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Topological phase transitions in small mesoscopic chiral p-wave superconductors
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Spin-triplet chiral p-wave superconductivity is typically described by a two-component order parameter, and
as such is prone to unique emergent effects when compared to the standard single-component superconductors.
Here we present the equilibrium phase diagram for small mesoscopic chiral p-wave superconducting disks in
the presence of magnetic field, obtained by solving the microscopic Bogoliubov–de Gennes equations self-
consistently. In the ultrasmall limit, the cylindrically symmetric giant-vortex states form the ground state of the
system. However, with increasing sample size, the cylindrical symmetry is broken as the two components of the
order parameter segregate into domains, and the number of fragmented domain walls between them characterizes
the resulting states. Such domain walls are topological defects unique for the p-wave order, and constitute a
dominant phase in the mesoscopic regime. Moreover, we find two possible types of domain walls, identified by
their chirality-dependent interaction with the edge states.
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I. INTRODUCTION

Superconductors described by multicomponent order pa-
rameters have drawn a lot of attention over the last few decades
[1–3]. They exhibit many interesting properties that are not
possible in the conventional single-component superconduc-
tors, such as collective Leggett modes [4], fractional vortices
[5], skyrmionic knotted solitons [6], phase solitons [6–8], and
hidden criticality [9], to name a few.

Of particular interest are the spin-triplet chiral p-wave
superconductors with the multicomponent order parameter
of type �±(p) ∼ px ± ipy [10,11]. Such symmetries can
be realized in the A phase of superfluid 3He [12] and
may be attributed to the layered ruthenate superconductor
Sr2RuO4 [13]. Such an order parameter breaks the time-
reversal symmetry (TRS), indicating that Cooper pairs carry
internal angular momentum. For this reason, chiral p-wave
superconductors can support rich topological defect states
with exotic physical properties. For example, a vortex exhibits
different properties depending on whether its vorticity is
parallel or antiparallel to the internal angular momentum of
the Cooper pairs [14–16]. Further, one finds that domains
of different chiralities, namely, px + ipy and px − ipy , are
degenerate in energy and therefore can coexist in the ground
state, separated by a chiral domain wall (DW)—a topological
defect unique to chiral superconductivity [17–20]. Such a
domain wall is attractive for half-quantum vortices [21], and
when enclosed it can form a so-called coreless vortex, with
skyrmionic topological properties [22–24].

Another important aspect of chiral p-wave superconductiv-
ity is its nontrivial topological order [11], analogous to that of
the Moore-Read state for quantum Hall systems at 5/2 filling
[25]. A consequence of that topological order is the existence
of Majorana zero modes [26], which obey non-Abelian
statistics and hold promise for realization of a topological
quantum computer. A well-known example is that the half-
quantum vortex in a chiral p-wave superconductor supports a
single Majorana zero mode at its core [27]. However, the half-
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quantum vortex is thermodynamically unfavorable because its
energy diverges logarithmically with the size of the system due
to unscreened spin currents. Therefore, one possible way to
stabilize such half-quantum vortices is to employ mesoscopic
confinement. The evidences for the existence of half-quantum
vortices in a mesoscopic Sr2RuO4 ring [28], as well as in
trapped superfluid 3He [29], have recently been reported.

Mesoscopic superconducting systems, the dimensions of
which are comparable to the penetration depth and the
coherence length, often serve as a platform to investigate the
fundamental physics of topological defect states. Vortex states
in confined conventional superconductors have been well
studied over the past few decades [30–34], with emphasis on
their dependence on the size and geometry of the sample. For
example, a coalescence of a multivortex state into a giant vortex
(one vortex but carrying multiple flux quanta) under influence
of mesoscopic confinement was predicted and observed
experimentally [31,35,36]. In multicomponent superconduc-
tivity, mesoscopic samples are expected to stabilize fractional
vortices [37], which are thermodynamically unfavorable in
bulk samples. However, the emergent states in mesoscopic
chiral p-wave superconductors are still under debate. For
example, Refs. [38,39] show contradictory results for small
mesoscopic p-wave disks, even in the absence of external
magnetic field. For that reason, in this paper we study possible
states in small mesoscopic chiral p-wave superconducting
disks by solving the microscopic Bogoliubov–de Gennes
(BdG) equations self-consistently, in two dimensions, without
any unnecessary assumption. We find that, in contrast to the
vortex states always forming the ground state in ultimately
small disks, domain-wall states form the ground state in
larger mesoscopic samples. These domain walls appear upon
splitting of the composite vortex, which has coinciding vortex
(or antivortex) cores in each component of the order parameter.
In terms of symmetry breaking, this phase transition is similar
to the one between giant vortex states and multivortex states in
s-wave superconductors. These novel states made of domain
walls and their interplay with vortices in the mesoscopic
limit are unique to p-wave order, and therefore relevant to
several recently realized systems with p-wave-like topological
superconductivity [40–43]. The only such mesoscopic system
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to date is the nanoscale Pb/Co/Si(111) hybrid of Ref. [44],
in which the chiral edge modes were observed and where the
dependence of the ground state on the size of the system and
the applied magnetic field can be directly explored, with an
eye on stabilization and observation of the Majorana bound
states within the emergent topological defects.

