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Massless Dirac fermions (MDFs) emerge as quasiparticles in various novel materials such as graphene and
topological insulators, and they exhibit several intriguing properties, of which Veselago focusing is an outstanding
example with a lot of possible applications. However, up to now Veselago focusing merely occurred in p-n junction
devices based on the isotropic MDF, which lacks the tunability needed for realistic applications. Here, motivated
by the emergence of novel Dirac materials, we investigate the propagation behaviors of anisotropic MDFs in such
a p-n junction structure. By projecting the Hamiltonian of the anisotropic MDF to that of the isotropic MDF and
deriving an exact analytical expression for the propagator, precise Veselago focusing is demonstrated without the
need for mirror symmetry of the electron source and its focusing image. We show a tunable focusing position that
can be used in a device to probe masked atom-scale defects. This study provides an innovative concept to realize
Veselago focusing relevant for potential applications, and it paves the way for the design of novel electron optics
devices by exploiting the anisotropic MDF.
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I. INTRODUCTION

Massless Dirac fermions (MDFs) have emerged as quasi-
particles in many novel materials, such as graphene [1] and
topological insulators [2]. The unique physics and fascinating
phenomena of MDFs motivate the search for new Dirac
materials [3,4], which usually have novel energy dispersions.
For example, anisotropic MDFs exist extensively in two-
dimensional [5–12] and three-dimensional Dirac materials
[13–15]. In addition, the MDFs in graphene can also be
tuned from isotropic to anisotropic by strain [16,17], the
application of a superlattice potential [18–21], and by partial
hydrogenation [22]. There is continuing enthusiasm to exploit
the unusual transport properties of MDFs in various host
systems, which are crucial for future potential applications [3].

Due to MDFs’ unique features of being gapless and having
high mobility, they are ideal to realize different electron
optics applications [23–26], of which Veselago focusing is an
outstanding example [23]. This seminal study [23] brings the
concept of negative refraction into graphene and then provides
an electronic analog of Veselago focusing. This remarkable
theoretical result stood as a challenge to experimentalists [27].
Veselago focusing implies that all electron waves diverging
from a source across the junction converge into a focal
image due to negative refraction, which lies at the heart of
many theoretical proposals [23,28–35]. In particular, Veselago
focusing has been observed in two recent experiments [36,37],
which boosted new research interest.

Previous studies were either limited to the isotropic MDF
[23,31,35] or they showed that the anisotropy of energy
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dispersion deteriorates Veselago focusing [38,39]. Therefore,
it seems impossible to exceed the requirement of the isotropic
MDF, which leads to limited electronic systems realizing Vese-
lago focusing, and a lack of tunability for relevant applications.
For example, the source is usually fixed, which leads to an
immovable focal image at its mirror position [23]. In this study,
we consider Veselago focusing of anisotropic MDFs using a
p-n junction (PNJ) structure. By projecting the Hamiltonian of
the anisotropic MDF to that of the isotropic MDF, we derive an
exact analytical expression for the propagator in order to show
the precise Veselago focusing, which we show to have superior
tunable features. The tunable features not only lead to a novel
design, e.g., to probe the masked defect by utilizing a tunable
focusing position, but they also favor the previous proposed
applications based on Veselago focusing. This study presents
an innovative concept to realize Veselago focusing that will
be beneficial for potential applications, and it provides another
way to design electron optics devices by utilizing anisotropic
MDFs.

II. THEORETICAL FORMALISM

A. Model and Hamiltonian

The considered PNJ structure is shown schematically in
Fig. 1(a) and it consists of a left N region and a right P region.
Each region of the PNJ hosts the anisotropic MDF for which
the anisotropy can be different in the N and P regions. In
general, the Hamiltonian of the PNJ in Fig. 1(a) has the form

