toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zarenia, M.; Neilson, D.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title (down) Wigner crystallization in transition metal dichalcogenides : a new approach to correlation energy Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 95 Pages 115438  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We introduce a new approach for the correlation energy of one- and two-valley two-dimensional electron gas (2DEG) systems. Our approach is based on an interpolation between two limits, a random phase approximation at high densities and a classical approach at low densities which gives excellent agreement with available Quantum Monte Carlo (QMC) calculations. The two-valley 2DEG model is introduced to describe the electron correlations in monolayer transition metal dichalcogenides (TMDs). We study the zero-temperature transition from a Fermi liquid to a quantum Wigner crystal phase in monolayer TMDs. Consistent with QMC, we find that electrons crystallize at r(s) = 31 in one-valley 2DEG. For two valleys, we predict Wigner crystallization at r(s) = 30, implying that valley degeneracy has little effect on the critical r(s), in contrast to an earlier claim.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000399141200003 Publication Date 2017-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was partially supported by the Flanders Research Foundation (FWO) and the Methusalem program of the Flemish government. D.N. acknowledges support by the University of Camerino FAR project CESEMN. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:142428 Serial 4613  
Permanent link to this record
 

 
Author Linard, F.J.A.; Moura, V.N.; Covaci, L.; Milošević, M.V.; Chaves, A. url  doi
openurl 
  Title (down) Wave-packet scattering at a normal-superconductor interface in two-dimensional materials : a generalized theoretical approach Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 107 Issue 16 Pages 165306-165309  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract A wave-packet time evolution method, based on the split-operator technique, is developed to investigate the scattering of quasiparticles at a normal-superconductor interface of arbitrary profile and shape. As a practical application, we consider a system where low-energy electrons can be described as Dirac particles, which is the case for most two-dimensional materials, such as graphene and transition-metal dichalcogenides. However, the method is easily adapted for other cases such as electrons in few-layer black phosphorus or any Schrodinger quasiparticles within the effective mass approximation in semiconductors. We employ the method to revisit Andreev reflection in mono-, bi-, and trilayer graphene, where specular-and retro-reflection cases are observed for electrons scattered by a steplike superconducting region. The effect of opening a zero-gap channel across the superconducting region on the electron and hole scattering is also addressed, as an example of the versatility of the technique proposed here.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000974675700006 Publication Date 2023-04-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number UA @ admin @ c:irua:196709 Serial 8954  
Permanent link to this record
 

 
Author Fernández Becerra, V.; Sardella, E.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title (down) Vortical versus skyrmionic states in mesoscopic p-wave superconductors Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 014518  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the superconducting states that arise as a consequence of mesoscopic confinement and a multicomponent order parameter in the Ginzburg-Landau model for p-wave superconductivity. Conventional vortices, but also half-quantum vortices and skyrmions, are found as the applied magnetic field and the anisotropy parameters of the Fermi surface are varied. The solutions are well differentiated by a topological charge that for skyrmions is given by the Hopf invariant and for vortices by the circulation of the superconducting velocity. We revealed several unique states combining vortices and skyrmions, their possible reconfiguration with varied magnetic field, as well as temporal and field-induced transitions between vortical and skyrmionic states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000369217400004 Publication Date 2016-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 28 Open Access  
  Notes ; This work was supported by the Research Foundation – Flanders (FWO). E.S. acknowledges support from the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:131581 Serial 4275  
Permanent link to this record
 

 
Author Zhang, S.-H.; Yang, W.; Peeters, F.M. url  doi
openurl 
  Title (down) Veselago focusing of anisotropic massless Dirac fermions Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 20 Pages 205437  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Massless Dirac fermions (MDFs) emerge as quasiparticles in various novel materials such as graphene and topological insulators, and they exhibit several intriguing properties, of which Veselago focusing is an outstanding example with a lot of possible applications. However, up to now Veselago focusing merely occurred in p-n junction devices based on the isotropic MDF, which lacks the tunability needed for realistic applications. Here, motivated by the emergence of novel Dirac materials, we investigate the propagation behaviors of anisotropic MDFs in such a p-n junction structure. By projecting the Hamiltonian of the anisotropic MDF to that of the isotropic MDF and deriving an exact analytical expression for the propagator, precise Veselago focusing is demonstrated without the need for mirror symmetry of the electron source and its focusing image. We show a tunable focusing position that can be used in a device to probe masked atom-scale defects. This study provides an innovative concept to realize Veselago focusing relevant for potential applications, and it paves the way for the design of novel electron optics devices by exploiting the anisotropic MDF.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000433026700005 Publication Date 2018-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes ; This work was supported by the National Key R&D Program of China (Grant No. 2017YFA0303400), the NSFC (Grants No. 11504018 and No. 11774021), the MOST of China (Grant No. 2014CB848700), and the NSFC program for “Scientific Research Center” (Grant No. U1530401). Support by the bilateral project (FWO-MOST) is gratefully acknowledged. S.H.Z. is also supported by “the Fundamental Research Funds for the Central Universities (ZY1824).” We acknowledge the computational support from the Beijing Computational Science Research Center (CSRC). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:151501UA @ admin @ c:irua:151501 Serial 5047  
Permanent link to this record
 

