toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sels, D.; Sorée, B.; Groeseneken, G. doi  openurl
  Title Quantum ballistic transport in the junctionless nanowire pinch-off field effect transistor Type A1 Journal article
  Year 2011 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume 10 Issue 1 Pages 216-221  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract In this work we investigate quantum ballistic transport in ultrasmall junctionless and inversion mode semiconducting nanowire transistors within the framework of the self-consistent Schrödinger-Poisson problem. The quantum transmitting boundary method is used to generate open boundary conditions between the active region and the electron reservoirs. We adopt a subband decomposition approach to make the problem numerically tractable and make a comparison of four different numerical approaches to solve the self-consistent Schrödinger-Poisson problem. Finally we discuss the IV-characteristics for small (r≤5 nm) GaAs nanowire transistors. The novel junctionless pinch-off FET or junctionless nanowire transistor is extensively compared with the gate-all-around (GAA) nanowire MOSFET.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000300735800021 Publication Date 2011-02-22  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited 12 Open Access  
  Notes ; ; Approved Most recent IF: 1.526; 2011 IF: 1.211  
  Call Number UA @ lucian @ c:irua:89501 Serial 2772  
Permanent link to this record
 

 
Author Verreck, D.; Van de Put, M.; Sorée, B.; Verhulst, A.S.; Magnus, W.; Vandenberghe, W.G.; Collaert, N.; Thean, A.; Groeseneken, G. doi  openurl
  Title Quantum mechanical solver for confined heterostructure tunnel field-effect transistors Type A1 Journal article
  Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 115 Issue 5 Pages 053706-53708  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Heterostructure tunnel field-effect transistors (HTFET) are promising candidates for low-power applications in future technology nodes, as they are predicted to offer high on-currents, combined with a sub-60 mV/dec subthreshold swing. However, the effects of important quantum mechanical phenomena like size confinement at the heterojunction are not well understood, due to the theoretical and computational difficulties in modeling realistic heterostructures. We therefore present a ballistic quantum transport formalism, combining a novel envelope function approach for semiconductor heterostructures with the multiband quantum transmitting boundary method, which we extend to 2D potentials. We demonstrate an implementation of a 2-band version of the formalism and apply it to study confinement in realistic heterostructure diodes and p-n-i-n HTFETs. For the diodes, both transmission probabilities and current densities are found to decrease with stronger confinement. For the p-n-i-n HTFETs, the improved gate control is found to counteract the deterioration due to confinement. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000331645900040 Publication Date 2014-02-05  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 15 Open Access  
  Notes ; D. Verreck acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 2.068; 2014 IF: 2.183  
  Call Number UA @ lucian @ c:irua:115825 Serial 2780  
Permanent link to this record
 

 
Author Pham, A.-T.; Sorée, B.; Magnus, W.; Jungemann, C.; Meinerzhagen, B.; Pourtois, G. pdf  doi
openurl 
  Title Quantum simulations of electrostatics in Si cylindrical junctionless nanowire nFETs and pFETs with a homogeneous channel including strain and arbitrary crystallographic orientations Type A1 Journal article
  Year 2012 Publication Solid state electronics Abbreviated Journal Solid State Electron  
  Volume 71 Issue Pages 30-36  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Simulation results of electrostatics in Si cylindrical junctionless nanowire transistors with a homogenous channel are presented. Junctionless transistors including strain and arbitrary crystallographic orientations are studied. Size quantization effects are simulated by self-consistent solutions of the Poisson and Schrodinger equations. The 6 x 6 k.p method is employed for the calculation of the valence subband structure in a junctionless nanowire pFET. The influence of stress/strain and crystallographic channel orientation on to the electrostatics in terms of subband structure, charge density, and C-V curve is systematically studied. (C) 2011 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000303033800007 Publication Date 2011-12-01  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1101; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.58 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 1.58; 2012 IF: 1.482  
  Call Number UA @ lucian @ c:irua:98245 Serial 2786  
Permanent link to this record
 