Ĥ = (ĤN + VN )�(−x) + (ĤP + VP )�(x), (1)

where Ĥi is the intrinsic Hamiltonian of the i (= P,N ) region,
VN = −V0 (VP = V0) is the gate-induced scalar potential
in the N (P ) region by assuming V0 > 0 without loss of
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FIG. 1. The p-n junctions based on the anisotropic and isotropic
massless Dirac fermions, which can be projected into each other.
(a) The p-n junction based on anisotropic massless Dirac fermions,
in which N and P regions have anisotropy � = �N and � = �P ,
respectively. To investigate the propagation properties, we consider
the Green function or propagator denoted by the red line with an arrow
from r1 = (x1,y1) to r2 = (x2,y2) in the Cartesian coordinate system
(ex,ey). The inset in the white rectangle zone shows the Fermi level
EF relative to the Dirac points with the energy positions −V0 in the
N region and V0 in the P region. (b) The anisotropic massless Dirac
fermions can be projected into the isotropic ones. (c) The p-n junction
based on the isotropic massless Dirac fermions with � = 1, which is
projected from (a). Here, we used �N = 5/8 and �P = 1/2.

generality, and �(x) is the step function: �(x) = 1 for x > 0
and �(x) = 0 for x < 0. In general, the anisotropic MDF of
each uniform region can be described by using the Hamilto-
nian [17] Ĥi = vF (σ̂x p̂x + �iσ̂yp̂y). Here, vF represents the
Fermi velocity, and σ̂x,y and p̂x,y are, respectively, the Pauli
operator and the momentum operator. In particular, � = �i

is introduced to account for the anisotropy of the MDF in
the i region, and the specific value of anisotropy depends
on the choice of material and the way to tune the energy
dispersion, e.g., for the MDF in graphene, the anisotropy can
be tuned continuously by reversible strain up to a factor of 5
[40] and may be even larger by using a superlattice potential
[18]. For the intrinsic Hamiltonian, the energy dispersion is
εμ(ki) = μvF

√
k2
i,x + �2

i k
2
y , where the index μ = + (μ = −)

is for the conductance (valence) band, ki = (ki,x,ky) is the
momentum vector, and the corresponding position vector is
r = (x,y). Note that we take units such that h̄ ≡ 1 throughout
this work.

B. Green’s function and the projection method

To investigate the propagation properties of the anisotropic
MDF in the PNJ structure, we concentrate on the correspond-
ing propagator or Green’s function (GF), which is defined
as G(r2,r1,εF ,V0) = 〈r2|(εF + i0+ − Ĥ )−1|r1〉 shown by the
red line with an arrow in Fig. 1(a). Note that G is a matrix
due to the spinor nature of Ĥ . We have developed a simple
and elegant method to derive the GF of isotropic MDF in
graphene PNJ structure through the matching technique com-
bining translational invariance along the interface direction
of the junction [34]. The generalization of this method to
the anisotropic MDF is straightforward. However, here we
present an alternative but more simple method, i.e., the pro-
jection method, which can give the PNJ GF of the anisotropic
MDF from that of the isotropic MDF one. To this aim, we
project the anisotropic Hamiltonian Ĥi into the form Ĥ 0

i =
vF (σ̂xp̂

0
i,x + σ̂y p̂y), where Ĥ 0

i ≡ Ĥi/�i is the Hamiltonian
for the isotropic MDF, and p̂0

i,x ≡ p̂x/�i . The correspond-

ing energy dispersion is ε0
μ(k0

i ) = μvF

√
(k0

i,x)2 + k2
y , where

ε0
μ(k0

i ) = εμ(ki)/�i presents the projection relation for en-
ergy dispersion, k0

i = (k0
i,x,ky) is the projected momentum

vector with k0
i,x = ki,x/�i , and the corresponding position

vector is r0= (x0,y) with x0 = �ix. Here, to obtain the
projection relation x0 = �ix, we have used the constraint
[x̂,p̂x] = [x̂0,p̂0

x] = i required by performing the Hamiltonian
projection. Interestingly, the projection relation for the energy
dispersion changes the MDF from an anisotropic to an isotropic
one, as shown by Fig. 1(b). As a result, we obtain the equivalent
PNJ of Fig. 1(a) but based on the isotropic MDF as shown
by Fig. 1(c) through the projection relation for the position
vector in real space, and the projection relation for the energy
dispersion in energy space leads to

ε0
i = εi

�i

. (2)

