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We study the resistivity scaling in nanometer-sized metallic wires due to surface

roughness and grain-boundaries, currently the main cause of electron scattering in

nanoscaled interconnects. The resistivity has been obtained with the Boltzmann

transport equation, adopting the relaxation time approximation (RTA) of the distri-

bution function and the effective mass approximation for the conducting electrons.

The relaxation times are calculated exactly, using Fermi’s golden rule, resulting in

a correct relaxation time for every sub-band state contributing to the transport.

In general, the relaxation time strongly depends on the sub-band state, something

that remained unclear with the methods of previous work. The resistivity scaling is

obtained for different roughness and grain-boundary properties, showing large differ-

ences in scaling behavior and relaxation times. Our model clearly indicates that the

resistivity is dominated by grain-boundary scattering, easily surpassing the surface

roughness contribution by a factor of 10.
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I. INTRODUCTION

The resistivity scaling of metallic nanowires is very important for the application as

interconnects in chips. An increase of resistivity causes many problems, e.g. increased heat-

ing, power consumption, signal delay and errors. One has realized already for quite some

time that interconnect resistivity scaling is one of the major issues in further down-scaling

of micro-electronic devices.1,2 Metallic nanowires with smaller diameters suffer from an in-

crease in resistivity because of enhanced electron collisions. Two factors in small-diameter

nanowires are generally assumed to be causing this increase of collisions: surface roughness

of the wire boundary and grain-boundaries. The corresponding scattering processes are al-

ready known for a long time and many experiments have confirmed the importance of their

contributions to the overall resistivity.

Intuitively, it is clear that the time between subsequent surface scattering events goes

down for smaller diameters because an increasing surface to volume ratio. Similarly, time

between subsequent grain-boundary collisions decreases, because there is a general trend

of increasing grain-boundary density for nanowires of smaller cross-sections. Both surface

and grain-boundary scattering events lead to a substantial loss of forward momentum of the

conducting electrons, thereby increasing the resistivity. Using the classical Drude model, we

can relate the time between subsequent scattering events τ to the resistivity as ρ ∝ τ−1. This

result is only an approximation as all the quantum-mechanical effects have been neglected.

Two standard models describe surface roughness and grain-boundary scattering more rig-

orously: the Fuchs-Sondheimer3,4(FS) and the Mayadas-Shatzkes5(MS) model, respectively

dealing with surface roughness and grain-boundary scattering (including surface roughness).

The FS and MS models confirm the increase of resistivity for smaller diameters while predict-

ing that the relaxation time is inversely proportional to the diameter of the interconnect D

(which refers to the smallest width or height in case of a rectangular cross-section), ρ ∝ D−1,

as observed experimentally.6–9 There is no consensus about the relative contributions of sur-

face roughness and the grain-boundaries to the resistivity10–13 (see Josell14 for an overview

of contributions), which is understandable because their relative importance depends on the

properties of the surface and grain-boundaries, which, in turn, are very sensitive to the ex-

perimental set-up. Since one of both resistivity contributions cannot be excluded in general,

it is very important to understand both surface roughness and grain-boundary scattering in
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interconnects in order to reduce it.

Although FS and MS resistivity scaling shows good agreement with current experimental

data, there are two main reasons to doubt their validity for diameters below 10 nm, a

regime in which experimental data is currently unavailable. First, one needs to rely on a

free parameter p, known as the Fuchs parameter, describing the surface roughness scattering,

in order to fit the models to experimental data. The Fuchs parameter is the probability for

specular scattering at the boundary, whereas the electrons scatter diffusively at the boundary

with a probability 1 − p. This parameter is often estimated to be 50% but a general way

of calculating its value from the material and roughness properties is not known, especially

below 10 nm diameters. The argument leading to the introduction of the Fuchs parameter is

purely classical and neglects all the quantum mechanics that governs ultra-thin nanowires.

Secondly, the FS and MS models invoke a continuum approximation for all the states in the

calculation. The basis states in the system are labeled continuously in every direction of

the material, resembling the bulk. This is definitely not valid for nanowires with very small

diameters, for which quantized sub-bands must be considered.