 
Author Balaban, S.N.; Pokatilov, E.P.; Fomin, V.M.; Gladilin, V.N.; Devreese, J.T.; Magnus, W.; Schoenmaker, W.; van Rossum, M.; Sorée, B. doi  openurl
  Title Quantum transport in a cylindrical sub-0.1 μm silicon-based MOSFET Type A1 Journal article
  Year 2002 Publication Solid-State Electronics Abbreviated Journal Solid State Electron  
  Volume 46 Issue Pages 435-444  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000174445000020 Publication Date 2002-10-15  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1101; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.58 Times cited 16 Open Access  
  Notes Approved Most recent IF: 1.58; 2002 IF: 0.913  
  Call Number UA @ lucian @ c:irua:40880 Serial 2791  
Permanent link to this record
 

 
Author Croitoru, M.D.; Gladilin, V.N.; Fomin, V.M.; Devreese, J.T.; Magnus, W.; Schoenmaker, W.; Sorée, B. doi  openurl
  Title Quantum transport in a nanosize double-gate metal-oxide-semiconductor field-effect transistor Type A1 Journal article
  Year 2004 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 96 Issue Pages 2305-2310  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000223055100081 Publication Date 2004-08-02  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 14 Open Access  
  Notes Approved Most recent IF: 2.068; 2004 IF: 2.255  
  Call Number UA @ lucian @ c:irua:49454 Serial 2792  
Permanent link to this record
 

 
Author Croitoru, M.D.; Gladilin, V.N.; Fomin, V.M.; Devreese, J.T.; Magnus, W.; Schoenmaker, W.; Sorée, B. doi  openurl
  Title Quantum transport in a nanosize silicon-on-insulator metal-oxide-semiconductor field effect transistor Type A1 Journal article
  Year 2003 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 93 Issue Pages 1230-1240  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000180134200069 Publication Date 2003-01-03  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 16 Open Access  
  Notes Approved Most recent IF: 2.068; 2003 IF: 2.171  
  Call Number UA @ lucian @ c:irua:40874 Serial 2793  
Permanent link to this record
 

 
Author Croitoru, M.D.; Gladilin, V.N.; Fomin, V.M.; Devreese, J.T.; Magnus, W.; Schoenmaker, W.; Sorée, B. doi  openurl
  Title Quantum transport in an ultra-thin SOI MOSFET: influence of the channel thickness on the I-V characteristics Type A1 Journal article
  Year 2008 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 147 Issue 1/2 Pages 31-35  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000257220400009 Publication Date 2008-04-26  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 8 Open Access  
  Notes Approved Most recent IF: 1.554; 2008 IF: 1.557  
  Call Number UA @ lucian @ c:irua:69748 Serial 2794  
Permanent link to this record
 

 
Author Moors, K.; Sorée, B.; Tokei, Z.; Magnus, W. url  doi
openurl 
  Title Resistivity scaling and electron relaxation times in metallic nanowires Type A1 Journal article
  Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 116 Issue 6 Pages 063714  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the resistivity scaling in nanometer-sized metallic wires due to surface roughness and grain-boundaries, currently the main cause of electron scattering in nanoscaled interconnects. The resistivity has been obtained with the Boltzmann transport equation, adopting the relaxation time approximation of the distribution function and the effective mass approximation for the conducting electrons. The relaxation times are calculated exactly, using Fermi's golden rule, resulting in a correct relaxation time for every sub-band state contributing to the transport. In general, the relaxation time strongly depends on the sub-band state, something that remained unclear with the methods of previous work. The resistivity scaling is obtained for different roughness and grain-boundary properties, showing large differences in scaling behavior and relaxation times. Our model clearly indicates that the resistivity is dominated by grain-boundary scattering, easily surpassing the surface roughness contribution by a factor of 10. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000341179400036 Publication Date 2014-08-15  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 17 Open Access  
  Notes ; ; Approved Most recent IF: 2.068; 2014 IF: 2.183  
  Call Number UA @ lucian @ c:irua:119260 Serial 2882  
Permanent link to this record
 

 
Author Van de Put, M.; Thewissen, M.; Magnus, W.; Sorée, B.; Sellier, J.M. openurl 
  Title Spectral force approach to solve the time-dependent Wigner-Liouville equation Type P1 Proceeding
  Year 2014 Publication 2014 International Workshop On Computational Electronics (iwce) Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Ieee Place of Publication New york Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-4799-5433-9 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:122221 Serial 3071  
Permanent link to this record
 