Here, ε0
N = V 0

N + ε0
F and ε0

P = V 0
P − ε0

F (εN = VN + εF

and εP = VP − εF ) represent the doping levels since the Fermi
level ε0

F (εF ) lies between the junction potentials of the N and
P regions ε0

F ∈ [−V 0
0 ,V 0

0 ] (εF ∈ [−V0,V0]) in the PNJ based
on the isotropic (anisotropic) MDF. Obviously, the doping
level defines the momentum through the energy dispersions,
e.g., ε0

i (k0
i ) = vF

√
(k0

i,x)2 + k2
y . In the two equivalent PNJ

structures, the GFs of the isotropic and anisotropic MDFs are
related to each other:

G(r2,r1,εF ,V0) = G0
(
r0

2,r
0
1,ε

0
F ,V 0

0

)
. (3)

Here, the PNJ GF of the isotropic MDF [see the black line
with an arrow in Fig. 1(c)] is defined as Ĝ0(r0

2,r
0
1,ε

0
F ,V 0

0 ) ≡
〈r0

2|(ε0
F + i0+ − Ĥ 0)−1|r0

1〉, where Ĥ 0 is the PNJ Hamiltonian
of the isotropic MDF in the form

Ĥ 0 = (
Ĥ 0

N + V 0
N I

)
�(−x0) + (

Ĥ 0
P + V 0

P I
)
�(x0). (4)

C. Analytical Green’s function of the isotropic MDF

First, we need to derive PNJ GF of the isotropic MDF.
By examining the propagation phase and its higher-order
derivative, we present a detailed analytical derivation of the
PNJ GF of the isotropic MDF in Appendix, which helps to
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construct the intuitive physical picture for the propagation
properties of the isotropic MDF across the PNJ, i.e., the
classical trajectories, negative refraction, and then Veselago
focusing [23]. We assume a source at r0

1 = (−a,0); the Vese-
lago focusing occurs at its mirror image r0

2 = r0
1m = (a,0) and

ε0
F = 0 in the case of a symmetric junction implying ε0

N = ε0
P .

The analytical formula for the PNJ GF of the isotropic MDF
is G0(r0

1m,r0
1,ε

0
F ,V 0

0 ) = G(V 0
0 ) from the definition

G
(
V 0

0

) ≡ ρ
(
V 0

0

)
2i

(π

2
+ 2σx

)
, (5)

where ρ(V 0
0 ) = V 0

0 /(2πv2
F ) is the density of states of the

isotropic MDF with the doping level V 0
0 . Because G ∝ V 0

0 , an
enhancement of the focusing intensity of the isotropic MDF
occurs when increasing the doping level through electrical
gating or using other ways. On the other hand, the focusing
position has no tunability and must be the mirror image of a
fixed source, otherwise the intensity will decrease drastically
[34]. In fact, there is a hidden parameter dependence, G ∝
1/v2

F , which clearly shows the enhancement of the focusing
intensity by decreasing the Fermi velocity. If the Fermi velocity
can be manipulated, this should be a more effective way
than controlling the doping level to enhance the focusing
intensity since GF has the dependence G ∝ V 0

0 /v2
F . Due to

rapid advances in materials science, many Dirac materials
have been discovered with different Fermi velocities providing
various opportunities for electron optics, e.g., to enhance the
focusing intensity. The general Dirac energy dispersion has
two key variables: one is the Fermi velocity and the other is the
anisotropy. The manipulation of Fermi velocity is promising
for electron optics, which has been investigated previously
[19], while here we focus on the anisotropy as a new tuning
parameter for Veselago focusing.

III. VESELAGO FOCUSING OF THE ANISOTROPIC MDF
AND ITS APPLICATION

A. Tunable Veselago focusing by the anisotropic MDF

Using the projection relations between the isotropic
and anisotropic MDFs, the propagation properties of the
anisotropic MDF across PNJ can be obtained (see Ap-
pendix A). Here, we concentrate on Veselago focusing of the
anisotropic MDF and highlight its tunable features. The nec-
essary conditions for the Veselago focusing of the anisotropic
MDF in PNJ can be given by using the following projection
relations:

r2 = − 1

γ
r1, εF = 1 − γ

1 + γ
V0. (6)

Here, r1 = r0
1/�N = (−a/�N,0), the equation for εF is

from Eq. (2) and ε0
N = ε0

P for the symmetric PNJ based on
the isotropic MDF, and γ = �P /�N is the ratio of anisotropy
of the P and N regions. In light of the anisotropy, we can
consider three cases: (i) If γ = 1 and �N = �P = 1, it recovers
the case for the isotropic MDF, i.e., the Veselago focusing
occurs with mirror symmetry. (ii) If γ = 1 and �N = �P �= 1,
it is for anisotropic MDF. Comparing to case (i), the inter-site
distance for Veselago focusing can be tuned by the degree of
anisotropy, although mirror symmetry is still required. (iii) If

FIG. 2. Veselago focusing of anisotropic massless Dirac fermions
shown by the magnitude of |G21| as a function of r2 = (x2,y2). Here,
G21 is the matrix element of the propagator matrix G(r2,r1,εF ,V0).
Without loss of generality, we assume r1 = (−500,0), V0 = 0.2, and
�N = 1. (a) εF = −V0/3 and �P = 2. (b) εF = 0 and �P = 1. (c)
εF = V0/3 and �P = 1/2. (d) |G21| as a function of x2 for y2 = 0
using the same color code as in (a)–(c). In the plot, we define the
unit length a0 and unit energy t0 through vF = 3/2a0t0 by analogy to
graphene [1].

γ �= 1, we also have the anisotropic MDF. In this case, we can
tune the focusing position for a fixing source, and Veselago
focusing occurs in the asymmetric PNJ in contrast to the
previous two cases. For Veselago focusing of the anisotropic
MDF, we perform a numerical calculation to show the tunable
focusing position by using γ = 2 and γ = 1/2 in Figs. 2(a)
and 2(c), while Fig. 2(b) for the isotropic MDF (namely γ = 1
and �N = �P = 1) is used as a reference.

Furthermore, the intensity of Veselago focusing can also
be tuned by changing the anisotropy of the MDF. By using
the projection relation, the PNJ GF based on the anisotropic
MDF can be expressed as G(−r1/γ,r1,εF ,V0) = 2/(�N +
�P )G(V0), where G given by Eq. (5) is the GF of the isotropic
MDF with the doping level V0, and the prefactor is introduced
by anisotropy of the MDF. Therefore, identical to the isotropic
MDF, the focusing intensity of the anisotropic MDF can also
be enhanced by increasing V0 and by decreasing the Fermi
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FIG. 3. The proposed device to probe the masked atom-scale
defect in the Cartesian coordinate system (ex,ey). Graphene is sand-
wiched between the top and bottom substrates, which may contact
the gates [36,37]. By using the gates, one can form the PNJ, which
has the left N or encapsulated region with green and the right P

or the unencapsulated region with blue. By applying a superlattice
potential or strain on the substrate below the unencapsulated region,
the anisotropic MDF is obtained in the P region with a tunable degree
of anisotropy �P . Assuming a defect denoted by the black dot at
r1 = (x1,y1) in the N region, combining the Veselago focusing and
the anisotropic MDF of the P region, the focusing image will occur
at r2 = (x2,y2) = (−x1/�P ,y1) [see Eq. (6) with �P > 1] as the red
circle or at r0

2 = (x0
2 ,y2) = (x1,y1) [see Eq. (6) with �P = 1] as the

black circle, i.e., the realization of the probe of the masked defect.
Here, an isotropic MDF is assumed in the N region, i.e., �N = 1.

velocity vF . Because of the ratio

G/G = 2/(�N + �P ), (7)

we have the intensity modulation through the anisotropy �N

and �P of the MDF in the N and P regions. The modulation of
the focusing intensity can be clearly seen in Fig. 1(d), which
compares the Veselago focusing by considering different val-
ues of γ , and the quantitative relations among the different
intensities are fully described by Eq. (7).

B. Potential applications and discussions

In the ballistic regime, even a single scatterer may influence
the whole device. A detailed understanding of the influence
of such defects on electronic transport is necessary in order
to exploit or avoid their influence [41]. However, it is very
difficult to identify masked defects. As a novel application, we
propose a device by utilizing the tunable focusing position of
the anisotropic MDF to probe masked atom-scale defects in
two-dimensional materials with graphene as an example.

To achieve high mobility, it is necessary to encapsulate
graphene with insulating and atomically flat boron nitride
crystals. The mismatch between graphene and the boron nitride
crystals usually brings a small amount of defects into the
graphene samples [42]. Figure 3 schematically shows the
proposed device in which an incomplete encapsulation is
proposed, i.e., graphene is sandwiched between two substrates
and the area of the bottom substrate is larger than that of the
top one. Then, the encapsulated region and the unencapsulated
region can be doped into N type and P type through the gates
contacting the top and bottom substrates, i.e., a PNJ is formed.
Large-area ballistic graphene is not easy to fabricate [36,37],
so in order to fully utilize the ballistic nature, the encapsulated
graphene should be as large as possible, which leads to a small
unencapsulated region for the probe. To apply the superlattice
potential [18,20,21,43–46] or the strain on the substrate [16,17]
below the unencapsulated region, one induces the anisotropic

MDF in the P region whose degree of anisotropy �P can be
fine-tuned, e.g., make �P > 1. If there is a defect denoted by
the black dot at r1 = (x1,y1) in the N region, due to Veselago
focusing, one can probe a focusing image denoted by the red
circle at r2 = (x2,y2) = (−x1/�P ,y1) [see Eq. (6)] with the
strong local density of states in the small unencapsulated region
by using a scanning tunneling microscope, i.e., the realization
of the probe of the masked defect. Here, for the sake of
simplicity, the isotropic MDF is assumed in the N region, i.e.,
�N = 1. In the simple case of the PNJ for the isotropic MDF,
the Veselago focusing can also be used as a probe for masked
defects, but the focusing should be at the mirror image and may
be beyond the unencapsulated region, e.g., see the mirror image
at r0

2 = (x0
2 ,y2) = (−x1,y1). Therefore, the tunable focusing

position of anisotropic MDF is beneficial to probe masked
defects.

Subsequently, we discuss the experimental feasibility of
Veselago focusing of the anisotropic MDF. On the one hand,
in order to analytically reveal the underlying physics that
is generally applicable to various Dirac materials hosting
anisotropic MDFs, we consider the PNJ with an abrupt change
of anisotropy and on-site potential in our model study. The
Veselago focusing is determined by the propagation phase of
the MDF between the source and the probe [see Eq. (A2)].
Since the MDF propagates mainly in the uniform regions of
PNJ, the Veselago focusing should also exist in the presence
of a smooth region for the anisotropy and on-site poten-
tial. The same physics can also explain the experimental
verification of Veselago focusing in the PNJ with a smooth
potential region [36,37]. To the specific material, e.g., strained
graphene whose anisotropy is highly tunable by an elastic or
piezoelectric substrate [47], the quantitative atomic simulation
can be performed by a proper numerical method [48] and
is necessary for comparison with future experiments. On
the other hand, the realization of Veselago focusing requires
high-mobility samples. Fortunately, the continuing advances of
experimental technology allow the fabrication of high-mobility
Dirac materials hosting anisotropic MDFs, e.g., graphene with
a superlattice potential [49], ZrTe5 [50,51], and Cd3As2 [52],
which are inherently anisotropic. Furthermore, in order to
observe Veselago focusing of anisotropic MDFs in PNJs based
on different Dirac materials, the tunable doping is essential and
should not severely reduce sample mobility. Therefore, the
electrical gating, which is widely used for two-dimensional
systems [36,37], is a better way to dope the sample since
the chemical doping may greatly decrease the quality of the
sample. In addition, we note that the Veselago focusing of
anisotropic MDFs could be verified in artificial graphene of
cold atoms in light of the recent demonstration of Veselago
focusing of isotropic MDFs [53] and the tunable dispersion
properties of cold atoms in an optical lattice [54].

We have shown clearly the Veselago focusing of the
anisotropic MDF and its tunability, which will offer easy
access to future theoretical and experimental studies. Such
Veselago focusing has many potential applications [23,28–
31,33–35]. Since Veselago focusing in the PNJ based on the
anisotropic MDF shows superior tunable features, this must
also favor applications. It is convenient to expand our study to
incorporate other degrees of freedom, such as spin [29,31,34]
and valley [28], to consider a three-dimensional MDF [35],
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and to examine multiple junctions [28] and even superlattices
[30]. Therefore, this study paves the way for an investigation
of electron optics behavior of anisotropic MDFs with potential
device applications.