The paper is organized as follows. In Sec. II we introduce
our theoretical (Bogoliubov–de Gennes) formalism for p-wave
superconductors, allowing for noncylindrically symmetric
states. In Sec. III we present the results of our simula-
tions, reporting the equilibrium phase diagram of emergent
topological-defect states as a function of the applied field
and the size of the mesoscopic p-wave system, with thorough
investigation of all found states and transitions between them.
Our findings are summarized in Sec. IV.

II. THEORETICAL FORMALISM

The order parameter with chiral p-wave pairing symmetry
can be expressed as

�(r,k) = �+(r)Y+(k) + �−(r)Y−(k). (1)

Here �±(r) are the spatial px ± ipy-wave order parameters
and Y±(k) = (kx ± iky)/kF are the pairing functions in rela-
tive momentum space. The spinless BdG equations are written
as [45][

He(r) �(r)

−�∗(r) −H ∗
e (r)

][
un(r)

vn(r)

]
= En

[
un(r)

vn(r)

]
, (2)

where

He(r) = 1

2me

[
h̄

i
∇ − e

c
A(r)

]2

− EF (3)

is the single-particle Hamiltonian with me being the electron
mass, EF the Fermi energy, and A(r) the vector potential.
We use the gauge ∇ · A = 0. For simplicity, we consider a
cylindrical two-dimensional Fermi surface. In addition, the
contribution of the supercurrent to the total magnetic field can
be neglected in thin superconducting samples [23], resulting
in a vector potential of form A(r) = 1

2H0reθ , with the applied
magnetic field H = H0ez. Term �(r) is written as

�(r) = − i

kF

∑
±

[
�±�± + 1

2
(�±�±)

]
, (4)

with �± = e±iθ (∂r ± i
r
∂θ ) in cylindrical coordinates.

un(r)(vn(r)) are electron(hole)-like quasiparticle eigenfunc-
tions obeying the normalization condition∫

|un(r)|2 + |vn(r)|2dr = 1, (5)

and En are the corresponding quasiparticle eigenenergies. The
system is considered to be a disk of radius R, therefore the
boundary conditions for the wave functions are un(r = R) = 0
and vn(r = R) = 0. The order parameters, �±(r), satisfy the
self-consistent gap equations

�±(r) = −i
g

2kF

∑
En<h̄ωD

[v∗
n(r)�∓un(r) − un(r)�∓v∗

n(r)]

× [1 − 2fn], (6)

where kF =
√

2mEF /h̄2 is the Fermi wave number, g is the
superconducting coupling strength, and fn = f (En) = [1 +
exp(En/kBT )]−1 is the Fermi-Dirac distribution function. The
summation in Eq. (6) is over all the quasiparticle states with
energies in the Debye window, h̄ωD . Due to the px ± ipy

symmetry, the angular momentum can take the values ±1, and
the phase winding numbers L± of �± always preserve the
relative relation L− = L+ + 2.

To solve the previous equations, we expand the quasipar-
ticle wave functions, un(r) and vn(r), in terms of a complete
orthonormal basis set:(

un(r)

vn(r)

)
=

∑
μj

(
cn
μj

dn
μj

)
ϕjμ(r,θ ), (7)

where cn
μj and dn

μj are coefficients, μ ∈ Z are angular quantum
numbers corresponding to the angular momentum operator,
and the basis functions

ϕjμ(r) =
√

2

RJμ+1(αjμ)
Jμ

(
αjμ

r

R

)
eiμθ

√
2π

, (8)

with Jμ the μth Bessel function and αjμ the j th zero of Jμ.
The BdG equations can now be reduced to a matrix eigenvalue
problem. Here, we do not impose the cylindrical symmetry
on the order parameters. Therefore, �± have the general form
�± = ∑

m �±(r)eimθ .
To construct the ground-state phase diagram, we calculate

the free energy at each self-consistent iteration step (see
Appendix A for more details) as

G =
∑

n

{
2Enfn − 2En

∫
dr|vn|2

−
∫

dr
[
u∗

n�̃vnfn + vn�̃u∗
n(1 − fn)

]} − T S. (9)

Here S = kB[fn ln fn + (1 − fn) ln(1 − fn)] is the electronic
entropy and �̃ = 2� − �′, where � is calculated using Eq. (4)
with the initial input of �± but in �′ the order parameters �±
are calculated according to Eq. (6). The free energy G given by
Eq. (9) is valid during all self-consistent iteration steps so that
one can find that G always decreases with iterations. Once the
self-consistence loop converges, we also obtain �̃ = �. The
magnetic energy has been neglected since we consider a thin
sample. For convenience, we define the superconducting free-
energy density G with respect to the corresponding normal
state one, i.e.,

G = (G − GN )/A, (10)

where GN is the free energy of the normal state (i.e., �± ≡ 0)
and A = πR2 is the area of the disk sample. The corresponding
bulk superconducting free-energy density at zero temperature
(T = 0) in absence of magnetic field (φ = 0) is denoted as G0.