 
Author Toledano-Luque, M.; Matagne, P.; Sibaja-Hernandez, A.; Chiarella, T.; Ragnarsson, L.-A.; Sorée, B.; Cho, M.; Mocuta, A.; Thean, A. doi  openurl
  Title Superior reliability of junctionless pFinFETs by reduced oxide electric field Type A1 Journal article
  Year 2014 Publication IEEE electron device letters Abbreviated Journal Ieee Electr Device L  
  Volume 35 Issue 12 Pages 1179-1181  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Superior reliability of junctionless (JL) compared with inversion-mode field-effect transistors (FETs) is experimentally demonstrated on bulk FinFET wafers. The reduced negative bias temperature instability (NBTI) of JL pFETs outperforms the previously reported best NBTI reliability data obtained with Si channel devices and guarantees 10-year lifetime at typical operating voltages and high temperature. This behavior is understood through the reduced oxide electric field and lessened interaction between charge carriers and oxide traps during device operation. These findings encourage the investigation of JL devices with alternative channels as a promising alternative for 7-nm technology nodes meeting reliability targets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000345575400006 Publication Date 2014-10-21  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0741-3106;1558-0563; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.048 Times cited 13 Open Access  
  Notes ; This work was supported by the imec's Core Partner Program. The review of this letter was arranged by Editor J. Schmitz. ; Approved Most recent IF: 3.048; 2014 IF: 2.754  
  Call Number UA @ lucian @ c:irua:122192 Serial 3378  
Permanent link to this record
 

 
Author Katti, G.; Stucchi, M.; Velenis, D.; Sorée, B.; de Meyer, K.; Dehaene, W. doi  openurl
  Title Temperature-dependent modeling and characterization of through-silicon via capacitance Type A1 Journal article
  Year 2011 Publication IEEE electron device letters Abbreviated Journal Ieee Electr Device L  
  Volume 32 Issue 4 Pages 563-565  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A semianalytical model of the through-silicon via (TSV) capacitance for elevated operating temperatures is derived and verified with electrical measurements. The effect of temperature on the increase in TSV capacitance over different technology parameters is explored, and it is shown that higher oxide thickness reduces the impact of temperature rise on TSV capacitance, while with low doped substrates, which are instrumental for reducing the TSV capacitance, the sensitivity of TSV capacitance to temperature is large and cannot be ignored.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000288664800045 Publication Date 2011-03-04  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0741-3106;1558-0563; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.048 Times cited 27 Open Access  
  Notes ; ; Approved Most recent IF: 3.048; 2011 IF: 2.849  
  Call Number UA @ lucian @ c:irua:89402 Serial 3498  
Permanent link to this record
 

 
Author Kao, K.-H.; Verhulst, A.S.; Van de Put, M.; Vandenberghe, W.G.; Sorée, B.; Magnus, W.; De Meyer, K. doi  openurl
  Title Tensile strained Ge tunnel field-effect transistors: k\cdot p material modeling and numerical device simulation Type A1 Journal article
  Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 115 Issue 4 Pages 044505-44508  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Group IV based tunnel field-effect transistors generally show lower on-current than III-V based devices because of the weaker phonon-assisted tunneling transitions in the group IV indirect bandgap materials. Direct tunneling in Ge, however, can be enhanced by strain engineering. In this work, we use a 30-band k.p method to calculate the band structure of biaxial tensile strained Ge and then extract the bandgaps and effective masses at Gamma and L symmetry points in k-space, from which the parameters for the direct and indirect band-to-band tunneling (BTBT) models are determined. While transitions from the heavy and light hole valence bands to the conduction band edge at the L point are always bridged by phonon scattering, we highlight a new finding that only the light-holelike valence band is strongly coupling to the conduction band at the Gamma point even in the presence of strain based on the 30-band k.p analysis. By utilizing a Technology Computer Aided Design simulator equipped with the calculated band-to-band tunneling BTBT models, the electrical characteristics of tensile strained Ge point and line tunneling devices are self-consistently computed considering multiple dynamic nonlocal tunnel paths. The influence of field-induced quantum confinement on the tunneling onset is included. Our simulation predicts that an on-current up to 160 (260) mu A/mu m can be achieved along with on/off ratio > 10(6) for V-DD = 0.5V by the n-type (p-type) line tunneling device made of 2.5% biaxial tensile strained Ge. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000331210800113 Publication Date 2014-01-26  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 26 Open Access  
  Notes ; Authors would like to thank Dr. Mohammad Ali Pourghaderi for useful discussions on the nonparabolicity. Authors would also like to thank Professor Eddy Simoen and Dr. Yosuke Shimura for useful discussions about the validity of modeled bandgaps and effective masses. This work was also supported by IMEC's Industrial Affiliation Program. ; Approved Most recent IF: 2.068; 2014 IF: 2.183  
  Call Number UA @ lucian @ c:irua:115800 Serial 3505  
Permanent link to this record
 