IV. CONCLUSIONS

In this study, we investigated the propagation of anisotropic
MDF in a PNJ structure. We constructed projection relations
tuning the anisotropic MDF into isotropic MDF. We analyt-
ically showed the precise Veselago focusing and stressed its
tunable features, which are favorable for the design of novel
devices to probe (e.g., masked defects) by utilizing the tunable
focusing position. This study presents an innovative concept
to realize tunable Veselago focusing, and it paves the way for
an investigation of electron optics of anisotropic MDF.
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APPENDIX: ANALYTICAL DERIVATION OF THE PNJ GF
FOR ISOTROPIC MDF

Here, we present a detailed analytical derivation of the PNJ
GF for isotropic MDF, which helps to construct an intuitive
physical picture for the propagation properties of isotropic and
anisotropic MDFs across the PNJ. The PNJ GF of the isotropic
MDF is [34]

G0 =
∫

dky

2π
eiφ0(ky )t0

(
ϕ0

N,ϕ0
P

) ∣∣u−
(−k0

P,x,ky

)〉〈
u+

(
k0
N,x,ky

)∣∣
ivF k0

N,x/k0
N

,

(A1)

where k0
N ≡ ε0

N/vF , k0
P ≡ ε0

P /vF , k0
N,x ≡

√
(k0

N )2 − k2
y ,

k0
P,x ≡

√
(k0

P )2 − k2
y , and the propagation phase is

φ0(ky) = kyY + a

√(
k0
N

)2 − k2
y − X

√(
k0
P

)2 − k2
y. (A2)

Here, for the sake of simplicity, we assume r0
1 = (−a,0) and

r0
2 = (X,Y ). In polar coordinates, we use ϕ0

N ∈ [−π/2,π/2]
for the incident angle and ϕ0

P ∈ [−π/2,π/2] for the refractive
angle, as defined by k0

N,x = k0
N cos ϕ0

N and k0
P,x = k0

P cos ϕ0
P .

Then ϕ0
N and ϕ0

P are connected via ky = k0
N sin ϕ0

N = k0
P sin ϕ0

P

and the transmission coefficient is

t0
(
ϕ0

N,ϕ0
P

) = 2 cos ϕ0
N

e−iϕ0
N + e−iϕ0

P

(A3)

corresponding to the propagation of the isotropic MDF from
the left N region to the right P region. t0(ϕ0

N,ϕ0
P ) implies

high transparency of PNJ based on the isotropic MDF [55,56],

which is an important factor beneficial for the realization of
Veselago focusing [23].

The isotropic MDF across the PNJ exhibits novel electron
optics behaviors similar to those in metamaterials with a nega-
tive refraction index, e.g., Veselago focusing and caustics [23],
which can be explained by examining the classical trajectory
determined by the propagation phase. The classical trajectory
ky,c going from r0

1 to r0
2 is determined by ∂φ0(ky)/∂ky = 0 as

Y = a tan θ0
N − X tan θ0

P = R0
N sin θ0

N − R0
P sin θ0

P , (A4)

where we have introduced the classical incident angle
θ0
N ∈ [−π/2,π/2] and the refractive angle θ0

P ∈ [−π/2,π/2]
through

tan θ0
N ≡ ky,c√(

k0
N

)2 − k2
y,c

, (A5)

tan θ0
P ≡ ky,c√(

k0
P

)2 − k2
y,c

, (A6)

and the classical path in the N region and the P region, i.e.,
R0

N ≡ a/ cos θ0
N and R0

P ≡ X/ cos θ0
P . From sin θ0

N = ky,c/k0
N

and sin θ0
P = ky,c/k0

P , we further have

sin θ0
N

sin θ0
P

= k0
P

k0
N

= ε0
P

ε0
N

≡ n0, (A7)

which, together with Eq. (A4), completely determines θ0
N,θ0

P

and hence the classical trajectory. Here, the definition of θ0
P

makes n0 be the magnitude of the effective refractive index of
the PNJ, which should be negative [23].