Without particular loss of generality, and taking into
account numerical convenience, the parameters used in this
paper are EF = h̄ωD ≈ 27�0 [46], resulting in (1) kF ξ0 ≈ 18,
where ξ0 = h̄vF /π�0 is the BCS coherence length at zero
temperature, with vF (kF ) the Fermi velocity (wave number)
and �0 the bulk order-parameter amplitude at zero tempera-
ture, and (2) �0/kBTc = 1.76 (weak-coupling regime), where
kB is the Boltzmann constant. The considered temperature is
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FIG. 1. The (magnetic flux, size) ground-state phase diagram for
a mesoscopic p-wave disk. Magnetic flux φ through the sample is
in units of flux quantum φ0 = hc

2e
, and radius R of the sample is

in units of BCS coherence length ξ0. In small disks, the ground
state is formed by (giant) composite vortex states with cylindrical
symmetry, characterized by the sequentially increasing vorticity L+.
With increasing size the system undergoes symmetry-breaking phase
transitions from composite vortex states to the chiral domain-wall
states (except for the vortex-free state L+ = 0). The number of chiral
domain walls in a given state corresponds to L+ + 2. Dashed lines
indicate the second-order phase transitions and solid lines indicate
the first-order ones.

T = 0.1Tc, beyond the applicability range of the Ginzburg-
Landau (GL) based models.

III. RESULTS

In this paper, we focus on small mesoscopic p-wave
superconducting disks exposed to perpendicular magnetic
field, to highlight the unique phase transitions in that regime.
The ground state of the system is obtained by comparing the
free-energy density G of all found states. The solutions are
obtained by using different initial conditions for �±(r), such as
spatially randomized values (field-cooled conditions), differ-
ent winding numbers, and/or different vortex configurations.
We put forward our main results in Fig. 1, summarizing the
equilibrium phase diagram as a function of the radius of the
sample R, and the magnetic flux φ threading the sample.

Contrary to what many would expect, the ground state is not
vortex free in absence of magnetic field. As seen in Fig. 1, the
ground state at zero field is a vortex state with winding numbers
L± = ∓1 in the two components of the order parameter. The
vortex-free state, corresponding to the conventional Meissner
state of s-wave superconductors, stabilizes as the ground state
only at higher magnetic field.

We have actually checked that the ground state in the bulk
sample with same parameters is the vortex-free state with
L+ = 0 (L− = L+ + 2 holds in all cases, and will be omitted
from here on). Why is then the vortex state with L+ = −1
the ground state at zero field for mesoscopic samples? To
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FIG. 2. (a) The superconducting free-energy density G of the
superconducting states as a function of the sample size (R), in
absence of magnetic field (φ = 0). The L+ = −1 domain wall
(DW) state replaces the time-reversal-symmetric (TRS) L+ = −1
vortex state as the ground state for R � 6ξ0. Note that the vortex-free
state with L+ = 0 becomes the ground state in much larger disks,
while the antiparallel vortex state (AV) with L+ = −1 (in which
the �− component is nearly completely suppressed) only exists as
a metastable state. For clarity, the characteristic line profiles of the
two components of the order parameter are shown in panel (b) for all
aforementioned states.

explain this, we recall that chiral p-wave superconductors
host edge states with an edge current [47,48] due to their
topological nature. When decreasing the size of the sample
(R), the edge states overlap and their interaction increases,
causing destruction of superconductivity in the vicinity of the
sample center, very similar to the normal vortex core. Due
to this, as seen from Fig. 2, the Gibbs free-energy density
of the vortex-free state with L+ = 0 increases strongly with
R decreasing. In contrast, the vortex state with L+ = −1 in
ultrasmall disks and at zero field exhibits lower energy, and
preserves TRS. In this case, both components of the order
parameter not only satisfy cylindrical symmetry, i.e., �± =
|�±(r)|eiL±θ , but also have the same spatial distribution, i.e.,
|�+(r)| = |�−(r)|. In other words, there is an antivortex at the
center of the sample in one component, and a vortex at the very
same place in the other component. Their supercurrents ideally
cancel each other, making this phase stable at zero field. As a
result, the L+ = −1 (TRS) state is fostered by the interaction
between the edge states, and the free energy of this state does
not increase as fast as the energy of the vortex-free state with
R decreasing. As seen from Fig. 2, the L+ = −1 (TRS) state
is the ground state in a wide range of small disks (R � 6ξ0).
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FIG. 3. Characterization of the L+ = −1 domain-wall state. For
the sample of size R = 13ξ0 and zero magnetic field, we show the
spatial distribution of the two components of the order parameter
|�±| (a), (c) and their phase θ± (b), (d), respectively. Added circles
in the phase plots mark the position of vortices (black/red circle
for indicated negative/positive vorticity). Panel (e) shows the spatial
distribution of the total order parameter |�| = √|�+|2 + |�−|2 and
(f) is the corresponding zero-bias LDOS.

Note that the so-called antiparallel vortex state [with L+ =
−1, but the nearly completely suppressed �− component of
the order parameter, thus labeled as L+ = −1 (AV) from here
on] does not exist in such a small disk. Although it stabilizes
in larger samples, it remains metastable (i.e., with higher
energy, as shown in Fig. 2), even for nonzero external magnetic
field.