 
Author Magnus, W.; Brosens, F.; Sorée, B. url  doi
openurl 
  Title Time dependent transport in 1D micro- and nanostructures: solving the Boltzmann and Wigner-Boltzmann equations Type A1 Journal article
  Year 2009 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 193 Issue 1 Pages 012004,1-012004,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract For many decades the Boltzmann distribution function has been used to calculate the non-equilibrium properties of mobile particles undergoing the combined action of various scattering mechanisms and externally applied force fields. When the latter give rise to the occurrence of inhomogeneous potential profiles across the region through which the particles are moving, the numerical solution of the Boltzmann equation becomes a highly complicated task. In this work we highlight a particular algorithm that can be used to solve the time dependent Boltzmann equation as well as its quantum mechanical extension, the WignerBoltzmann equation. As an illustration, we show the calculated distribution function describing electrons propagating under the action of both a uniform and a pronouncedly non-uniform electric field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000277100400004 Publication Date 2009-11-17  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:82861 Serial 3667  
Permanent link to this record
 

 
Author Pathangi, H.; Cherman, V.; Khaled, A.; Sorée, B.; Groeseneken, G.; Witvrouw, A. doi  openurl
  Title Towards CMOS-compatible single-walled carbon nanotube resonators Type A1 Journal article
  Year 2013 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng  
  Volume 107 Issue Pages 219-222  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We report a totally CMOS-compatible fabrication technique to assemble horizontally suspended single-walled carbon nanotube (SWCNT) resonators. Individual SWCNTs are assembled in parallel at multiple sites by a technique called dielectrophoresis. The mechanical resonance frequencies of the suspended SWCNTs are in the range of 2035 MHz as determined from the piezoresistive response of the resonators during electrostatic actuation. The resistance of the suspended SWCNT either remains unchanged or increases or decreases significantly as a function of the actuation frequency. This can be explained by the effect the nanotube chirality has on the piezoresistive gauge factor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000319855800040 Publication Date 2012-07-02  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9317; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.806 Times cited 6 Open Access  
  Notes ; ; Approved Most recent IF: 1.806; 2013 IF: 1.338  
  Call Number UA @ lucian @ c:irua:109260 Serial 3685  
Permanent link to this record
 

 
Author Magnus, W.; Carrillo-Nunez, H.; Sorée, B. isbn  openurl
  Title Transport in nanostructures Type H3 Book chapter
  Year 2011 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords H3 Book chapter; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Pan Stanford Place of Publication S.l. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9789814364027 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:93075 Serial 3724  
Permanent link to this record
 

 
Author Nourbakhsh, A.; Cantoro, M.; Klekachev, A.; Clemente, F.; Sorée, B.; van der Veen, M.H.; Vosch, T.; Stesmans, A.; Sels, B.; de Gendt, S. doi  openurl
  Title Tuning the Fermi level of SiO2-supported single-layer graphene by thermal annealing Type A1 Journal article
  Year 2010 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 114 Issue 5 Pages 6894-6900  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract The effects of thermal annealing in inert Ar gas atmosphere of SiO2-supported, exfoliated single-layer graphene are investigated in this work. A systematic, reproducible change in the electronic properties of graphene is observed after annealing. The most prominent Raman features in graphene, the G and 2D peaks, change in accord to what is expected in the case of hole doping. The results of electrical characterization performed on annealed, back-gated field-effect graphene devices show that the neutrality point voltage VNP increases monotonically with the annealing temperature, confirming the occurrence of excess hole accumulation. No degradation of the structural properties of graphene is observed after annealing at temperatures as high as 400 °C. Thermal annealing of single-layer graphene in controlled Ar atmosphere can therefore be considered a technique to reproducibly modify the electronic structure of graphene by tuning its Fermi level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000276562500002 Publication Date 2010-03-26  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 54 Open Access  
  Notes Approved Most recent IF: 4.536; 2010 IF: 4.524  
  Call Number UA @ lucian @ c:irua:89508 Serial 3757  
Permanent link to this record
 