 
Author Shumilin, A.V.; Baranov, V.V.; Kabanov, V.V. url  doi
openurl 
  Title (down) Upper critical field in the model with finite-range interaction between electrons Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages 174506  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We develop a theory of the upper critical field in a BCS superconductor with a nonlocal interaction between electrons. We have shown that the nonlocal interaction is characterized by the parameter k(F)rho(0), where k(F) is the Fermi momentum and rho(0) is the radius of electron-electron interaction. The presence of the external magnetic field leads to the generation of additional components of the order parameter with different angular momenta. This effect leads to the enhancement of the upper critical field above the orbital limiting field. In addition the upward curvature in the temperature dependence of H-c2 (T) in the clean limit is predicted. The impurity scattering suppresses the effect in the dirty limit.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000387884100005 Publication Date 2016-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.836 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:139166 Serial 4365  
Permanent link to this record
 

 
Author de Sousa, G.O.; da Costa, D.R.; Chaves, A.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title (down) Unusual quantum confined Stark effect and Aharonov-Bohm oscillations in semiconductor quantum rings with anisotropic effective masses Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 95 Pages 205414  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effects of external electric and magnetic fields on the energy spectrum of quantum rings made out of a bidimensional semiconductor material with anisotropic band structures are investigated within the effective-mass model. The interplay between the effective-mass anisotropy and the radial confinement leads to wave functions that are strongly localized at two diametrically opposite regions where the kinetic energy is lowest due to the highest effective mass. We show that this quantum phenomenon has clear consequences on the behavior of the energy states in the presence of applied in-plane electric fields and out-of-plane magnetic fields. In the former, the quantum confined Stark effect is observed with either linear or quadratic shifts, depending on the direction of the applied field. As for the latter, the usual Aharonov-Bohm oscillations are not observed for a circularly symmetric confining potential, however they can be reinstated if an elliptic ring with an appropriate aspect ratio is chosen.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000401230600007 Publication Date 2017-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 19 Open Access  
  Notes ; This work was financially supported by CNPq under the PRONEX/FUNCAP grants, CAPES Foundation, the Flemish Science Foundation (FWO-Vl), and the Brazilian Program Science Without Borders (CsF). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:143746 Serial 4610  
Permanent link to this record
 

 
Author Bafekry, A.; Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title (down) Two-dimensional graphitic carbon nitrides: strain-tunable ferromagnetic ordering Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 16 Pages 165407-165408  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principle calculations, we systematically study strain tuning of the electronic properties of two- dimensional graphitic carbon nitride nanosheets with empirical formula CnNm. We found the following: (i) the ferromagnetic ordered state in the metal-free systems (n, m) = (4,3), (10,9), and (14,12) remains stable in the presence of strain of about 6%. However, the system (9,7) loses its ferromagnetic ordering when increasing strain. This is due to the presence of topological defects in the (9,7) system, which eliminates the asymmetry between spin up and spin down of the p(z) orbitals when strain is applied. (ii) By applying uniaxial strain, a band gap opens in systems which are initially gapless. (iii) In semiconducting systems which have an initial gap of about 1 eV, the band gap is closed with applying uniaxial strain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000523630200012 Publication Date 2020-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 22 Open Access  
  Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:168560 Serial 6643  
Permanent link to this record
 

 
Author Cunha, S.M.; da Costa, D.R.; Pereira, J.M., Jr.; Costa Filho, R.N.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title (down) Tunneling properties in α-T₃ lattices : effects of symmetry-breaking terms Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 105 Issue 16 Pages 165402-165414  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The alpha-T3 lattice model interpolates a honeycomb (graphene-like) lattice and a T3 (also known as dice) lattice via the parameter alpha. These lattices are made up of three atoms per unit cell. This gives rise to an additional dispersionless flat band touching the conduction and valence bands. Electrons in this model are analogous to Dirac fermions with an enlarged pseudospin, which provides unusual tunneling features like omnidirectional Klein tunneling, also called super-Klein tunneling (SKT). However, it is unknown how small deviations in the equivalence between the atomic sites, i.e., variations in the alpha parameter, and the number of tunnel barriers changes the transmission properties. Moreover, it is interesting to learn how tunneling occurs through regions where the energy spectrum changes from linear with a middle flat band to a hyperbolic dispersion. In this paper we investigate these properties, its dependence on the number of square barriers and the alpha parameter for either gapped and gapless cases. Furthermore, we compare these results to the case where electrons tunnel from a region with linear dispersion to a region with a bandgap. In the latter case, contrary to tunneling through a potential barrier, the SKT is no longer observed. Finally, we find specific cases where transmission is allowed due to a symmetry breaking of sublattice equivalence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000805195200001 Publication Date 2022-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:188614 Serial 7222  
Permanent link to this record
 