When the size of the sample R is increased, the confinement
weakens. In this case, we find that in the L+ = −1 (TRS)
state the cores of the antivortex in �+ and the vortex in
�− separate from each other, leading to broken cylindrical
symmetry. As an illustrative example, we show the spatial
profile of the order parameter after the formation of such a
state in Figs. 3(a), 3(c) and 3(e). As seen there, �+ and �−
segregate, and |�+| becomes mirror symmetric with |�−|, as
the antivortex shifts to the left side of the sample while the
vortex shifts to the right side [see the plots of the phase of
the respective components of the order parameter in Figs. 3(b)
and 3(d)]. This results in a clear chiral domain wall between
�+ and �−, passing through the center of the sample. The
total order parameter, |�|, is suppressed at the domain wall
[shown in Fig. 3(e)]. In addition, as a topological defect, the
domain wall carries low-lying bound states passing Fermi
energy, leading to low-lying local-density-of-states (LDOS)
distributions at the domain wall [23]. Figure 3(f) shows the
zero-bias LDOS for the L+ = −1 (DW) state in the sample
with R = 13ξ0. The domain wall yields a maximum in LDOS
near the sample center. Near the sample edge, the domain wall
causes suppression of the LDOS due to the interference effect
between the domain-wall bound states and the edge bound
states. The latter ones yield enhanced LDOS everywhere else
near the sample edges. With increasing external magnetic field,
the domain wall shifts to either left or right depending on the
polarity of the applied field.

FIG. 4. Characterization of the L+ = 1 domain-wall state (with
three domain walls, as L− = 3), for the sample with R = 13ξ0 and
φ = 4.8φ0. Displayed quantities are the same as in Fig. 3. Added
circles in the phase plots mark the position of vortices (black/red
circle for indicated negative/positive vorticity).

The L+ = −1 (DW) state replaces the L+ = −1 (TRS)
state as the ground state in larger samples, with radius beyond
≈6ξ0 [as seen in Fig. 2, the L+ = −1 (DW) state attains
lower free energy with respect to the L+ = −1 (TRS) state
for R > 6ξ0]. The phase transition between L+ = −1 (DW)
and L+ = −1 (TRS) states is of second order and therefore
fully reversible, either as a function of size or as a function of
applied magnetic field (corresponding to crossing the dashed
line in Fig. 1).

Thus, to summarize the discussion so far, there are three
stable states at zero field for a mesoscopic chiral p-wave
superconductor, namely, (i) the L+ = −1 (TRS) vortex state;
(ii) the L+ = −1 (DW) state, with one domain wall; and
(iii) the L+ = 0 vortex-free state. These states, respectively,
replace one another in the ground state of the system, as the
sample is made progressively larger.

With increasing magnetic field, we find a similar relation-
ship between the vortex states and the domain-wall states
for given vorticity. In the limit of very small samples, the
composite (giant) vortex of successively increasing vorticity
is the cylindrically symmetric ground state of the system, in
agreement with previous Ginzburg-Landau investigations [39].
Note, however, that this behavior is not captured in Ref. [38],
using a BdG formalism, where an erroneous phase diagram is
presented. This being aside the main message of our present
paper, we provide more details on the comparison of our results
to those of Ref. [38] in Appendix B.

The main focus of our present paper is the topological phase
transition occurring with increasing size of mesoscopic chiral
p-wave superconductors, during which the two components of
the order parameter segregate, and the composite vortex states
are replaced by domain-wall states as the ground state of the
system, for any applied magnetic field. For example, the vortex
state with L+ = 1 obeys cylindrical symmetry in ultrasmall
samples (R � 4.5ξ0), but develops into the three-domain-wall
state in larger samples, shown in Fig. 4. More precisely, during
this transition the giant vortex in �− with winding number
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FIG. 5. The order-parameter distribution |�| (upper panels) and
the corresponding zero-bias LDOS (lower panels) of the domain-wall
states with L+ = 2, 3, and 4 (respectively from left to right).

L− = 3 splits into a multivortex state. Meanwhile, the vortex
state in �+ with L+ = 1 hosts a vortex-antivortex molecule
with net vorticity 1 (in order to best complement the symmetry
of �−, instead of a simple vortex, a giant antivortex with L =
−2 is formed at the disk center surrounded by three vortices).
At the domain walls, the total order parameter is depleted and
the LDOS exhibits zero bias peaks.

To generalize our findings to all fields, the L+ vorticity
sequentially increases with applied magnetic field, and the
number of domain walls for given L+ vorticity matches
L− = L+ + 2. �+ consists of spread L+ + 2 vortices and a
centered giant antivortex with L = −2, while �− consists of
L+ + 2 vortices. Spatial distributions of the order parameter
(directly verifiable by, e.g., scanning tunneling microscopy) for
states of higher vorticity are shown in Fig. 5, together with the
corresponding zero-bias LDOS, all exhibiting low-lying states
inside the domain walls. In the present paper we neglected the
self-field of the superconductor, but it is trivial to conclude
that the self-field of domain-wall states would be focused
at the domain walls, offering a route for direct verification
in magnetic-probe microscopy [49,50]. The range of sample
sizes and the applied field needed for stability of each of the
domain-wall states in the ground state is shown in Fig. 1.
We note that the domain-wall states dominate the composite
vortex states as magnetic field increases, i.e., the cylindrically
symmetric states are not sufficient to describe the ground state
at larger magnetic field even in very small p-wave samples.

As a last remark, we notice that the behavior of the zero-bias
LDOS for the L+ = −1 domain-wall state is different from
the other domain-wall states at higher field [cf. Fig. 3(e) and
lower panels of Fig. 5]. In the L+ = −1 state, the domain wall
suppresses the edge states in the sample, while the domain
walls in higher-vorticity states enhance the LDOS peaks at the
sample edge. This is due to the fact that in the L+ = −1 state
the domain wall separates a vortex in �− and an antivortex in
�+, while in other states the domain wall separates vortices in
both �− and �+. As a result, we identify two types of domain
walls, exhibiting chirality-dependent effects on the edge
states [51].

IV. CONCLUSIONS

In conclusion, motivated by recent experimental efforts,
we reported the ground-state phase diagram in small-to-
intermediate mesoscopic chiral p-wave superconducting sam-
ples exposed to perpendicular magnetic field. For this paper,
we employed the self-consistent Bogoliubov–de Gennes nu-
merical formalism, where we went beyond the approximations
of similar earlier works. In ultrasmall samples, due to strong
confinement, the ground states are the (giant) composite
vortex states obeying cylindrical symmetry, in agreement with
earlier results in literature [39] and conventional wisdom for
small superconductors. However, in samples larger than few
coherence lengths, the domain-wall states replace the vortex
states as the ground state of the system. These domain walls
mark the segregation of the two components of the order
parameter and the vortices therein, and their number increases
with increasing magnetic field. We also reveal two types of
domain walls in a chiral p-wave superconductor, distinguished
by their chirality-dependent effect on the edge states in the
LDOS. These domain walls can be directly visualized by
scanning tunneling microscopy as locally suppressed order
parameter and correspondingly boosted bound states in the
LDOS, or by magnetic-probe microscopy as locally focused
self-field of the sample. These predictions are relevant to recent
realizations of two-dimensional topological superconductivity
in the mesoscopic limit, as in, for example, atomically thin
Pb/Co on Si(111), where the size of the p-wave system can
be adjusted by the size of the underlying Co cluster [44], but
one chirality of the order parameter is favored with respect to
the other by spin-orbit coupling and the s-wave component
is also present. On theoretical grounds, our results translate
to other superconducting systems with a multicomponent
order parameter (e.g., d + id systems [20] or chiral multiband
ones [52,53]), where similar topological transitions from
overlapping to segregated components can be expected and
emergent physics can be significantly richer than in standard
single-component superconductors.
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APPENDIX A: THE FREE ENERGY

In this Appendix, we derive the expression of the Gibbs
free energy for the chiral p-wave superconducting state.
Throughout the derivation, the Cartesian system of coordinates
is used. Subsequently, we apply the obtained expression for
the free energy to the homogeneous system as a quick check
of the validity of our approach.

1. Derivation of the free-energy equation

The BdG equations for a chiral spin-triplet p-wave super-
conductor [54], with the order parameter described by the
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vector �d(�k) = ẑ �
kF

(kx ± iky), are written as[
He �(r)

−�∗(r) −H ∗
e

][
un(r)

vn(r)

]
= En

[
un(r)

vn(r)

]
, (A1)

where

He = 1

2m

(
h̄

i
∇ − e

c
A

)2

− EF (A2)

is the single-particle Hamiltonian, with EF the Fermi energy
and A the vector potential. Term �(r) is written as

�(r) = − i

kF

{
�x(r)

∂

∂x
+ i�y(r)

∂

∂y

+ 1

2

[
∂�x(r)

∂x
+ i

∂�y(r)

∂y

]}
, (A3)

where �x(r) and �y(r) are px and py components of the order
parameter, respectively, un(vn) are electron(hole)-like quasi-
particle eigen-wave-functions, and En are the corresponding
quasiparticle eigenenergies. The transformation from �x and
�y to �± is made by �x = �+ + �− and �y = �+ − �−.
In addition, the self-consistent gap equations are

�x(r) = − i
g

kF

∑
En<h̄ωD

[
v∗

n(r)
∂un(r)

∂x
− un(r)

∂v∗
n(r)

∂x

]

× [1 − 2f (En)],

�y(r) = − g

kF

∑
En<h̄ωD

[
v∗

n(r)
∂un(r)

∂y
− un(r)

∂v∗
n(r)

∂y

]

× [1 − 2f (En)],

(A4)

where f (En) is the Fermi distribution function. The summa-
tions in Eqs. (A4) are over all the quasiparticle states with
energies in the Debye window h̄ωD .

Next, we derive the Gibbs free energy for a p-wave
superconductor, first written as

G = 〈Heff〉 − T S + FH , (A5)

where FH = (B − H)2/8π is the magnetic energy, T S is the
energy induced by entropy, and 〈Heff〉 is the expectation value
of the effective Hamiltonian. According to Ref. [55], the
effective Hamiltonian for an unconventional superconductor
is written as

〈Heff〉 =
∫

dr
∫

dr′ ∑
σ

[
†(rσ )Ĥeδ(r − r′)(r′σ )

]
︸ ︷︷ ︸

〈He〉

+
∫

dr
∫

dr′�(r,r′)†(r↑)†(r′↓)︸ ︷︷ ︸
〈�〉

+
∫

dr
∫

dr′�∗(r,r′)(r′↓)(r↑)︸ ︷︷ ︸
〈�∗〉

+
∫

dr
∫

dr′W (r,r′)︸ ︷︷ ︸
〈W 〉

, (A6)

where

W (r,r′) = V̂ (r,r′)〈†(r,↑)†(r′,↓)〉〈(r′,↓)(r,↑)〉
(A7)

is a constant term in the mean-field theory needed to match the
expectation value of the mean-field Hamiltonian with the one
of the many-body Hamiltonian. For p-wave pairing [45], the
spatial dependence of the order parameter can be written as