1. Veselago focusing and the analytical Green’s function

For the symmetric PNJ, we have k0
N = k0

P ≡ k0
F , θ0

N = θ0
P ≡

θ0, and then the classical trajectory is

Y = tan θ0(a − X) = (
R0

N − R0
P

)
sin θ0. (A8)

Along the classical path, the phase is


0 = k0
F

a − X

cos θ0
= k0

F Y

sin θ0
= k0

F

(
R0

N − R0
P

)
= sgn(a − X)k0

F

∣∣r0
2 − r0

1m

∣∣, (A9)

where r0
1m = (a,0) is the mirror image of r0

1 = (−a,0). In par-
ticular, if r0

2 = r0
1m, the zero-order term 
0 and the arbitrary-

order derivative of φ0(ky) vanish for all classical trajectories
with different ky,c, which leads to the Veselago focusing.

To derive the analytical GF for the symmetric PNJ, we
define the incident angle ϕ0 ∈ [−π/2,π/2] through k0

x =
k0
F cos ϕ0 and ky = k0

F sin ϕ0. Then using the transmission
coefficient t0 = cos ϕ0eiϕ0

, we have (keeping traveling waves
only)

G0 ≈ k0
F

2πivF

∫ π/2

−π/2
cos ϕ0eiϕ0

dϕ0 eiφ0

× ∣∣u0
−
( − k0

x,ky

)〉〈
u0

+
(
k0
x,ky

)∣∣ (A10)

= k0
F

4πivF

(g0 + gyσx + gzσz), (A11)
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where

g0
0 ≡

∫ π/2

−π/2
cos2 ϕ0eiφ0

dϕ0, (A12)

g0
y ≡

∫ π/2

−π/2
cos ϕ0eiφ0

dϕ0, (A13)

g0
z ≡ i

∫ π/2

−π/2
sin ϕ0 cos ϕ0eiφ0

dϕ0. (A14)

Here, the propagation phase

φ0(ϕ0) = k0
F [Y sin ϕ0 + (a − X) cos ϕ0]

= 
 cos(ϕ0 − θ0) (A15)

and θ0 = tan−1[Y/(a − X)] is the classical incident angle
and 
0 ≡ k0

F (a − X)/ cos θ0 is the phase along the classical
trajectory. For X = a and Y = 0, i.e., r0

2 = r0
1m, we have

φ0 = 0 and hence g0
0 = π/2, g0

y = 2, g0
z = 0, i.e.,

G0
(
r0

2,r
0
1,ε

0
F ,V 0

0

) = k0
F

4πivF

(π

2
+ 2σx

)
. (A16)

The analytical expression for the GF shows the dependence
on the material parameters such as vF , ε0

F , and V 0
0 , but it

does not depend on the position vectors r0
1 and r0

2 as long as
r0

2 = r0
1m.

2. Caustics

For the asymmetric PNJ, there is the caustics corresponding
to the singularity of the classical trajectory. For R2 = (X,Y )

at certain special locations, the quadratic term of φ0(ky) also
vanishes, i.e., w0 ≡ ∂[φ0(ky)]2/∂k2

y = 0 with

w0 = a

q0
N cos3 θ0

N

− X

q0
P cos3 θ0

P

. (A17)

Therefore, w0 = 0 leads to the equation

cos θ0
N

cos θ0
P

=
(

aq0
P

Xq0
N

)1/3

=
(

n0a

X

)1/3

. (A18)

The caustics curve is determined by Eqs. (A4), (A7), and
(A18):

Y = ±
[
X

2/3
cusp − X2/3

]3/2

√
1 − (n0)2

(for n0 < 1 and X < Xcusp),

(A19)

Y = ±
[
X2/3 − X

2/3
cusp

]3/2

√
(n0)2 − 1

(for n0 > 1 and X > Xcusp).

(A20)

Note that there is no solution for n0 < 1,X > Xcusp and
n0 > 1,X < Xcusp. Here, Xcusp = n0a is the position of the
cusp, which is a singularity in the density of classical trajecto-
ries.
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