 
Author Bafekry, A.; Neek-Amal, M. url  doi
openurl 
  Title (down) Tuning the electronic properties of graphene-graphitic carbon nitride heterostructures and heterojunctions by using an electric field Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 8 Pages 085417-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Integration of graphene-based two-dimensional materials is essential for nanoelectronics applications. Using density-functional theory, we systematically investigate the electronic properties of vertically stacked graphene-graphitic carbon nitrides (GE/GCN). We also studied the covalently lateral stitched graphene-graphitic carbon nitrides (GE-GCN heterojunctions). The effects of perpendicular electric field on the electronic properties of six different heterostructures, i.e., (i) one layer of GE on top of a layer of CnNm with (n, m) = (3,1), (3,4), and (4,3) and (ii) three heterostructures CnNm/Cn'Nm', where (n, m) not equal (n', m') are elucidated. The most important calculated features are (i) the systems GE/C3N4, C3N/C3N4, GE-C3N, GE-C4N3, and C3N-C3N4 exhibit semiconducting characteristics having small band gaps of Delta(0)=20, 250, 100, 100, 80 meV, respectively while (ii) the systems GE/C4N3, C3N/C4N3, and C3N-C4N3 show ferromagnetic-metallic properties. In particular, we found that, in semiconducting heterostructures, the band gap increases nontrivially with increasing the absolute value of the applied perpendicular electric field. This work is useful for designing heterojunctions and heterostructures made of graphene and other two-dimensional materials such as those proposed in recent experiments [X. Liu and M. C. Hersam Sci. Adv. 5, 6444 (2019)].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000515659700007 Publication Date 2020-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 24 Open Access  
  Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:167760 Serial 6640  
Permanent link to this record
 

 
Author Li, L.L.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title (down) Tuning the electronic properties of gated multilayer phosphorene : a self-consistent tight-binding study Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 15 Pages 155424  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By taking account of the electric-field-induced charge screening, a self-consistent calculation within the framework of the tight-binding approach is employed to obtain the electronic band structure of gated multilayer phosphorene and the charge densities on the different phosphorene layers. We find charge density and screening anomalies in single-gated multilayer phosphorene and electron-hole bilayers in dual-gated multilayer phosphorene. Due to the unique puckered lattice structure, both intralayer and interlayer charge screenings are important in gated multilayer phosphorene. We find that the electric-field tuning of the band structure of multilayer phosphorene is distinctively different in the presence and absence of charge screening. For instance, it is shown that the unscreened band gap of multilayer phosphorene decreases dramatically with increasing electric-field strength. However, in the presence of charge screening, the magnitude of this band-gap decrease is significantly reduced and the reduction depends strongly on the number of phosphorene layers. Our theoretical results of the band-gap tuning are compared with recent experiments and good agreement is found.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000430459400005 Publication Date 2018-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 26 Open Access  
  Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:150752UA @ admin @ c:irua:150752 Serial 4988  
Permanent link to this record
 

 
Author Lima, I.L.C.; Milošević, M.V.; Peeters, F.M.; Chaves, A. doi  openurl
  Title (down) Tuning of exciton type by environmental screening Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 11 Pages 115303-115308  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the binding energy and electron-hole (e-h) overlap of excitonic states confined at the interface between two-dimensional materials with type-II band alignment, i.e., with lowest conduction and highest valence band edges placed in different materials, arranged in a side-by-side planar heterostructure. We propose a variational procedure within the effective mass approximation to calculate the exciton ground state and apply our model to a monolayer MoS2/WS2 heterostructure. The role of nonabrupt interfaces between the materials is accounted for in our model by assuming a WxMo1-xS2 alloy around the interfacial region. Our results demonstrate that (i) interface-bound excitons are energetically favorable only for small interface thickness and/or for systems under high dielectric screening by the materials surrounding the monolayer, and that (ii) the interface exciton binding energy and its e-h overlap are controllable by the interface width and dielectric environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001077758300002 Publication Date 2023-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200356 Serial 9110  
Permanent link to this record
 