 
Author Pourghaderi, M.A.; Magnus, W.; Sorée, B.; Meuris, M.; de Meyer, K.; Heyns, M. url  doi
openurl 
  Title Tunneling-lifetime model for metal-oxide-semiconductor structures Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 8 Pages 085315,1-085315,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper we investigate the basic physics of charge carriers (electrons) leaking out of the inversion layer of a metal-oxide-semiconductor capacitor with a biased gate. In particular, we treat the gate leakage current as resulting from two combined processes: (1) the time-dependent decay of electron wave packets representing the inversion-layer charge and (2) the local generation of new electrons replacing those that have leaked away. As a result, the gate current simply emerges as the ratio of the total charge in the inversion layer to the tunneling lifetime. The latter is extracted from the quantum dynamics of the decaying wave packets, while the generation rate is incorporated as a phenomenological source term in the continuity equation. Not only do the gate currents calculated with this model agree very well with experiment, the model also provides an onset to solve the paradox of the current-free bound states representing the resonances of the Schrödinger equation that governs the fully coupled metal-oxide-semiconductor system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000269639300076 Publication Date 2009-08-21  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 2 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:78294 Serial 3763  
Permanent link to this record
 

 
Author Vandenberghe, W.; Sorée, B.; Magnus, W.; Groeseneken, G. doi  openurl
  Title Zener tunneling in semiconductors under nonuniform electric fields Type A1 Journal article
  Year 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 107 Issue 5 Pages 054520,1-054520,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently, a renewed interest in Zener tunneling has arisen because of its increasing impact on semiconductor device performance at nanometer dimensions. In this paper we evaluate the tunnel probability under the action of a nonuniform electric field using a two-band model and arrive at significant deviations from the commonly used Kanes model, valid for weak uniform fields only. A threshold on the junction bias where Kanes model for Zener tunneling breaks down is determined. Comparison with Kanes model particularly shows that our calculation yields a higher tunnel probability for intermediate electric fields and a lower tunnel probability for high electric fields. When performing a current calculation comparing to the WKB approximation for the case of an abrupt p-n junction significant differences concerning the shape of the I-V curve are demonstrated.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000275657500136 Publication Date 2010-03-11  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 22 Open Access  
  Notes ; William Vandenberghe gratefully acknowledges the support of a Ph. D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). These authors acknowledge the support from IMEC's Industrial Affiliation Program and the authors would like to thank Anne Verhulst for useful comments. ; Approved Most recent IF: 2.068; 2010 IF: 2.079  
  Call Number UA @ lucian @ c:irua:82450 Serial 3929  
Permanent link to this record
 

 
Author Verreck, D.; Van de Put, M.L.; Verhulst, A.S.; Sorée, B.; Magnus, W.; Dabral, A.; Thean, A.; Groeseneken, G. url  doi
openurl 
  Title 15-band spectral envelope function formalism applied to broken gap tunnel field-effect transistors Type P1 Proceeding
  Year 2015 Publication 18th International Workshop On Computational Electronics (iwce 2015) Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract A carefully chosen heterostructure can significantly boost the performance of tunnel field-effect transistors (TFET). Modelling of these hetero-TFETs requires a quantum mechanical (QM) approach with an accurate band structure to allow for a correct description of band-to-band-tunneling. We have therefore developed a fully QM 2D solver, combining for the first time a full zone 15-band envelope function formalism with a spectral approach, including a heterostructure basis set transformation. Simulations of GaSb/InAs broken gap TFETs illustrate the wide body capabilities and transparant transmission analysis of the formalism.  
  Address  
  Corporate Author Thesis  
  Publisher Ieee Place of Publication New york Editor  
  Language Wos 000380398200055 Publication Date 2015-10-26  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-0-692-51523-5 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:134998 Serial 4131  
Permanent link to this record
 

