is superconducting, it induces superconductivity
in the other interface as well.

The tight-binding model introduced in section III pre-
dicts that the critical temperature of interface super-
conductivity increases with the number of stacked inter-
faces. Figure 10 illustrates three possible states found
by solving the complete GL formalism for a system of
N = 10 interfaces. Indeed, in all cases, the effective
critical temperature of the system is significantly higher
than those observed for the two-interface system in Fig.
8. The state shown in Fig. 10(a), obtained by relax-
ation of a spatially randomized initial trial function, has
all interfaces exhibiting superconductivity at low tem-
peratures, with slightly higher Cooper-pair densities in
the inner interfaces than in the outer ones. As the tem-
perature is increased, SC at the peripheral interfaces is
suppressed first. Conversely, Figs. 10(b) and 10(c) ex-
hibit stable states where SC is entirely suppressed in
some of the inner interfaces. Indeed, as temperature
is decreased, the critical temperatures of different SC
eigenstates are reached, allowing several possible combi-
nations of eigenfunctions with different numbers of spa-
tial nodes and associated phase shifts. Consequently, at
sufficiently low temperatures, there may exist stable solu-
tions with Cooper-pair density suppressed in one or more
interfaces, similar to what is observed in Fig. 9(a) for
N = 2. These are actually metastable states (i.e. they
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FIG. 11: (color online) Projections of the Cooper-pair densi-
ties shown in Fig. 10(b) (top panel) and Fig. 10(c) (bottom
panel) on the eigenstates ∆n of a system with ten stacked
interfaces.

are obtained by convergence of an initial arbitrary ∆ in
the relaxation procedure), but higher in energy than the
state shown in Fig. 10(a), hence are less frequently ob-
tained when starting the calculation from different initial
conditions.42 They remain however relevant towards ex-
perimental observation, especially upon rapid cooling to
low temperatures from the normal state (so called field-
cooled regime).

Different combinations of involved eigenstates in the
composition of the superconducting states in Figs. 10(b)
and 10(c) are shown in the top and bottom panels of Fig.
11, respectively. Notice that the state in Fig. 10(a) is
composed of only the ground eigenstate ∆0 for any tem-
perature and is therefore not shown in Fig. 11. On the
other hand, the state in Fig. 10(b) results from a com-
bination of eigenstates with odd index up to T = 0.1T∆,
where the ∆0 state becomes dominant and the converged
state resembles that of Fig. 10(a) for higher tempera-
tures. Notice that the eigenstates with higher eigenval-
ues (i.e. lower critical temperature) contribute less to
the state, especially for higher temperatures. The state
with a strong suppression of SC at the inner interfaces for
temperatures up to T = 0.01T∆, shown in Fig. 10(c), is
composed of the eigenstates with even indices, as shown
in the bottom panel of Fig. 11.

We point out that such exotic states, where supercon-
ductivity is suppressed in specific interfaces, is a special
case of latent superconductivity: the system is below
the effective superconducting critical temperature and
no competing order parameter is present in these inter-
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faces, since the DW is strongly suppressed in all inter-
faces. Even so, superconducting state may nucleate in
nontrivial configurations across the interfaces, due to the
specific combination of eigenstates of the system, where
eigenfunctions with opposite phases may lead to (partial)
cancellation of the SC order parameter at the inner in-
terfaces. We also point out that the metastable exotic
states discussed here are not expected to be experimen-
tally achievable by simply slowly lowering the temper-
ature, but rather only by rapid quenching the tempera-
ture to bellow the critical temperature of the exotic state.
Such a rapid quench would lead to one of the metastable
states at very low temperatures, so that Figs. 9 and 10
would thus capture the behavior of the order parameter
distribution upon slowly warming the system.

All results discussed here were made assuming a con-
stant interface width. Nevertheless, it is straightforward
to predict how a different interface width would affect
our results and conclusions: within the linearized version
of the theory in Eq. (9) and Sec. III, the suppression
of the DW order parameter at the interface effectively
acts like a quantum well, whereas the emergent modes
of the SC order parameter at the interface play the role
of confined eigenstates of that quantum well. Increas-
ing the interface width would simply lead to more SC
eigenstates in each interface, with lower eigenvalues ε.36

Consequently, the formation of a band of SC modes dis-
cussed in Sec. III for a series of parallel interfaces still
hold, but now there will be one band originating from
each excited eigenstate of the interface as well, similar to
the formation of bands due to a series of finite quantum
wells in a superlattice. The thin interface width consid-
ered here guarantees that all possible excited bands in
the system give negligible contribution to the SC states
numerically obtained with Eqs.(4) and Eq. (5) and dis-
cussed in Sec. IV. This choice was made for the sake of
clarity of the results in Figs. 9, 10, and 11, where, indeed,
only the states ∆n originating from the ground state of
the isolated interface play a significant role. In the case
of thicker interfaces, due to the lower eigenvalues of the
series of states stemming from the excited states of each
interface, more eigenstates may significantly contribute
to the SC order parameter in Figs. 9, 10, and 11, beyond
the ∆n states series, which may lead to even more exotic
spacial distributions of The latent SC state. Neverthe-
less, qualitatively, all conclusions drawn here, especially
regarding the existence of metastable states where SC is
suppressed in some interfaces due to interference, remain

valid.

V. CONCLUSIONS

In summary, we have employed a two-component GL
model to investigate properties of superconductivity aris-
ing in competition with another dominant (spin/charge
density) order in a series of parallel interfaces. The model
is developed on top of the one previously proposed in
Ref. 36, where two competing order parameters ex-
hibit density-density coupling, but is easily extendable
to other coupling forms stemming from a microscopic
derivation. We go beyond this previous model by ex-
panding its concept to the case of several parallel in-
terfaces, where we demonstrate that as more interfaces
are stacked together, the number of possible supercon-
ducting states across these interfaces increases as well,
each with a different critical temperature. The critical
temperature of the ground state, which would thus be
the superconducting critical temperature of the system,
depends on the distance between interfaces, on the num-
ber of stacked interfaces, and, generally speaking, on the
coupling between adjacent interfaces. Bearing in mind
the large number of systems where interface supercon-
ductivity is relevant, especially the artificially fabricated
ones, our study conveniently indicates pathways towards
control of critical temperature by nanoengineering of ma-
terial superlattices.

Different (meta)stable superconducting states we
found in the superlattice of interfaces are not only rich
in number, but also in different physical manifestation,
since some of them can host rather nontrivial spatial dis-
tribution of the Cooper-pair condensate, and even con-
tain intrinsic π-Josephson junctions between parts of the
superlattice. That suggests very rich possible behavior
of the system in applied current and/or magnetic field,
worth of further exploration.
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