 
Author Mulkers, J.; Van Waeyenberge, B.; Milošević, M.V. url  doi
openurl 
  Title (down) Tunable Snell's law for spin waves in heterochiral magnetic films Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 10 Pages 104422  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Thin ferromagnetic films with an interfacially induced DMI exhibit nontrivial asymmetric dispersion relations that lead to unique and useful magnonic properties. Here we derive an analytical expression for the magnon propagation angle within the micromagnetic framework and show how the dispersion relation can be approximated with a comprehensible geometrical interpretation in the k space of the propagation of spin waves. We further explore the refraction of spin waves at DMI interfaces in heterochiral magnetic films, after deriving a generalized Snell's law tunable by an in-plane magnetic field, that yields analytical expressions for critical incident angles. The found asymmetric Brewster angles at interfaces of regions with different DMI strengths, adjustable by magnetic field, support the conclusion that heterochiral ferromagnetic structures are an ideal platform for versatile spin-wave guides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428238600006 Publication Date 2018-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 20 Open Access  
  Notes This work was supported by the Research Foundation- Flanders (FWO-Vlaanderen) through Project No. G098917N. Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @c:irua:150118UA @ admin @ c:irua:150118 Serial 4915  
Permanent link to this record
 

 
Author Grujić, M.M.; Ezawa, M.; Tadic, M.Z.; Peeters, F.M. url  doi
openurl 
  Title (down) Tunable skewed edges in puckered structures Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 245413  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We propose a type of edges arising due to the anisotropy inherent in the puckered structure of a honeycomb system such as in phosphorene. Skewed-zigzag and skewed-armchair nanoribbons are semiconducting and metallic, respectively, in contrast to their normal edge counterparts. Their band structures are tunable, and a metal-insulator transition is induced by an electric field. We predict a field-effect transistor based on the edge states in skewed-armchair nanoribbons, where the edge state is gapped by applying arbitrary small electric field E-z. A topological argument is presented, revealing the condition for the emergence of such edge states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000377802700010 Publication Date 2016-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 29 Open Access  
  Notes ; This work was supported by the Serbian Ministry of Education, Science and Technological Development, and the Flemish Science Foundation (FWO-Vl). M.E. is thankful for the support by the Grants-in-Aid for Scientific Research from MEXT KAKENHI (Grants No. 25400317 and No. 15H05854). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:134599 Serial 4268  
Permanent link to this record
 

 
Author Van Pottelberge, R.; Peeters, F.M. url  doi
openurl 
  Title (down) Tunable circular dipolelike system in graphene : mixed electron-hole states Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 12 Pages 125426  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Coupled electron-hole states are realized in a system consisting of a combination of an electrostatic potential barrier and ring-shaped potential well, which resembles a circular dipole. A perpendicular magnetic field induces confined states inside the Landau gaps which are mainly located at the barrier or ring. Hybridizations between the barrier and ring states are seen as anticrossings in the energy spectrum. As a consequence, the energy levels show an oscillating dependence on the electrostatic potential strength in combination with an oscillating migration of the wave functions between the barrier and ring. At the anticrossing points the quantum state consists of a mixture of electron and hole. The present system mimics closely the behavior of a relativistic dipole on gapped graphene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000462900200005 Publication Date 2019-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes ; We thank M. Van der Donck for fruitful discussions. This work was supported by the Research Foundation of Flanders (FWO-V1) through an aspirant research grant for RVP. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:159409 Serial 5237  
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M.; Van Duppen, B. url  doi
openurl 
  Title (down) Transport properties of bilayer graphene in a strong in-plane magnetic field Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 115423  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A strong in-plane magnetic field drastically alters the low-energy spectrum of bilayer graphene by separating the parabolic energy dispersion into two linear Dirac cones. The effect of this dramatic change on the transport properties strongly depends on the orientation of the in-plane magnetic field with respect to the propagation direction of the charge carriers and the angle at which they impinge on the electrostatic potentials. For magnetic fields oriented parallel to the potential boundaries an additional propagating mode that results from the splitting into Dirac cones enhances the transmission probability for charge carriers tunneling through the potentials and increases the corresponding conductance. Our results show that the chiral suppression of transmission at normal incidence, reminiscent of bilayer graphene's 2 pi Berry phase, is turned into a chiral enhancement when the magnetic field increases, thus indicating a transition from a bilayer to a monolayer-like system at normal incidence. Further, we find that the typical transmission resonances stemming from confinement in a potential barrier are shifted to higher energy and are eventually transformed into antiresonances with increasing magnetic field. For magnetic fields oriented perpendicular to the potential boundaries we find a very pronounced transition from a bilayer system to two separated monolayer-like systems with Klein tunneling emerging at certain incident angles symmetric around 0, which also leaves a signature in the conductance. For both orientations of the magnetic field, the transmission probability is still correctly described by pseudospin conservation. Finally, to motivate the large in-plane magnetic field, we show that its energy spectrum can be mimicked by specific lattice deformations such as a relative shift of one of the layers. With this equivalence we introduce the notion of an in-plane pseudomagnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372409900006 Publication Date 2016-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; This work was supported by Fonds Wetenschappelijk Onderzoek (FWO-Vl) through an aspirant research grant to M.V.D.D. and B.V.D. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:133197 Serial 4267  
Permanent link to this record
 

 
Author De Beule, C.; Zarenia, M.; Partoens, B. url  doi
openurl 
  Title (down) Transmission in graphene-topological insulator heterostructures Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 95 Pages 115424  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate scattering of the topological surface state of a three-dimensional time-reversal invariant topological insulator when graphene is deposited on the topological-insulator surface. Specifically, we consider the (111) surface of a Bi2Se3-like topological insulator. We present a low-energy model for the graphene-topological insulator heterostructure and we calculate the transmission probability at zigzag and armchair edges of the deposited graphene, and the conductance through graphene nanoribbon barriers, and show that its features can be understood from antiresonances in the transmission probability.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000399216700004 Publication Date 2017-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes ; The authors would like to thank B. Van Duppen for interesting discussions. This work was supported by the Flemish Research Foundation (FWO) through the Aspirant Fellowship of Christophe De Beule. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:143652 Serial 4609  
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V. url  doi
openurl 
  Title (down) Topological phase transitions in small mesoscopic chiral p-wave superconductors Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 22 Pages 224512  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Spin-triplet chiral p-wave superconductivity is typically described by a two-component order parameter, and as such is prone to unique emergent effects when compared to the standard single-component superconductors. Here we present the equilibrium phase diagram for small mesoscopic chiral p-wave superconducting disks in the presence of magnetic field, obtained by solving the microscopic Bogoliubov-de Gennes equations self-consistently. In the ultrasmall limit, the cylindrically symmetric giant-vortex states form the ground state of the system. However, with increasing sample size, the cylindrical symmetry is broken as the two components of the order parameter segregate into domains, and the number of fragmented domain walls between them characterizes the resulting states. Such domain walls are topological defects unique for the p-wave order, and constitute a dominant phase in the mesoscopic regime. Moreover, we find two possible types of domain walls, identified by their chirality-dependent interaction with the edge states.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000418653500012 Publication Date 2017-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was supported by the Research Foundation Flanders (FWO-Vlaanderen) and the Special Research Funds of the University of Antwerp. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:148504 Serial 4901  
Permanent link to this record
 

 
Author Leishman, A.W.D.; Menezes, R.M.; Longbons, G.; Bauer, E.D.; Janoschek, M.; Honecker, D.; DeBeer-Schmitt, L.; White, J.S.; Sokolova, A.; Milošević, M.V.; Eskildsen, M.R. url  doi
openurl 
  Title (down) Topological energy barrier for skyrmion lattice formation in MnSi Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 102 Issue 10 Pages 104416-104419  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report the direct measurement of the topological skyrmion energy barrier through a hysteresis of the skyrmion lattice in the chiral magnet MnSi. Measurements were made using small-angle neutron scattering with a custom-built resistive coil to allow for high-precision minor hysteresis loops. The experimental data were analyzed using an adapted Preisach model to quantify the energy barrier for skyrmion formation and corroborated by the minimum-energy path analysis based on atomistic spin simulations. We reveal that the skyrmion lattice in MnSi forms from the conical phase progressively in small domains, each of which consisting of hundreds of skyrmions, and with an activation barrier of several eV.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000568994800005 Publication Date 2020-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 1 Open Access  
  Notes ; This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Award No. DE-SC0005051 (A.W.D.L., G.L., M.R.E.), the Research Foundation -Flanders (FWO-Vlaanderen) (R.M.M., M.V.M.), and Brazilian Agencies FACEPE, CAPES and CNPq (R.M.M.). M.J. was supported by the LANL Directed Research and Development (LDRD) program via the Directed Research (DR) project “A New Approach to Mesoscale Functionality: Emergent Tunable Superlattices (20150082DR).” E.D.B. was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under project “Quantum Fluctuations in Narrow-Band Systems.” A portion of this research used resources at the High Flux Isotope Reactor, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. Part of this work is based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institute, Villigen, Switzerland. We acknowledge useful conversations with E. Louden, D. Green, and A. Francisco in preparation for these experiments, as well as the assistance of K. Avers, G. Taufer, M. Harrington, M. Bartkowiak, and C. Baldwin in completing them. ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:171959 Serial 6631  
Permanent link to this record
 

 
Author Rezaei, M.; Sisakht, E.T.; Fazileh, F.; Aslani, Z.; Peeters, F.M. url  doi
openurl 
  Title (down) Tight-binding model investigation of the biaxial strain induced topological phase transition in GeCH3 Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 8 Pages 085441  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We propose a tight-binding (TB) model, that includes spin-orbit coupling (SOC), to describe the electronic properties of methyl-substituted germanane (GeCH3). This model gives an electronic spectrum in agreement with first principle results close to the Fermi level. Using the Z(2) formalism, we show that a topological phase transition from a normal insulator (NI) to a quantum spin Hall (QSH) phase occurs at 11.6% biaxial tensile strain. The sensitivity of the electronic properties of this system on strain, in particular its transition to the topological insulating phase, makes it very attractive for applications in strain sensors and other microelectronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000408570800004 Publication Date 2017-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:145697 Serial 4755  
Permanent link to this record
 

 
Author Nakhaee, M.; Ketabi, S.A.; Peeters, F.M. url  doi
openurl 
  Title (down) Tight-binding model for borophene and borophane Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 12 Pages 125424  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from the simplified linear combination of atomic orbitals method in combination with first-principles calculations, we construct a tight-binding (TB) model in the two-centre approximation for borophene and hydrogenated borophene (borophane). The Slater and Koster approach is applied to calculate the TB Hamiltonian of these systems. We obtain expressions for the Hamiltonian and overlap matrix elements between different orbitals for the different atoms and present the SK coefficients in a nonorthogonal basis set. An anisotropic Dirac cone is found in the band structure of borophane. We derive a Dirac low-energy Hamiltonian and compare the Fermi velocities with that of graphene.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000427983700004 Publication Date 2018-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 45 Open Access  
  Notes ; Discussions with Dr. Vahid Derakhshan and M. A. M. Keshtan are gratefully acknowledged. This paper is supported by the Methusalem program of the Flemish government and the FLAT-ERA Project TRANS-2D-TMD. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:150836UA @ admin @ c:irua:150836 Serial 4987  
Permanent link to this record
 

 
Author Van der Donck, M.; Conti, S.; Perali, A.; Hamilton, A.R.; Partoens, B.; Peeters, F.M.; Neilson, D. url  doi
openurl 
  Title (down) Three-dimensional electron-hole superfluidity in a superlattice close to room temperature Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 102 Issue 6 Pages 060503  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Although there is strong theoretical and experimental evidence for electron-hole superfluidity in separated sheets of electrons and holes at low T, extending superfluidity to high T is limited by strong two-dimensional fluctuations and Kosterlitz-Thouless effects. We show this limitation can be overcome using a superlattice of alternating electron- and hole-doped semiconductor monolayers. The superfluid transition in a three-dimensional superlattice is not topological, and for strong electron-hole pair coupling, the transition temperature T-c can be at room temperature. As a quantitative illustration, we show T-c can reach 270 K for a superfluid in a realistic superlattice of transition metal dichalcogenide monolayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000562320700001 Publication Date 2020-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 5 Open Access  
  Notes ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for M.V.d.D., by the FLAG-ERA project TRANS-2D-TMD, and by the Australian Government through the Australian Research Council Centre of Excellence in Future Low-Energy Electronics (Project No. CE170100039). We thank Milorad V. Milossevi ' c, Pierbiagio Pieri, and Jacques Tempere for helpful discussions. ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:172064 Serial 6628  
Permanent link to this record
 

 
Author Zuniga-Puelles, E.; Levytskyi, V.; Özden, A.; Guerel, T.; Bulut, N.; Himcinschi, C.; Sevik, C.; Kortus, J.; Gumeniuk, R. doi  openurl
  Title (down) Thermoelectric properties and scattering mechanisms in natural PbS Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 107 Issue 19 Pages 195203-195215  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract X-ray diffraction and energy dispersive x-ray spectroscopic analyses showed a natural galena (PbS) crystal from Freiberg in Saxony (Germany) to be a single phase specimen [rock salt (NaCl) structure type, space group Fm3m, a = 5.932(1) angstrom] with stoichiometric composition and an enhanced dislocation density (8 approximate to 1011 cm-2). The latter parameter leads to an increase of the electrical resistivity in the high-temperature regime, as well as to the appearance of phonon resonance with a characteristic frequency coPR = 3.8(1) THz. Being in the same range (i.e., 3-5.5 THz) with the sulfur optical modes of highest group velocities, it results in a drastic reduction (by similar to 75%) of thermal conductivity (K) at lower temperatures (i.e., < 100 K), as well as in the appearance of a characteristic minimum in K at T approximate to 30 K. Furthermore, the studied galena is characterized by phonon-drag behavior and by temperature dependent switch of the charge carrier scattering mechanism regime (i.e., scattering on dislocations for T < 100 K, on acoustic phonons for 100 K < T < 170 K and on both acoustic and optical phonons for 170 K < T < 300 K). The combined theoretical calculation and optical spectroscopic study confirm this mineral to be a direct gap degenerate semiconductor. The possible origins of the second-order Raman spectrum are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001009980400008 Publication Date 2023-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number UA @ admin @ c:irua:197808 Serial 8943  
Permanent link to this record
 

 
Author Verberck, B.; Nikolaev, A.V.; Michel, K.H. url  doi
openurl 
  Title (down) Theoretical model for the structural phase transition at the metal-insulator transition in polymerized KC60 Type A1 Journal article
  Year 2002 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 66 Issue 16 Pages 165425-165425,14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The recently discovered structural transition in polymerized KC60 at about 50 K results in a doubling of the unit cell volume and accompanies the metal-insulator transition. Here we show that the ((a) over right arrow+(c) over right arrow,(b) over right arrow,(a) over right arrow-(c) over right arrow) superstructure results from small orientational charge density waves along the polymer chains and concomitant displacements of the surrounding K+ ions. The effect is specific for the space group Pmnn of KC60 and is absent in RbC60 and CsC60 (space group I2/m). The mechanism is relevant for the metal-insulator transition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000179286400135 Publication Date 2002-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes Approved Most recent IF: 3.836; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:94907 Serial 3608  
Permanent link to this record
 

 
Author Chaves, A.; Mayers, M.Z.; Peeters, F.M.; Reichman, D.R. url  doi
openurl 
  Title (down) Theoretical investigation of electron-hole complexes in anisotropic two-dimensional materials Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 115314  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Trions and biexcitons in anisotropic two-dimensional materials are investigated within an effective mass theory. Explicit results are obtained for phosphorene and arsenene, materials that share features such as a direct quasiparticle gap and anisotropic conduction and valence bands. Trions are predicted to have remarkably high binding energies and an elongated electron-hole structure with a preference for alignment along the armchair direction, where the effective masses are lower. We find that biexciton binding energies are also notably large, especially for monolayer phosphorene, where they are found to be twice as large as those for typical monolayer transition metal dichalcogenides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372715700001 Publication Date 2016-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 33 Open Access  
  Notes ; This work has been financially supported by CNPq, through the PRONEX/FUNCAP and Science Without Borders programs, the FWO-CNPq bilateral program between Brazil and Flanders, and the Lemann Foundation. M.Z.M. is supported by a fellowship from the National Science Foundation, under Grant No. DGE-11-44155. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:133191 Serial 4262  
Permanent link to this record
 

 
Author Zhao, X.N.; Xu, W.; Xiao, Y.M.; Liu, J.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title (down) Terahertz optical Hall effect in monolayer MoS₂ in the presence of proximity-induced interactions Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 24 Pages 245412-12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of proximity-induced interactions such as Rashba spin-orbit coupling (SOC) and exchange interaction on the electronic and optical properties of n-type monolayer (ML) MoS2 is investigated. We predict and demonstrate that the Rashba SOC can induce an in-plane spin splitting with terahertz (THz) energy, while the exchange interaction lifts the energy degeneracy in different valleys. Thus, spin polarization can be achieved in an n-type ML MoS2 and valley Hall or optical Hall effect can be observed using linearly polarized THz radiation. In such a case, the transverse optical conductivity sigma(xy) (omega) results from spin-flip transition within spin-split conduction bands and from the fact that contributions from electrons with different spin orientations in different valleys can no longer be canceled out. Interestingly, we find that for fixed effective Zeeman field (or exchange interaction) the lowest spin-split conduction band in ML MoS2 can be tuned from one in the K valley to another one in the K' valley by varying the Rashba parameter lambda(R). Therefore, by changing lambda(R) we can turn the sign of the spin polarization and Im sigma(xy) (omega) from positive to negative. Moreover, we find that the dominant contribution of the selection rules to sigma(xx)(omega) is from electrons in the K valley and to sigma(xy) (omega) is from electrons in the K' valley. These important and interesting theoretical findings can be helpful to experimental observation of the optical Hall effect in valleytronic systems using linearly polarized THz radiation fields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000538715500011 Publication Date 2020-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 5 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (Grants No. U1930116, No. U1832153, and No. 11574319) and the Center of Science and Technology of Hefei Academy of Science (Grant No. 2016FXZY002). ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:170206 Serial 6622  
Permanent link to this record
 

 
Author Man, L.F.; Xu, W.; Xiao, Y.M.; Wen, H.; Ding, L.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title (down) Terahertz magneto-optical properties of graphene hydrodynamic electron liquid Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 104 Issue 12 Pages 125420  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The discovery of the hydrodynamic electron liquid (HEL) in graphene [D. Bandurin et al., Science 351, 1055 (2016) and J. Crossno et al., Science 351, 1058 (2016)] has marked the birth of the solid-state HEL which can be probed near room temperature in a table-top setup. Here we examine the terahertz (THz) magneto-optical (MO) properties of a graphene HEL. Considering the case where the magnetic length l(B) = root h/eB is comparable to the mean-free path l(ee) for electron-electron interaction in graphene, the MO conductivities are obtained by taking a momentum balance equation approach on the basis of the Boltzmann equation. We find that when l(B) similar to l(ee), the viscous effect in a HEL can weaken significantly the THz MO effects such as cyclotron resonance and Faraday rotation. The upper hybrid and cyclotron resonance magnetoplasmon modes omega(+/-) are also obtained through the RPA dielectric function. The magnetoplasmons of graphene HEL at large wave-vector regime are affected by the viscous effect, and results in red-shifts of the magnetoplasmon frequencies. We predict that the viscosity in graphene HEL can affect strongly the magneto-optical and magnetoplasmonic properties, which can be verified experimentally.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704419300004 Publication Date 2021-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:182518 Serial 7029  
Permanent link to this record
 