 
Author Moors, K.; Sorée, B.; Magnus, W. url  openurl
  Title Analytic solution of Ando's surface roughness model with finite domain distribution functions Type P1 Proceeding
  Year 2015 Publication 18th International Workshop On Computational Electronics (iwce 2015) Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract Ando's surface roughness model is applied to metallic nanowires and extended beyond small roughness size and infinite barrier limit approximations for the wavefunction overlaps, such as the Prange-Nee approximation. Accurate and fast simulations can still be performed without invoking these overlap approximations by averaging over roughness profiles using finite domain distribution functions to obtain an analytic solution for the scattering rates. The simulations indicate that overlap approximations, while predicting a resistivity that agrees more or less with our novel approach, poorly estimate the underlying scattering rates. All methods show that a momentum gap between left- and right-moving electrons at the Fermi level, surpassing a critical momentum gap, gives rise to a substantial decrease in resistivity.  
  Address  
  Corporate Author Thesis  
  Publisher Ieee Place of Publication New york Editor  
  Language Wos Publication Date  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-0-692-51523-5 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:134996 Serial 4140  
Permanent link to this record
 

 
Author Agarwal, T.; Sorée, B.; Radu, I.; Raghavan, P.; Fiori, G.; Iannaccone, G.; Thean, A.; Heyns, M.; Dehaene, W. doi  openurl
  Title Comparison of short-channel effects in monolayer MoS2 based junctionless and inversion-mode field-effect transistors Type A1 Journal article
  Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 108 Issue 108 Pages 023506  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Conventional junctionless (JL) multi/gate (MuG) field-effect transistors (FETs) require extremely scaled channels to deliver high on-state current with low short-channel effect related leakage. In this letter, using ultra-thin 2D materials (e.g., monolayer MoS2), we present comparison of short-channel effects in JL, and inversion-mode (IM) FETs. We show that JL FETs exhibit better sub-threshold slope (S.S.) and drain-induced-barrier-lowering (DIBL) in comparison to IM FETs due to reduced peak electric field at the junctions. But, threshold voltage (VT) roll-off with channel length downscaling is found to be significantly higher in JL FETs than IM FETs, due to higher source/drain controlled charges (dE/dx) in the channel. Further, we show that although VT roll-off in JL FETs improves by increasing the gate control, i.e., by scaling the oxide, or channel thickness, the sensitivity of threshold voltage on structural parameters is found out to be high. (C) 2016 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000370258400056 Publication Date 2016-01-16  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 13 Open Access  
  Notes ; ; Approved Most recent IF: 3.411  
  Call Number UA @ lucian @ c:irua:132318 Serial 4152  
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Van de Put, M.; Sorée, B.; Magnus, W.; Mocuta, A.; Collaert, N.; Thean, A.; Groeseneken, G. doi  openurl
  Title Full-zone spectral envelope function formalism for the optimization of line and point tunnel field-effect transistors Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 118 Issue 118 Pages 134502  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Efficient quantum mechanical simulation of tunnel field-effect transistors (TFETs) is indispensable to allow for an optimal configuration identification. We therefore present a full-zone 15-band quantum mechanical solver based on the envelope function formalism and employing a spectral method to reduce computational complexity and handle spurious solutions. We demonstrate the versatility of the solver by simulating a 40 nm wide In0.53Ga0.47As lineTFET and comparing it to p-n-i-n configurations with various pocket and body thicknesses. We find that the lineTFET performance is not degraded compared to semi-classical simulations. Furthermore, we show that a suitably optimized p-n-i-n TFET can obtain similar performance to the lineTFET. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000362668400025 Publication Date 2015-10-01  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 9 Open Access  
  Notes ; D. Verreck acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number UA @ lucian @ c:irua:128765 Serial 4183  
Permanent link to this record
 

 
Author Van de Put, M.L.; Vandenberghe, W.G.; Sorée, B.; Magnus, W.; Fischetti, M.V. url  doi
openurl 
  Title Inter-ribbon tunneling in graphene: An atomistic Bardeen approach Type A1 Journal article
  Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 119 Issue 119 Pages 214306  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A weakly coupled system of two crossed graphene nanoribbons exhibits direct tunneling due to the overlap of the wavefunctions of both ribbons. We apply the Bardeen transfer Hamiltonian formalism, using atomistic band structure calculations to account for the effect of the atomic structure on the tunneling process. The strong quantum-size confinement of the nanoribbons is mirrored by the one-dimensional character of the electronic structure, resulting in properties that differ significantly from the case of inter-layer tunneling, where tunneling occurs between bulk two-dimensional graphene sheets. The current-voltage characteristics of the inter-ribbon tunneling structures exhibit resonance, as well as stepwise increases in current. Both features are caused by the energetic alignment of one-dimensional peaks in the density-of-states of the ribbons. Resonant tunneling occurs if the sign of the curvature of the coupled energy bands is equal, whereas a step-like increase in the current occurs if the signs are opposite. Changing the doping modulates the onset-voltage of the effects as well as their magnitude. Doping through electrostatic gating makes these structures promising for application towards steep slope switching devices. Using the atomistic empirical pseudopotentials based Bardeen transfer Hamiltonian method, inter-ribbon tunneling can be studied for the whole range of two-dimensional materials, such as transition metal dichalcogenides. The effects of resonance and of step-like increases in the current we observe in graphene ribbons are also expected in ribbons made from these alternative two-dimensional materials, because these effects are manifestations of the one-dimensional character of the density-of-states. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000378923100022 Publication Date 2016-06-07  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 6 Open Access  
  Notes ; ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:134652 Serial 4198  
Permanent link to this record
 