�(r,r′) = i

kF

[�x(R)∂x ′ + i�y(R)∂y ′ ]δ(r − r′), (A8)

with R = (r + r′)/2.
Next, we calculate the first term in Eq. (A6), 〈He〉. First,

we introduce the Bogoliubov transformations:

†(r,↑) =
∑

n

(u∗
n(r)γ †

n↑ + vn(r)γn↓),

(r,↓) =
∑

n

(v∗
n(r)γ †

n↑ + un(r)γn↓). (A9)

Note that these are slightly different from those used for s-wave
pairing. The thermal averages of the fermionic γ operators are
as usual

〈γ †
nσ γn′σ ′ 〉 = δσσ ′δnn′f (En),

〈γnσ γ
†
n′σ ′ 〉 = δσσ ′δnn′ [1 − f (En)],

〈γnσ γn′σ ′ 〉 = 〈γ †
nσ γ

†
n′σ ′ 〉 = 0.

(A10)

Substituting Eqs. (A9) and (A10) into 〈He〉, we obtain

〈He〉 = 2
∫

dr
∑

n

[u∗
nĤeunfn + vnĤev

∗
n(1 − fn)]. (A11)

The factor of 2 is due to the two spin orientations in the electron
and the hole sectors. Substituting Eq. (A1) into Eq. (A11)
yields

〈He〉 = 2
∫

dr
∑

n

{En|un|2fn − En|vn|2(1 − fn)

−u∗
n�(r)vnfn − vn�(r)u∗

n(1 − fn)}. (A12)

Here � is calculated using Eq. (A3) with the initial input of
�x and �y .

Next, we calculate the second term 〈�〉 in Eq. (A6).
Substituting Eqs. (A9) and (A10) into it, we obtain

〈�〉 =
∫

dr
∫

dr′�(r,r′)[u∗
n(r)vn(r′)fn

+ vn(r)u∗
n(r′)(1 − fn)]. (A13)

Substituting Eq. (A8) into Eq. (A13) and integrating by parts
yields

〈�〉 =
∫

dr
∑

n

{u∗
n�

′(r)vnfn + vn�
′(r)u∗

n(1 − fn)}. (A14)

Here �′ indicates that �x and �y are calculated from Eq. (A4)
using the quasiparticle states. Similarly, the third term in
Eq. (A6) becomes 〈�∗〉 = 〈�〉 and the last term 〈W 〉 = −〈�〉.
In the calculation of the 〈W 〉 term we used the definition of
the order parameter, �(r,r′) = V̂ (r,r′)〈(r′,↑)(r′,↓)〉.
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Finally, the Gibbs free energy is written as

G = 〈Heff〉 − T S + FH

=
∑

n

{
2Enfn − 2En

∫
dr|vn|2 − 2

∫
dr[u∗

n�(r)vnfn + vn�(r)u∗
n(1 − fn)]

+
∫

dr[u∗
n�

′(r)vnfn + vn�
′(r)u∗

n(1 − fn)]

}
− T S + FH . (A15)

When the converged �x and �y are reached, then � = �′ and the Gibbs free energy shown in Eq. (A15) will be further
reduced to

G =
∑

n

{
2Enfn − 2En

∫
dr|vn|2 −

∫
dr[u∗

n�(r)vnfn + vn�(r)u∗
n(1 − fn)]

}
− T S + FH . (A16)

This is the expression we used in the present paper. The
summation is done over the entire spectrum. Note that
there are no assumptions made on the energy range of the
pairing potential V (r,r ′), therefore this expression is valid
irrespectively of the relation between � and h̄ωD . In the
weak-coupling BCS limit, i.e., for � � h̄ωD � EF , and for
s-wave pairing, this expression reduces to the well-known
expression

G =
∑

n

(
2Enfn − 2En

∫
dr|vn|2

)

+
∫

dr
|�|2
g

− T S + FH , (A17)

which is another proof of the consistency of our derivation.

2. Free energy of the homogeneous system

In this subsection, we present the form of the equations
in the homogeneous case in order to show that our free
energy is correct. If the expression of the free energy is
valid, the calculated energy should always decrease during the
self-consistent procedure since the order parameter approaches
its true (lowest) equilibrium value.

For the homogeneous case (two-dimensional), we consider
a square unit cell of length W . The components of the order
parameter are constant, i.e., �x(r) = �x and �y(r) = �y .
un(r) and vn(r) can be expanded in terms of plane waves,
i.e., as (

un(r)

vn(r)

)
=

∑
k

eik·r

W

(
uk

vk

)
, (A18)

where k = (kx,ky) = 2π (jx,jy)/W is the momentum, given
that jx,jy ∈ Z. In the absence of the magnetic field, k is a good
quantum number and the BdG equations (A1) for a given k
are written as [

εk �k

�∗
k −εk

][
uk

vk

]
= Ek

[
uk

vk

]
, (A19)

where εk = h̄2k2/2m − EF and �k = (kx�x + iky�y)/kF .
We take the basis functions the εk of which satisfy |εk| < h̄ωD .

Then, the self-consistent gap equations (A4) are

�x = 2g

kF

∑
Ek<h̄ωD

kxukv
∗
k[1 − 2f (Ek)],

�y = −i
2g

kF

∑
Ek<h̄ωD

kyukv
∗
k[1 − 2f (Ek)].

(A20)

From Eq. (A15), the Gibbs free energy is

G =
∑

k

(2Ekf (Ek) − 2Ek|vk|2 − {u∗
k(2�k − �′

k)vkf (Ek)

+ vk(2�k − �′
k)u∗

k[1 − f (Ek)]}) − T S. (A21)

The superconducting free-energy density G is given according
to Eq. (10).

Next, we present results for parameters as those used in
Ref. [38]. W = 1 μm is sufficiently large so that results will
not change for further enlarged W . Figures 6(a) and 6(b) show
the calculated order parameter and the corresponding free
energy, respectively, as a function of iteration steps at T = 0 K.
During the iterations, we find that two components of the
order parameter are always the same, i.e., �x = �y = �. �

converges to 0.22 meV, which results in the zero-temperature
coherence length ξ0 ≈ 72 nm (ξ0 = h̄vF /π�0, with Fermi
velocity vF = √

2EF /me, Fermi energy EF = 16.32 meV,
and zero-temperature order parameter �0 = 0.22 meV) and
the critical temperature Tc,bulk ≈ 1.5K. The free energy shown

10 20 30
0.99

1

1.01

iteration step

|Δ
|/|

Δ 0|

10 20 30

−1

−0.9995

iteration step

G
/|G

0|

(a) (b)

FIG. 6. (a) The order parameter �x (which equals �y in this
simulation) and (b) the superconducting free-energy density G, as a
function of the iteration step. The solid line corresponds to the case
of initial order parameter larger than the converged value, while the
line with open dots corresponds to the initial order parameter smaller
than the converged value. For both cases the free energy decreases
with the iterations, and the final values are the same.
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in Fig. 6(b) always decreases with the iterations and yields
the same result, irrespectively of the initial amplitude of the
order parameter being larger or smaller than the converged
value. These results prove the reliability of our free-energy
calculation. These hold in all cases including in the mesoscopic
samples.

Note that the Gibbs free energy from Eq. (A21) for
converged order parameters can be written as

G =
∑

k

{2Ekf (Ek) − 2Ek|vk|2

+�ku
∗
kvk[1 − 2f (Ek)]} − T S. (A22)

We find that∑
k

�ku
∗
kvk[1 − 2f (Ek)] = |�x |2 + |�y |2

2g
W 2, (A23)

given that all the k states have the same coupling constant g.
Factor W 2 is due to the area of the unit cell. Finally, in the
homogeneous case the Gibbs free energy can be written as

G =
∑

k

2Ekf (Ek) − 2Ek|vk|2 + |�x |2 + |�y |2
2g

W 2 − T S.

(A24)

APPENDIX B: COMPARISON WITH OTHER AVAILABLE
RESULTS IN THE LITERATURE

In this Appendix, we discuss in more detail the bottom
part of the phase diagram presented in Fig. 1, where only
cylindrically symmetric states are found, in a sequence
corresponding to increasing vorticity (from L+ = −1 to 5).
This is needed since earlier calculations of Ref. [38] reported
a rather different phase diagram from ours. Namely, in those
calculations, in very small disks in absence of magnetic field
the ground state was either a normal state or a L+ = 0 state,
and the L+ = −1 state was induced in the system by larger
magnetic field.

In what follows, we revisit the BdG numerical simulations
of Ref. [38] for mesoscopic disks and find that the main
claim of their work, i.e., the existence of a field-induced
state with winding number L+ = −1 in mesoscopic p-wave
superconductors, is incorrect. We performed the same type
of calculation, under the same conditions, but did not find
any signature of the reported behavior. We instead find that
the phase diagram with respect to field and temperature is a
more conventional one, in agreement with GL simulations of
Ref. [39].

The taken parameters, same as used in Ref. [38], have
been introduced in Sec. II. First, we show in Fig. 7 the
components �±(r) and the supercurrent density jθ (r) for states
L+ = −1 and 0. The results for disks with small radii are
quite different from those for large radii presented in Fig. 2
of Ref. [38]. As shown in Figs. 7(a) and 7(c), the L+ = −1
state is time-reversal symmetric due to boundary effects. As
a result, the current is zero in the absence of the magnetic
field, which makes the state more stable when φ = 0, where
φ is the magnetic flux through the sample. We recover the
radial dependence of the supercurrent presented in Ref. [38]
only for R > 10ξ0, but, as shown in the main body of this
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FIG. 7. Spatial distribution of the order-parameter components
�±(r) and the supercurrent density jθ (r), for enforced cylindrical
symmetry, in the sample with radius R = 6.2ξ0 for L+ = −1 (a) and
L+ = 0 (b), and for the sample with radius R = 2.3ξ0 for L+ = −1
(c) and L+ = 0 (d).

paper, for those sizes of the sample the cylindrical symmetry
of the superconducting state no longer holds. The L+ = 0
state [shown in Figs. 7(b) and 7(d)] has a broken time-reversal
symmetry, with spontaneous chiral edge currents. However,
the current exhibits sudden changes near the center of the
sample due to the competition between the surface current
and the cylindrical symmetry. When R = 2.3ξ0, as shown
in Fig. 7(d), this competition, together with the increased
importance of quantum confinement, induces oscillations in jθ

on the scale of 1/kF , while also enhancing it. �+ is therefore
weakened near the center, signaling that the L+ = 0 state
becomes less favorable in small samples.

In Fig. 8, we show the calculated dependence of the spatially
averaged order parameter �̄ for states L+ = −1 and 0 on the
sample size and temperature. This dependence is similar to
the results shown in Figs. 3(a) and 3(b) in Ref. [38]. However,
the quantum size effect is robust when R ∼ 1/kF , which results
in oscillations in �̄(R). These were not shown in Ref. [38].

Once the self-consistent result is reached, the Gibbs free
energy is calculated using Eq. (A16). The superconducting

0 5 10 15
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0.5

1

R/ξ
0

|Δ
|/|

Δ 0|

L
+
=−1

L
+
=0

0 0.5 1
0

0.2

0.4
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0.8

T/T
c

|Δ
|/|

Δ 0|

L
+
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L
+
=0

φ=0 R=2.3ξ
0

)b()a(

FIG. 8. (a) Spatially averaged order parameter �̄ =√|�+|2 + |�−|2 as a function of the sample radius R at
φ = 0 and T = 0, for the states L+ = −1 and 0. (b) �̄ as a function
of T for sample radius R = 2.3ξ0 for L+ = −1 at φ = 0 and for
L+ = 0 at φ = 1.5φ0.
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FIG. 9. Free-energy density G of the superconducting states as
a function of magnetic flux threading the sample, φ, for a p-wave
mesoscopic disk of radius (a) R = 2.3ξ0 and (b) R = 1.3ξ0 at T =
0.33Tc. The corresponding φ − T equilibrium phase diagrams are
shown in (c) and (d), respectively (cf. the erroneous Figs. 3(c) and 3(d)
of Ref. [38]).

free-energy density G, for radii R = 2.3ξ0 and 1.3ξ0, is
shown as a function of φ in Fig. 9. These results agree with
conventional wisdom and are similar to those for mesoscopic
s-wave superconductors obtained by the GL theory in, e.g.,
Ref. [31]. G(φ) plots were not presented in Ref. [38], and
therefore one has no means to directly validate their φ − T

phase diagram.
From Figs. 9(a) and 9(b) it is clear that at low fields and

for the considered dimensions of the sample the ground state
is always the L+ = −1 state. As the field is increased, a first-
order phase transition to the L+ = 0 state takes place. By
decreasing the size of the system, the L+ = −1 state becomes

more stable while the phase boundary between the two states
moves to lower fields. If the size is decreased even further,
the L+ = −1 and 0 superconducting states become separated
by the normal state. This finite-size reentrant effect is similar
to already observed oscillations of the critical temperature in
s-wave superconducting rings [56]. This is not surprising since
in the small radius limit both �+ and �− components of the
order parameter are strongly suppressed in the center of the
disk, effectively mimicking a superconducting ring.

Finally, we present in Figs. 9(c) and 9(d) the correct ground-
state φ − T phase diagrams for samples with radius R = 2.3ξ0

and 1.3ξ0. The results are physically understandable, as states
always appear sequentially in the winding number of the
dominant px + ipy component as φ increases. Moreover, our
results at finite temperature are consistent with those shown in
Ref. [39], where a Ginzburg-Landau simulation was performed
for a similar system.

To conclude, we find that the phase diagram of Ref. [38]
is incorrect. To substantiate our conclusion we performed
identical BdG calculations for a disk geometry and showed
explicitly the correct form of the free energy based on which
the equilibrium phase diagram is constructed. Our free-energy
versus magnetic-field curves provide a clear picture of the
nature of the ground state, which at zero field is always the
L+ = −1 state (in the range of parameters of interest here, i.e.,
for small samples). Additional support to our claims comes
from the calculations performed in Ref. [39] within the GL
model, which delivered a very similar phase diagram to ours.
Finally, we note again that this discussion is related only to the
limit of very small samples, whereas the focus of our present
paper is on novel states in larger mesoscopic p-wave samples
where cylindrical symmetry is broken, leading to a much richer
phase diagram.
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mesoscopic three-band superconductors, Phys. Rev. B 89,
024512 (2014).

[54] A. Furusaki, M. Matsumoto, and M. Sigrist, Spontaneous Hall
effect in a chiral p-wave superconductor, Phys. Rev. B 64,
054514 (2001).

[55] J. B. Ketterson and S. N. Song, Superconductivity (Cambridge
University, Cambridge, England, 1999).

[56] Y. Liu, Y. Zadorozhny, M. M. Rosario, B. Y. Rock, P. T. Carrigan,
and H. Wang, Destruction of the global phase coherence in
ultrathin, doubly connected superconducting cylinders, Science
294, 2332 (2001).

224512-11

https://doi.org/10.1103/PhysRevLett.107.197001
https://doi.org/10.1103/PhysRevLett.107.197001
https://doi.org/10.1103/PhysRevLett.107.197001
https://doi.org/10.1103/PhysRevLett.107.197001
https://doi.org/10.1103/PhysRevB.89.024512
https://doi.org/10.1103/PhysRevB.89.024512
https://doi.org/10.1103/PhysRevB.89.024512
https://doi.org/10.1103/PhysRevB.89.024512
https://doi.org/10.1103/PhysRevB.64.054514
https://doi.org/10.1103/PhysRevB.64.054514
https://doi.org/10.1103/PhysRevB.64.054514
https://doi.org/10.1103/PhysRevB.64.054514
https://doi.org/10.1126/science.1066144
https://doi.org/10.1126/science.1066144
https://doi.org/10.1126/science.1066144
https://doi.org/10.1126/science.1066144