 
Author Mobaraki, A.; Sevik, C.; Yapicioglu, H.; Cakir, D.; Gulseren, O. doi  openurl
  Title (down) Temperature-dependent phonon spectrum of transition metal dichalcogenides calculated from the spectral energy density: Lattice thermal conductivity as an application Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal  
  Volume 100 Issue 3 Pages 035402  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Predicting the mechanical and thermal properties of quasi-two-dimensional (2D) transition metal dichalco-genides (TMDs) is an essential task necessary for their implementation in device applications. Although rigorous density-functional-theory-based calculations are able to predict mechanical and electronic properties, mostly they are limited to zero temperature. Classical molecular dynamics facilitates the investigation of temperature-dependent properties, but its performance highly depends on the potential used for defining interactions between the atoms. In this study, we calculated temperature-dependent phonon properties of single-layer TMDs, namely, MoS2, MoSe2, WS2, and WSe2, by utilizing Stillinger-Weber-type potentials with optimized sets of parameters with respect to the first-principles results. The phonon lifetimes and contribution of each phonon mode in thermal conductivities in these monolayer crystals are systematically investigated by means of the spectralenergy-density method based on molecular dynamics simulations. The obtained results from this approach are in good agreement with previously available results from the Green-Kubo method. Moreover, detailed analysis of lattice thermal conductivity, including temperature-dependent mode decomposition through the entire Brillouin zone, shed more light on the thermal properties of these 2D crystals. The LA and TA acoustic branches contribute most to the lattice thermal conductivity, while ZA mode contribution is less because of the quadratic dispersion around the Brillouin zone center, particularly in MoSe2 due to the phonon anharmonicity, evident from the redshift, especially in optical modes, by increasing temperature. For all the considered 2D crystals, the phonon lifetime values are compelled by transition metal atoms, whereas the group velocity spectrum is dictated by chalcogen atoms. Overall, the lattice thermal conductivity is linearly proportional with inverse temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000473536400003 Publication Date 2019-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193764 Serial 8645  
Permanent link to this record
 

 
Author Vagov, A.; Shanenko, A.A.; Milošević, M.V.; Axt, V.M.; Vinokur, V.M.; Aguiar, J.A.; Peeters, F.M. url  doi
openurl 
  Title (down) Superconductivity between standard types: Multiband versus single-band materials Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 174503  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375527500001 Publication Date 2016-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 37 Open Access  
  Notes Conselho Nacional de Desenvolvimento Científico e Tecnológico, 307552/2012-8 141911/2012-3 ; Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco, APQ-0589-1.05/08 ; U.S. Department of Energy; Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @ c:irua:141732 Serial 4480  
Permanent link to this record
 

 
Author Flammia, L.; Zhang, L.-F.; Covaci, L.; Perali, A.; Milošević, M.V. url  doi
openurl 
  Title (down) Superconducting nanoribbon with a constriction : a quantum-confined Josephson junction Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 13 Pages 134514  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Extended defects are known to strongly affect nanoscale superconductors. Here, we report the properties of superconducting nanoribbons with a constriction formed between two adjacent step edges by solving the Bogoliubov-de Gennes equations self-consistently in the regime where quantum confinement is important. Since the quantum resonances of the superconducting gap in the constricted area are different from the rest of the nanoribbon, such constriction forms a quantum-confined S-S'-S Josephson junction, with a broadly tunable performance depending on the length and width of the constriction with respect to the nanoribbon, and possible gating. These findings provide an intriguing approach to further tailor superconducting quantum devices where Josephson effect is of use.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000430161500004 Publication Date 2018-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes ; This work was supported by the Research Foundation Flanders (FWO-Vlaanderen), the Special Research Funds of the University of Antwerp (TOPBOF), the Italian MIUR through the PRIN 2015 program (Contract No. 2015C5SEJJ001), the MultiSuper network, and the EU-COST NANOCOHYBRI action CA16218. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:150754UA @ admin @ c:irua:150754 Serial 4980  
Permanent link to this record
 

 
Author Fomin, V.M.; Misko, V.R.; Devreese, J.T.; Moshchalkov, V.V. doi  openurl
  Title (down) Superconducting mesoscopic square loop Type A1 Journal article
  Year 1998 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 58 Issue Pages 11703-11715  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000076716700093 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 43 Open Access  
  Notes Approved Most recent IF: 3.836; 1998 IF: NA  
  Call Number UA @ lucian @ c:irua:21906 Serial 3354  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: