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Upper critical field in the model with finite-range interaction between electrons
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We develop a theory of the upper critical field in a BCS superconductor with a nonlocal interaction between
electrons. We have shown that the nonlocal interaction is characterized by the parameter kF ρ0, where kF is the
Fermi momentum and ρ0 is the radius of electron-electron interaction. The presence of the external magnetic
field leads to the generation of additional components of the order parameter with different angular momenta.
This effect leads to the enhancement of the upper critical field above the orbital limiting field. In addition the
upward curvature in the temperature dependence of Hc2(T ) in the clean limit is predicted. The impurity scattering
suppresses the effect in the dirty limit.
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I. INTRODUCTION

The upper critical field Hc2 is one of the important
characteristics of type-II superconductors. When the field is
sufficiently high, the superconductivity is destroyed, and the
field uniformly penetrates to the sample. With the continuous
decrease of the field superconducting regions start to nucleate
spontaneously at the upper critical filed H = Hc2(T ). Since
within these regions the order parameter is small, the linearized
phenomenological Ginzburg-Landau equations are applicable
in the vicinity of zero-field Tc. This leads to the linear in T

upper critical field Hc2(T ) ∝ Tc − T [1]. At zero temperature,
Hc2(0) is normally below the Clogston-Chandrasekhar [2] or
the Pauli pair-breaking limit given by Hp = 1.84Tc (in teslas)
for the singlet pairing.

Recent high-magnetic-field studies in cuprates [3–6],
MgB2, Ba1−xKxBiO3, and pnictide superconductors [7–9],
spin ladders [10], and organic superconductors [11] have
revealed a non-BCS upward curvature of the resistive Hc2(T ).
In some cases [11–13] the Pauli limit was exceeded by several
times. A nonlinear temperature dependence in the vicinity
of Tc has been unambiguously observed in a few samples
[6–8,12,14,15]. The observation of the departure from the BCS
behavior creates some controversy in the interpretation of the
resistive critical field [16–18]. If in some cases there is little
doubt that the resistive transition corresponds to the upper
critical field Hc2 [6–8,10–12,14,15], some measurements on
high-temperature superconductors suggest that the real upper
critical field is much higher than the resistive transition
[16–18]. Indeed, the thermodynamic determination of Hc2

[18–20] and anomalous diamagnetism above the resistive
transition [16,21] seem to justify such a conclusion.

Several theoretical concepts have been proposed in order to
explain a non-BCS upward curvature of the resistive Hc2(T ).
Some of the concepts are based on the fact that the size of the
pairs is smaller than the average distance between electrons,
and therefore the superconducting state may be approximated
by the weakly interacting charged Bose gas [14,22]. In that case
the upper critical field has universal temperature dependence
(Tc − T )3/2 near Tc [14,22].

Another approach is based on the multiband picture [7,15].
In the case when the Fermi surface has few sheets, the gaps
on different branches of the Fermi surface are independent

functions with different coupling constants. In such a system
the upper critical field may deviate considerably from the
classical BCS behavior, leading to the weak upward curvature
in the temperature dependence of Hc2 [7,15].

Similar temperature dependence of the upper critical field
may be caused by the field-induced mixture of the supercon-
ducting gaps of different symmetries [23–25]. On the basis of
the phenomenological Ginzburg-Landau approach it has been
suggested that in addition to the d-wave gap the external field
may lead to generation of the s-wave [23], additional d-wave
[24], or p-wave [25] components of the order parameter. This
effect is caused by the fact that symmetry allows nontrivial
gradient terms in the free energy [23,24], including Lifshitz
invariants [25]. This type of coupling may also lead to unusual
temperature dependence of the upper critical field Hc2(T )
[23,25]. This type of Ginzburg-Landau equation was later
derived from Gorkov equations assuming nonlocal potential
between electrons [26]. Note that the approach based on the
Ginzburg-Landau equation is restricted to the relatively high
temperatures Tc − T � Tc.

Here we generalize Werthamer-Helfand-Hohenberg
(WHH) theory [27–29] to the case of nonlocal interaction
between electrons. It allows us to go beyond the
high-temperature limit and consider the upper critical
field behavior caused by the intermixture of the different
order parameters at arbitrary temperature. We demonstrate
that the nonlocal interaction is characterized by the parameter
kF ρ0, where kF is the Fermi momentum and ρ0 is the
radius of electron-electron interaction. We show that in the
presence of the external magnetic field the finite radius
of electron-electron interaction leads to the generation of
additional components of the order parameter with different
angular dependence. This effect leads to the enhancement of
the upper critical field above the orbital limiting field as well
as to the upward curvature in the temperature dependence
of Hc2(T ) in the clean limit. The increase in the impurity
concentration suppresses the effect.

II. MAIN EQUATIONS

We consider a superconductor with a nonlocal pairing
potential V (r − r′) that explicitly depends on coordinates r,r′
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and can be characterized by the radius of interaction ρ0. The
superconductor can be described by the Hamiltonian

H =
∑

σ=↑,↓

∫
dr�†

σ (r)ξ̂�σ (r)

+
∫

drdr′V (r − r′)�†
↑(r)�†

↓(r′)�↓(r′)�↑(r). (1)

Here ξ̂ = 1
2m∗ (i∇ + eA)2 − μ,m∗ is the effective mass of an

electron, μ is the chemical potential, and A is the vector
potential.

The equation of motion for the field operator �↑(r,t)
derived from the Hamiltonian (1) is(

∂

∂t
+ ξ̂

)
�↑(r,t) = −

∫
dr′′�(r,r′′)�̄↓(r′′,t), (2)

where �(r,r′) = V (r − r′)〈�↓(r′)�↑(r)〉 is the order param-
eter of the superconductor. In contrast to the BCS model
the order parameter explicitly depends on two coordinates,
r and r′.

Multiplying Eq. (2) by �↓(r′,t ′), we obtain the equation
for the anomalous Green’s function F (rt,r′t ′). We write this
equation in terms of Matsubara frequencies ωn = πT (2n + 1),
where n is an integer,

(−iωn + ξ̂ )Fωn
(r,r′) =

∫
dr′′�(r,r′′)G−ωn

(r′,r′′). (3)

The anomalous Green’s function is closely related to the order
parameter

�(r,r′) = V (r − r′)T
∑
ωn

Fωn
(r,r′). (4)

In the present study we are interested in the upper critical field.
The order parameter at the magnetic field close to critical is
small. It allows us to use a normal-state expression for the
normal Green’s function Gωn

(r,r′) [30].
Expressions (3) and (4) allow us to give a closed equation

for the order parameter in terms of the normal-state Green’s
functions,

�(ρ,R) = −T V (ρ)
∑

n

∫
Gωn

(R + ρ/2,R′ + ρ ′/2)

×�(ρ′,R′)G−ωn
(R − ρ/2,R′ − ρ ′/2)dρ ′dR′. (5)

Here we introduce a new set of variables R and ρ for the order
parameter � and the pairing potential V . This variables are
related to the variables r and r′ used in Eq. (4) as follows. The
variable R = (r + r′)/2 describes the motion of the center
of mass of the Cooper pair. It is related to the macroscopic
distribution of the order parameter in the sample. At zero
magnetic field the order parameter is uniform and does not
depend on R. The variable ρ = r − r′ describes the relative
motion of electrons in the Cooper pair. It appears due to
the nonlocal pairing potential and describes the symmetry
of the order parameter. If we select local pairing potential
V ∝ δ(ρ),ρ should always be equal to zero. Our theory is
reduced to the conventional BCS theory in this case. In the
more general case the important values of ρ are of the order
of ρ0.

The internal coordinate ρ allows an additional degree of
freedom to the superconductivity. We are especially interested
in the angular dependence of ρ. We will show that the order
parameter can be divided into the components related to the
different angular momenta of ρ. These components are inde-
pendent without the external magnetic field. In the magnetic
field these components are intermixed. This intermixing leads
to the upward curvature of Hc2(T ) dependence. In the present
study we focus on the two-dimensional (2D) case. It may be
realized experimentally in atomically thin films or in very
anisotropic superconductors similar to high-Tc superconduc-
tors. In this case the components of the order parameter can be
classified by the projection of the angular momentum on the
axis perpendicular to the 2D plane. In principle a similar theory
can be formulated in three dimensions when the components of
the order parameter are classified by the value of the angular
momentum. However, this issue goes beyond of the present
study.