 
Author Moors, K.; Sorée, B.; Magnus, W. url  openurl
  Title Modeling and tackling resistivity scaling in metal nanowires Type P1 Proceeding
  Year 2015 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 09-11, 2015, Washington, DC Abbreviated Journal  
  Volume Issue Pages 222-225  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract A self-consistent analytical solution of the multi-subband Boltzmann transport equation with collision term describing grain boundary and surface roughness scattering is presented to study the resistivity scaling in metal nanowires. The different scattering mechanisms and the influence of their statistical parameters are analyzed. Instead of a simple power law relating the height or width of a nanowire to its resistivity, the picture appears to be more complicated due to quantum-mechanical scattering and quantization effects, especially for surface roughness scattering.  
  Address  
  Corporate Author Thesis  
  Publisher Ieee Place of Publication New york Editor  
  Language Wos Publication Date  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-4673-7860-4 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:135046 Serial 4205  
Permanent link to this record
 

 
Author Van de Put, M.L.; Vandenberghe, W.G.; Magnus, W.; Sorée, B.; Fischetti, M.V. url  openurl
  Title Modeling of inter-ribbon tunneling in graphene Type P1 Proceeding
  Year 2015 Publication 18th International Workshop On Computational Electronics (iwce 2015) Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract The tunneling current between two crossed graphene ribbons is described invoking the empirical pseudopotential approximation and the Bardeen transfer Hamiltonian method. Results indicate that the density of states is the most important factor determining the tunneling current between small (similar to nm) ribbons. The quasi-one dimensional nature of graphene nanoribbons is shown to result in resonant tunneling.  
  Address  
  Corporate Author Thesis  
  Publisher Ieee Place of Publication New york Editor  
  Language Wos Publication Date  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-0-692-51523-5 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:134997 Serial 4206  
Permanent link to this record
 

 
Author Moors, K.; Sorée, B.; Magnus, W. url  doi
openurl 
  Title Modeling surface roughness scattering in metallic nanowires Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 118 Issue 118 Pages 124307  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ando's model provides a rigorous quantum-mechanical framework for electron-surface roughness scattering, based on the detailed roughness structure. We apply this method to metallic nanowires and improve the model introducing surface roughness distribution functions on a finite domain with analytical expressions for the average surface roughness matrix elements. This approach is valid for any roughness size and extends beyond the commonly used Prange-Nee approximation. The resistivity scaling is obtained from the self-consistent relaxation time solution of the Boltzmann transport equation and is compared to Prange-Nee's approach and other known methods. The results show that a substantial drop in resistivity can be obtained for certain diameters by achieving a large momentum gap between Fermi level states with positive and negative momentum in the transport direction. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000362565800032 Publication Date 2015-09-24  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 11 Open Access  
  Notes ; ; Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number UA @ lucian @ c:irua:129425 Serial 4207  
Permanent link to this record
 

 
Author Andrikopoulos, D.; Sorée, B.; De Boeck, J. url  doi
openurl 
  Title Skyrmion-induced bound states on the surface of three-dimensional topological insulators Type A1 Journal article
  Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 119 Issue 119 Pages 193903  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The interaction between the surface of a 3D topological insulator and a skyrmion/anti-skyrmion structure is studied in order to investigate the possibility of electron confinement due to the skyrmion presence. Both hedgehog (Neel) and vortex (Bloch) skyrmions are considered. For the hedgehog skyrmion, the in-plane components cannot be disregarded and their interaction with the surface state of the topological insulator (TI) has to be taken into account. A semi-classical description of the skyrmion chiral angle is obtained using the variational principle. It is shown that both the hedgehog and the vortex skyrmion can induce bound states on the surface of the TI. However, the number and the properties of these states depend strongly on the skyrmion type and the skyrmion topological number N-Sk. The probability densities of the bound electrons are also derived where it is shown that they are localized within the skyrmion region. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000377718100013 Publication Date 2016-05-18  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 8 Open Access  
  Notes ; ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:134607 Serial 4244  
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Van de Put, M.L.; Sorée, B.; Collaert, N.; Mocuta, A.; Thean, A.; Groeseneken, G. pdf  url
doi  openurl
  Title Uniform strain in heterostructure tunnel field-effect transistors Type A1 Journal article
  Year 2016 Publication IEEE electron device letters Abbreviated Journal Ieee Electr Device L  
  Volume 37 Issue 37 Pages 337-340  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Strain can strongly impact the performance of III-V tunnel field-effect transistors (TFETs). However, previous studies on homostructure TFETs have found an increase in ON-current to be accompanied with a degradation of subthreshold swing. We perform 30-band quantum mechanical simulations of staggered heterostructure p-n-i-n TFETs submitted to uniaxial and biaxial uniform stress and find the origin of the subthreshold degradation to be a reduction of the density of states in the strained case. We apply an alternative configuration including a lowly doped pocket in the source, which allows to take full benefit of the strain-induced increase in ON-current.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372372100026 Publication Date 2016-01-27  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0741-3106 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.048 Times cited 17 Open Access  
  Notes ; This work was supported by the imec Industrial Affiliation Program. The work of D. Verreck was supported by the Agency for Innovation by Science and Technology in Flanders. The review of this letter was arranged by Editor Z. Chen. ; Approved Most recent IF: 3.048  
  Call Number UA @ lucian @ c:irua:133207 Serial 4271  
Permanent link to this record
 

 
Author Moors, K.; Sorée, B.; Magnus, W. pdf  doi
openurl 
  Title Validity criteria for Fermi's golden rule scattering rates applied to metallic nanowires Type A1 Journal article
  Year 2016 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 28 Issue 28 Pages 365302  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Fermi's golden rule underpins the investigation of mobile carriers propagating through various solids, being a standard tool to calculate their scattering rates. As such, it provides a perturbative estimate under the implicit assumption that the effect of the interaction Hamiltonian which causes the scattering events is sufficiently small. To check the validity of this assumption, we present a general framework to derive simple validity criteria in order to assess whether the scattering rates can be trusted for the system under consideration, given its statistical properties such as average size, electron density, impurity density et cetera. We derive concrete validity criteria for metallic nanowires with conduction electrons populating a single parabolic band subjected to different elastic scattering mechanisms: impurities, grain boundaries and surface roughness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000380754400013 Publication Date 2016-07-12  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:135011 Serial 4274  
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Sorée, B.; Collaert, N.; Mocuta, A.; Thean, A.; Groeseneken, G. openurl 
  Title Non-uniform strain in lattice-mismatched heterostructure tunnel field-effect transistors Type P1 Proceeding
  Year 2016 Publication Solid-State Device Research (ESSDERC), European Conference T2 – 46th European Solid-State Device Research Conference (ESSDERC) / 42nd, European Solid-State Circuits Conference (ESSCIRC), SEP 12-15, 2016, Lausanne, SWITZERLAND Abbreviated Journal  
  Volume Issue Pages 412-415  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract Because of its localized impact on the band structure, non-uniform strain at the heterojunction between lattice-mismatched materials has the potential to significantly enlarge the design space for tunnel-field effect transistors (TFET). However, the impact of a complex strain profile on TFET performance is difficult to predict. We have therefore developed a 2D quantum mechanical transport formalism capable of simulating the effects of a general non-uniform strain. We demonstrate the formalism for the GaAsxSb(1-x)/InyGa(1-y) As system and show that a performance improvement over a lattice-matched reference is indeed possible, allowing for relaxed requirements on the source doping. We also point out that the added design parameter of mismatch is not free, but limited by the desired effective bandgap at the tunnel junction.  
  Address  
  Corporate Author Thesis  
  Publisher Ieee Place of Publication New york Editor  
  Language Wos Publication Date  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-5090-2969-3 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:138233 Serial 4358  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: