|
Record |
Links |
|
Author |
Zhao, X.N.; Xu, W.; Xiao, Y.M.; Liu, J.; Van Duppen, B.; Peeters, F.M. |
|
|
Title |
Terahertz optical Hall effect in monolayer MoS₂ in the presence of proximity-induced interactions |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Physical Review B |
Abbreviated Journal |
Phys Rev B |
|
|
Volume |
101 |
Issue |
24 |
Pages |
245412-12 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
The effect of proximity-induced interactions such as Rashba spin-orbit coupling (SOC) and exchange interaction on the electronic and optical properties of n-type monolayer (ML) MoS2 is investigated. We predict and demonstrate that the Rashba SOC can induce an in-plane spin splitting with terahertz (THz) energy, while the exchange interaction lifts the energy degeneracy in different valleys. Thus, spin polarization can be achieved in an n-type ML MoS2 and valley Hall or optical Hall effect can be observed using linearly polarized THz radiation. In such a case, the transverse optical conductivity sigma(xy) (omega) results from spin-flip transition within spin-split conduction bands and from the fact that contributions from electrons with different spin orientations in different valleys can no longer be canceled out. Interestingly, we find that for fixed effective Zeeman field (or exchange interaction) the lowest spin-split conduction band in ML MoS2 can be tuned from one in the K valley to another one in the K' valley by varying the Rashba parameter lambda(R). Therefore, by changing lambda(R) we can turn the sign of the spin polarization and Im sigma(xy) (omega) from positive to negative. Moreover, we find that the dominant contribution of the selection rules to sigma(xx)(omega) is from electrons in the K valley and to sigma(xy) (omega) is from electrons in the K' valley. These important and interesting theoretical findings can be helpful to experimental observation of the optical Hall effect in valleytronic systems using linearly polarized THz radiation fields. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000538715500011 |
Publication Date |
2020-06-09 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2469-9969; 2469-9950 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.7 |
Times cited |
8 |
Open Access |
|
|
|
Notes |
; This work was supported by the National Natural Science Foundation of China (Grants No. U1930116, No. U1832153, and No. 11574319) and the Center of Science and Technology of Hefei Academy of Science (Grant No. 2016FXZY002). ; |
Approved |
Most recent IF: 3.7; 2020 IF: 3.836 |
|
|
Call Number |
UA @ admin @ c:irua:170206 |
Serial |
6622 |
|
Permanent link to this record |