III. CLEAN LIMIT

We start our consideration from the clean limit (l 
 ξ ),
where the mean free path l is much larger than the coherence
length ξ of the superconductor. In this case we neglect the
effects of the impurities, and we can give an explicit expression
for the Green’s function:

G(0)
ωn

(R) =
⎧⎨
⎩

−im∗√
2πkF R

e
i(kF R−π/4)− |ωn |

vF
R
, ωn > 0,

im∗√
2πkF R

e
−i(kF R−π/4)− |ωn |

vF
R
, ωn < 0.

(6)

Here we consider the limit kF R 
 1. Expression (6) cor-
responds to the normal Green’s function without magnetic
field. The Green’s function in the magnetic field is related
to G(0)

ωn
as Gωn

(R,R′) = G(0)
ωn

(R′ − R) exp[iφ(R,R′)], where

φ(R,R′) ≈ e
∫ R′

R dsA(s). We also neglect the paramagnetic
effects, assuming that they are as small as �/EF � 1. These
effects may be important in the case where the upper critical
field reaches the Pauli pair-breaking limit. This situation
usually occurs due to strong impurity scattering. However,
as will be shown later, strong impurity scattering suppresses
the field-induced mixture of pairing with different angular
momenta.

The equation for the order parameter with the Green’s
functions (6) is

�(ρ,R) = −V (ρ)
∫

dR′dρ ′K0(R̃)�(ρ ′,R′)

× exp[2iφ(R,R′)] cos

(
kF R̃�

R̃

)
, (7)

where R̃ = R′ − R,R̃ = |R̃|, � = ρ ′ − ρ, and the kernel

K0(R) = m∗2T

2πkF R sinh (2πT R/vF )
. (8)

Let us assume for simplicity that the pairing potential has
the form V (ρ) = −V0δ(|ρ| − ρ0), where ρ0 plays the role of
the interaction radius. The potential with the finite range of
interaction leads to the formation of pairs with different angular
momenta. Indeed, Fourier components of the potential V (k′ −
k) = V (ϕ′,ϕ), where k,k′ = kF , depend only on polar angles
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ϕ,ϕ′ of vectors k,k′. Calculating the matrix elements Vn,n′ =∫
dϕdϕ′V (ϕ′,ϕ)einϕe−in′ϕ′

, we obtain

Vn,n′ = −V0ρ0J
2
n (kF ρ0)δn,n′ . (9)

Here Jn(x) is the Bessel function. Therefore this potential leads
to the pairing in the channels with nonzero orbital moments
n with the critical temperatures Tcn = Tc0 exp(λ−1

0 − λ−1
n ) and

λn = m∗
2π

V0ρ0J
2
n (kF ρ0). Note that the strength of the pairing is

determined by the parameter kF ρ0. If kF ρ0 � 1, all channels
except the n = 0 channel are suppressed because Jn(x) ≈ xn

when x � 1. When kF ρ0 � 1, one of the channels with n 
= 0
can have the largest Tc and corresponds to the main order pa-
rameter of the superconductor [31]. In real systems the smallest
radius of interaction is determined by the screening radius,
and therefore the situation kF ρ0 > 1 seems to be natural. Like
in the conventional BCS theory we do not try to choose a
realistic pairing potential. Real interaction between electrons is
complicated and may not be characterized by the potential. On
the other hand, we believe that the exact form of the potential
is not very important for our results. All the final results will be
expressed in terms of critical temperatures Tcn in different pair-
ing channels [see Eqs. (19), (21), and (29)]. Therefore the exact
form of the potential drops out from our results. Also we want
to note that as long as the pairing potential acts only on the elec-
trons near the Fermi surface it can be reduced to its dependence
on angles ϕ,ϕ′. This dependence defines Vn,n′ in the Eq. (9) and
the critical temperatures Tcn. We believe that any coordinate
form of the potential that results in the same temperatures Tcn

should lead to similar results for Hc2. Here we choose the
potential to make the calculations as simple as possible.

For the discussed choice of the pairing potential the order
parameter can be written as

�(ρ,R) = �(ρ0,ϕ,R) =
∑

n

�n(R)einϕ. (10)

Substituting this expansion back into the integral equation (7),
we obtain

�n(R) = V0ρ0

∑
n′

∫
dR′K0(R̃)Lnn′(R̃)

× exp[2iφ(R,R′)]�n′(R′), (11)

where the matrix Lnn′ is defined as

Ln,n′ = ei(n′−n)θ

⎧⎪⎪⎨
⎪⎪⎩

(−1)l+kJ2l(kF ρ0)J2k(kF ρ0),
|n| = 2l,|n′| = 2k,

(−1)l+kJ2l+1(kF ρ0)J2k+1(kF ρ0),
|n| = 2l + 1,|n′| = 2k + 1,

(12)

where θ is the polar angle of the vector R̃.
The matrix Ln,n′ connects the angular momenta of the

internal coordinate ρ and the averaged coordinate R. While
the total momentum is conserved, the nondiagonal matrix
elements of Ln,n′ allow the transfer of the momentum between
the degrees of freedom corresponding to ρ and R.

Following the procedure described in Ref. [28], we expand
�(R′) into the series over R′ − R and join the space derivatives
with vector potential into the single operator D = ∂

∂R + 2ieA:

�n(R) = V0ρ0

∑
n′

∫
dR̃K0(R̃)Lnn′(R̃) exp (D · R̃)�n′(R).

(13)

Note that the operator D acts only on the coordinate R.
Let us choose the gauge A = (0,Hx,0). With this gauge

the order parameters �n are not dependent on y and can be
considered as functions �n(x). Moreover, this gauge allows us
to relate different terms �n of the order parameter to different
coordinate functions ψm,

ψm =
(

1

π�L2
H

)1/4 1√
2mm!

e−x2/2L2
H Hm

(
x

LH

)
, (14)

that correspond to the eigenfunctions of the harmonic oscilla-

tor. Here L−1
H =

√
2πH
φ0

is the magnetic length, and φ0 is the

flux quantum. Hn are the Hermite polynomials.
To apply the basis (14) it is useful to make the expansion

DR̃ = R̃
2 (D+e−iθ + D−eiθ ), where D± = Dx ± iDy and θ is

the polar angle of the vector R̃. The action of the operators D−
and D+ on the functions �m has a simple form,

D−ψm(x) =
√

2m

LH

ψm−1(x),

D+ψm(x) = −
√

2(m + 1)

LH

ψm+1(x). (15)

Equation (13) in the notation D+,D− has the form

�n(R) = V0ρ0

∑
n′

∫
dR̃K0(R̃)Lnn′(R̃) exp

(
− R̃2

4L2
H

)

× exp

(
R̃

2
e−iθD+

)
exp

(
R̃

2
eiθD−

)
�n′ (R).

(16)

Here we have used the formula e(P̂+Q̂) = eP̂ eQ̂e−[P̂ ,Q̂]/2.
Expressions (15) allow us to search for the solution of this

equation in the form

�n(R) = �nψn+m0 (x). (17)

The constant m0 corresponds to the dominant pairing channel
that has the largest critical temperature Tc.

The coordinate dependence (17) reduces the integral equa-
tion (16) to a matrix equation. The size of the matrix is formally
infinite. However, in a realistic situation one can easily apply
a cutoff for the size of the matrix. The order parameter �n is
always related to the Bessel function Jn(kF ρ0). For realistic ρ0

these Bessel functions are small for large n, which allows us
to neglect �n with large n.

A. The n = 0 dominant channel

Let us first consider the case when the n = 0 channel is
dominant. This means that Tc0 > Tcn for n 
= 0. On the other
hand, Tcn for n 
= 0 should be large enough to have a relatively
large effect on Hc2(T ). This situation takes place when kF ρ0 ≈
2. In this case it is sufficient to study the admixture of the order
parameter �2 in the channel n = 2.

The dominant n = 0 channel corresponds to m0 = 0. The
order parameter �0 has the coordinate dependence ψ0, and the
order parameter �2 has the coordinate dependence ψ2. This
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FIG. 1. Upper critical field hc2 = Hc2(T )
Tc0dHc2(Tc0)/dT

for different
ratios of Tc0/Tc2 in the case when the pairing in the channel n = 0 is
dominant.

dependence leads to the matrix equation(
I1L00 −I3L02

−I3L20 I2L22

)(
�0

�2

)
= 0, (18)

where

I1 = ln
T

Tc0
+

∫ ∞

0
dx

1 − exp
(− x2

4z

)
sinh (x)

,

I2 = ln
T

Tc2
+

∫ ∞

0
dx

1 − exp
(− x2

4z

)(
1 − x2

z
+ x4

8z2

)
sinh (x)

, (19)

I3 =
∫ ∞

0
dx

x2

2
√

2z

exp
(− x2

4z

)
sinh (x)

,

z = 2πT 2φ0

v2
F H

,L00 = J 2
0 (kF ρ0),L22 = J 2

2 (kF ρ0), and L02 =
L20 = J0(kF ρ0)J2(kF ρ0). Equation (18) has a solution if
I1I2 − I 2

3 = 0. Therefore all the details about the pairing
potential are dropped out of the equation for Hc2. The
only information about the potential remains in the critical
temperature in the channel with n = 0,Tc0 and in the channel
with n = 2,Tc2.

To calculate the critical field from Eq. (18) one should
find the maximal magnetic field H when the equation has a
nontrivial solution at the given temperature. The calculated
critical fields for this case are presented in Fig. 1. The main
effect due to admixture of the component of the gap with n = 2
is the increase of the critical field up to 50%. Moreover, the
upward curvature of the temperature dependence Hc2(T ) is
also clearly pronounced.

B. The n = 2 dominant channel

When the parameter kF ρ0 increases kF ρ0 ≈ 3.5,Tc2 > Tc0,
and the dominant channel is the one with n = 2. In this
situation one should choose m0 = 2, and the magnetic field
leads to the coupling between the channels with n = −2,0,2.

FIG. 2. Upper critical field hc2 = Hc2(T )
Tc2dHc2(Tc2)/dT

for different
ratios of Tc2/Tc0 in the case when the pairing in the channel n = 2 is
dominant.

The system of equations for the order parameter reads⎛
⎝I11L22 −I12L20 −I13L22

−I21L02 I22L00 −I23L02

−I31L22 −I32L20 I33L22

⎞
⎠

⎛
⎝�−2

�0

�2

⎞
⎠ = 0, (20)

where

I11 = ln
T

Tc2
+

∫ ∞

0
dx

1 − exp
(− x2

4z

)
sinh (x)

,

I22 = ln
T

Tc0
+

∫ ∞

0
dx

1 − exp
(− x2

4z

)(
1 − x2

z
+ x4

8z2

)
sinh (x)

,

I33 = ln
T

Tc2
+

∫ ∞

0
dx

1− exp
(− x2

4z

)(
1− 2x2

z
+ 3x4

4z2 − x6

12z3 + x8

384z4

)
sinh (x)

,

I12 = I21 =
∫ ∞

0
dx

x2

2
√

2z

exp
(− x2

4z

)
sinh (x)

,

I13 = I31 =
∫ ∞

0
dx

√
6x4

48z2

exp
(− x2

4z

)
sinh (x)

I23 = I32 =
√

3

2

∫ ∞

0
dx

(
x2

z
− x4

3z2
+ x6

48z3

)
exp

(− x2

4z

)
sinh (x)

.

(21)

Again the upper critical field is determined from the
equation Det(Î ) = 0, where matrix Î is the left-hand-side
matrix in Eq. (20). All the details of the potential are hidden
in critical temperatures Tc0 and Tc2.

Figure 2 represents the upper critical field calculated for
this case. As can be seen from this picture, there is a strong
enhancement of the critical field Hc2(0). Usually, Hc2(0) is
expressed via the slope of the critical field at Tc (the orbital
limiting field) [32]:

Hc2(0) = 0.69Tc

dHc2(T )

dT

∣∣∣∣
T =Tc

. (22)
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l l+q

FIG. 3. Diagrammatic representation for the kernel K(p,p′,k,k′),
where the dashed line represents impurity scattering.

In the considered case Hc2(0) is strongly enhanced in
comparison with the orbital limiting field (22). The up-
ward curvature of Hc2(T ) is even more pronounced than in
Fig. 1.

IV. SUPERCONDUCTOR WITH IMPURITIES

In order to describe superconducting pairing in the presence
of impurities we need to average the product of two Green’s
functions in Eq. (5) over impurities. This averaging may be
described by the diagrammatic equation (Fig. 3). As presented
in Fig. 3, the corresponding integral equation contains single-
particle Green’s functions averaged over impurities as well as
the renormalized vertex [30,33],

Kω(p,p′,k,k′) = K0
ω(p,p′,k,k′) + n

(2π )6

∫
dqdldm,

K0
ω(p,l,k,m)|u(q)|2K(l + q,p′,m − q,k′). (23)

Here K0
ω(p,p′,k,k′) = Gω(p,p′)G−ω(k,k′) is the product

of the two Green’s functions Gω averaged over im-
purities separately. Kω(p,p′,k,k′) = Gω(p,p′)G−ω(k,k′) is
the same product, where the Green’s functions are av-
eraged together. It corresponds to a term of the exact
kernel of Eq. (5) related to the Matsubara frequency
ωn. The exact kernel K is the sum over the Matsubara
frequencies K = ∑

ωn
Kωn

.
Taking into account that the impurity scattering potential

does not depend on the transmitted momentum q, Eq. (23)
can be solved using the coordinate representation. The details
of this solution are described in the Supplemental Material
[34]. The kernel Kωn

can be expressed as a matrix in the basis
ψm corresponding to the macroscopic coordinates R and in
the basis einϕ for the internal coordinate ρ. It is the same
basis that we applied in the clean limit. Similar to the clean
limit, the values n and m are related, m = n + m0, where m0

corresponds to the main order parameter.

Kn,n′;ωn
= K0

n,n′;ωn
+ 1

2πτN (0)
K0

n,∅;ωn
K0

∅,n′;ωn

+ 1

[2πτN (0)]2
K0

n,∅;ωn
K∅,∅;ωn

K0
∅,n′;ωn

, (24)

K∅,∅;ωn
= K0

∅,∅;ωn

1 − (2πτN (0))−1K0
∅,∅;ωn

, (25)

where τ is the impurity scattering time and N (0) = m∗/2π

is 2D density of states. Here ∅ is the additional lower index
corresponding to n = 0,ρ0 = 0. It appears due to the impurity
scattering. The zero-order matrix elements K0

n,n′;ωn
can be

expressed as integrals,

K0
n,n′;ωn

=
∫

ψn+m0 (R)ψn′+m0 (R′)einϕ−in′ϕ′

×Gωn
(R + ρ/2,R′ + ρ ′/2)

×G−ωn
(R − ρ/2,R′ − ρ ′/2)

× δ(|ρ| − ρ0)δ(|ρ ′| − ρ0)dρdρ ′dRdR′. (26)

The value of ρ0 should be considered to be ρ0 = 0 when
calculating K0

n,n′;ωn
with the lower index ∅ with Eq. (26).

The integral equation for the order parameter is reduced to
the matrix equation

�n = T V0

∑
n′,ωn

Kn,n′;ωn
�n′ . (27)

The n = 0 dominant channel

When the dominant channel of pairing corresponds to n =
0, we apply m0 = 0. It allows us to link indexes m and n. After
that, using Eqs. (24), (25), and (26), we can calculate matrix
Kn,n′ = ∑

ω Kn,n′;ω for n,n′ = 0,2. The equation for �0,�2

has the form(
C0,0L00 −C0,2L02

−C2,0L20 C2,2L22

)(
�0

�2

)
= 0. (28)

Here the coefficients Cn,n′ are

C0,0 = ln
T

Tc0
− 2

∞∑
n=0

[
llH tI1(yn)

l − lH I1(yn)
− 1

2n + 1

]
,

C2,0 = C0,2 =
∞∑

n=0

lH t

2
√

2

lI2(yn)

l − lH I1(yn)
,

C2,2 = ln
T

Tc2
− 2

∞∑
n=0

[
lH tI3(yn)

+ l2
H t

8

I 2
2

l − lH I1(yn)
− 1

2n + 1

]
, (29)

and

I1(y) = 1

y

∫ ∞

0
dx exp [−x − (x/2y)2],

I2(y) = 1

y3

∫ ∞

0
dxx2 exp [−x − (x/2y)2], (30)

I3(y) = 1

y

∫ ∞

0
dx exp [−x − (x/2y)2]

(
1 − x2

y2
+ x4

8y4

)
.

Here yn = lH [lt(2n + 1) + 1]/l,l is the mean free path mea-
sured in units of LTc0 = vF /2πTc0 = 0.882ξ,lH = LH/LTc0 ,
and t = T/Tc0.

The upper critical field Hc2 corresponds to the largest
magnetic field when Eq. (28) has a nontrivial solution. Again,
all the details about the pairing potential are dropped from
the equation for Hc2. The only information about the potential
remains in critical temperatures Tc0 and Tc2.

The temperature dependence of the upper critical field
Hc2(T ) for different values of the mean free path l and different
values of ln (Tc0/Tc2) is presented in Fig. 4. The upper critical
field is normalized to the extrapolation of the linear Hc2(T )
dependence near Tc: hc2 = Hc2(T )/(Tc0dHc2(Tc0)/dT ). As
can be seen from Fig. 4(a), there is a big difference in Hc2
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(a)

(b)

FIG. 4. (a) Upper critical field for different ratios of Tc0/Tc2 and
different mean free paths of electrons l. (b) The dependence of the
upper critical field on l for ln(Tc0/Tc2) = 1.

between curves with ln (Tc0/Tc2) = 1 and ln (Tc0/Tc2) = 100
in the clean limit l = 1000. On the other hand, these curves are
almost indistinguishable in the dirty limit with l = 0.2. Note
that the curves in the dirty limit are below the orbital limiting
field [Eq. (22)]. On the other hand, the curve of Hc2(T ) in
the clean limit and for ln (Tc0/Tc2) = 1 substantially exceeds
the orbital limiting field. Therefore we can conclude that the
finite radius of interaction substantially increases the critical
field only in the clean limit. In the dirty limit the critical
temperature in the channels with n 
= 0 is strongly suppressed
by the impurity scattering, leading to suppression of the upper
critical field. Figure 4(b) illustrates this suppression for finite
values of l. The effect is significantly suppressed at l � 3.

V. DISCUSSION

The finite radius of the electron-electron interaction allows
pairing with Cooper pairs with finite angular momentum
�n. Each channel of pairing corresponds to its own critical
temperature Tcn. However, even when the temperature is larger
than Tcn of some nondominant channel of the pairing, its order
parameter can be generated in the presence of the external
magnetic field. This generation is still related to the possibility

FIG. 5. Comparison of the theoretical model with the experiments
on MgB2 [7] and on LuNi2B2C [15].

of the existence of a given order parameter. For example, when
the leading parameter corresponds to n = 0 and Tc2 tends to
zero, ln(Tc0/Tc2) → ∞, and the effects of the coupling of �0

and �2 are absent (see Fig. 1).
The possibility of the existence of the order parameters

with n 
= 0 is closely related to the conservation of the internal
angular momentum of Cooper pairs. In the dirty limit the
impurity scattering is much stronger than electron-electron
attraction. The angular momentum of the Cooper pair is
therefore quickly lost due to scattering. It suppresses not only
the critical temperature of the nontrivial order parameters but
also the generation of these parameters in the magnetic field.

A temperature dependence of Hc2 similar to the one that
results from our theory was observed in MgB2 [7] and
in LuNi2B2C [15]. In Fig. 5 we compare our theory with
these experiments. The theory describes the experimental data
relatively well. The small discrepancies can be attributed to the
purely 2D character of the theory. We have discussed that the
microscopic structure of the potential is reduced to the critical
temperatures in different channels in terms of our theory. For
most of the relevant values of kF ρ0 only two channels can
have relatively high Tcn and can effectively affect the Hc2(T )
dependence with the selected coordinate form of the potential.
Therefore the present theory can describe only the situations
when the Hc2(T ) dependence is governed by the interaction
of two channels. However, more complex forms of the pairing
potentials can allow three or more channels with relatively high
Tcn. We believe that such potentials can lead to a further in-
crease of the upper critical magnetic field at low temperatures.

In conclusion we generalized the Werthamer-Helfand-
Hohenberg theory to the case of a nonlocal interaction between
electrons. The theory is defined by the single parameter kF ρ0.
We showed that when kF ρ0 � 1, the presence of the external
magnetic field leads to the generation of additional components
of the order parameter with different angular momenta.
As a result the upper critical field is enhanced above the
orbital limiting field. The upward curvature in the temperature
dependence of Hc2(T ) in the clean limit is predicted. The
impurity scattering suppresses the effect in the dirty limit.
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