We propose a model that solves the above issues, using the Boltzmann transport equation

and an effective mass approximation. The scattering mechanism due to surface roughness

is based on Ando’s model15 avoiding the Fuchs parameter whose relation to the microscopic

wire properties is unclear. Ando’s model eliminates this parameter by using quantum-

mechanical perturbation theory to describe surface roughness scattering. Being able to

provide transport properties as a function of surface roughness characteristics like the stan-

dard deviation and the correlation length of the boundary deformation, it was originally

devised to describe a 2D electron gas, but more recently it has also been used to study other

systems, such as semiconductor nanowires and MOSFET’s.16–19 According to the paper of

Mayadas and Shatzkes, grain boundaries are modeled in the most simple way as surfaces of

potential energy perpendicular to the transport direction.5

We apply our model to rough square, metallic nanowires containing grain-boundaries and

look specifically at the contribution to the resistivity and corresponding scaling behavior in

the few nanometer regime, for which we are able to retrieve the relaxation times for each

sub-band state correctly.
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II. BOLTZMANN TRANSPORT EQUATION - RELAXATION TIME

APPROXIMATION
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(a) Grain boundaries

(b) Surface roughness

FIG. 1. (a) The ideal nanowire without surface roughness and grain-boundaries is modeled as

a rectangular box with cross-section sides equal to D and length Lz. The electric field Ez and

current Jz are along the z-direction. Grain-boundaries are also shown, and are always supposed

to be infinitely thin and normal to the transport direction. (b) A wire nine copper atoms wide

and high (9aCu ≈ 3.3 nm) is shown here with Gaussian correlated, rough surfaces. The standard

deviation is ∆ = 10%D and the correlation length is Λ = 1.75D.

We model the conduction electrons in an ultra-thin metal nanowire as free electrons in

an ideal, rectangular box as shown in Fig. 1 (a). We do not consider cross-section aspect

ratios different from one. The box has zero potential inside (U = 0) and its transverse

boundaries are assumed to be hard walls (U = +∞). In the transport direction, denoted by

z, we impose periodic boundary conditions and the length of the wire is always considered
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to be long enough, so that the eigenstates can be labeled by a quasi-continuous valued

momentum variable kz. Due to the confinement in the transverse directions, denoted by x

and y, the eigenstates are also labeled by positive integers nx, ny and have a total energy

Enxny (kz) = ~2/ (2m∗e)
[
k2z + (πnx/D)2 + (πnx/D)2

]
. The quadratic expression of the latter

reflects the effective mass approximation (EMA) which has been adopted throughout the

paper. Although questionable in general for treating nanowires, we have assumed that the

EMA provides an acceptable description of the conduction band of a nanowire made of a

simple metal like Cu. In particular, we have taken m∗e to be equal to the free electron mass.

The basis for our model and resistivity calculations is the Boltzmann transport equation

(BTE) (see for example Mahan20), which provides the time evolution of the occupation

probability distribution fnxny (kz) in phase space, valued between 0 and 1. We do not

consider z-dependence because a homogeneous electric field Ez is applied. Summing the

distribution function over phase space yields the total density of conduction electrons ne in

the wire:

ne =
2

2πD2

∑
nx,ny

+∞∫
−∞

dkzfnxny (kz)

T=0, eq.
=

2
√

2me

πD2~
∑
nx,ny

√
Max

{
0, EF − Enxny

}
,

with Enxny ≡ Enxny (kz = 0). The second line gives the electron density for the equilibrium

distribution at zero temperature, which is used to calculate the Fermi energy EF for every

diameter of the simulated nanowires. The equilibrium distribution can be used because our

perturbative approach to solve for the stationary state distribution function barely changes

the resulting Fermi level. The electron density ne is always fixed to the bulk value of the

metal considered. Because of the sub-band quantization, there is a substantial increase of

the Fermi energy compared to bulk for few nanometer diameter wires.

The BTE for a stationary state and the resulting expression for the current Jz are given

by:

−eEz
~
∂fnxny (kz)

∂kz
=
∂fnxny (kz)

∂t

∣∣∣∣
collisions

, (1)

Jz = − e
π

∑
nx,ny

+∞∫
−∞

dkz
~kz
m∗e

fnxny (kz) . (2)
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Note that a factor of 2 is included in the expression for the current due to the spin degeneracy.

The collision term is not specified for the moment, but this will be derived based on quantum-

mechanical perturbation theory below. The most important thing that remains to get the

current and conductivity with the BTE is to solve for a stationary solution of Eq. (1)

perturbatively, meaning for small electric field Ez and a close to equilibrium distribution

function:

fnxny (kz) ≈ f (eq.)
nxny (kz) + f (1)

nxny (kz) . (3)

Inserting the typical perturbative expression of the collision term, the RTA:

∂f
(1)
nxny (kz)

∂t

∣∣∣∣∣
collisions

= −f
(1)
nxny (kz)

τnxny (kz)
, (4)

in Eq. (1), we get the following solution:

f (1)
nxny (kz) = −eEzτnxny (kz)

~kz
me

δ
[
Enxny (kz)− EF

]
= −eEz

~
∑
±

±τ±nxnyδ
(
kz − k±z,nxny

)
. (5)

Because of the Dirac delta function, the probability distribution is only changed for states

at the Fermi-level. It means that the important occupation probabilities are these of the

positive and negative momentum states at the Fermi level for each sub-band. There are

two solutions for each sub-band with momentum kz = ±
√
k2F − (πnx/D)2 − (πny/D)2 that

will be labeled +(−) for positive (negative) kz states, as in Eq. (5). The latter is a zero

temperature result, but it provides a good approximation at room temperature because

kBT � EF for metals.

We plug Eq. (5) into the expression for current, Eq. (2), and retrieve the following formula

for the conductivity σ ≡ Jz/(D
2Ez):

σ =
e2

πmeD2

∑
nx,ny ,±

τ±nxny

∣∣∣k±z,nxny ∣∣∣ , (6)

where the relaxation times τ±nxny are to be extracted from Fermi’s golden rule. The latter is

invoked to calculate the transition probabilities P (| i〉 →| f〉) emerging in the full-fledged

collision term:
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∂f±nxny
∂t

∣∣∣∣∣
collisions

=
∑
n′x,n

′
y

Lz
2π

+∞∫
−∞

dk′z

{
fn′xn′y (k′z)

(
1− f±nxny

)
P
(
| n′xn′y, k′z〉 →| nxny±〉

)
(7)

−f±nxny
[
1− fn′xn′y (k′z)

]
P
(
| nxny±〉 →| n′xn′y, k′z〉

)}
,

P (| i〉 →| f〉) =
2π

~
|〈i | V | f〉|2 δ (Ei − Ef ) ≡

2π

~
M f

i δ (Ei − Ef ) , (8)

expressing the change of the occupation probability due to collisions as the sum over all

the probabilities to scatter in from every other state and the sum over all the probabilities

to scatter out from the state we are considering.21

The perturbation Hamiltonian term V describes the difference between the realistic

nanowire, with surface roughness and grain-boundaries, and the ideal rectangular box Hamil-

tonian. The calculation of these matrix elements M
n′xn

′
y ,k
′
z

nxny ,kz
for surface roughness scattering

is discussed in section III A whereas section III B covers grain-boundary scattering.

The transition probabilities P in Eq. (7), defining a typical time scale before a state

is scattered into another state, obey conservation of energy. Hence, only states at the

Fermi level participate in the collision term, which is consistent with the zero temperature

assumption.

We see from Eq. (8) that the transition probabilities are symmetric under interchange of

initial and final state. One of the consequences is that the exclusion-blocked transitions for

incoming and outgoing scattering are completely identical and have no effect on the collision

term. Using Eq. (5), (7) and (8), we obtain:

1 =
meLz
~3

∑
{n′x,n′y,±′}
6={nx,ny ,±}

(
−
k±
′

z,n′xn
′
y

k±z,nxny
τ±
′

n′xn
′
y

+ τ±nxny

)
M

n′xn
′
y±′

nxny±∣∣∣k±′z,n′xn′y ∣∣∣ . (9)

Note that in the above system of equations all relaxation times are coupled. The most crude

approximation to retrieve τ±nxny and get the conductivity via Eq. (6) would neglect incoming

scattering, hence putting the first term on the right-hand side equal to zero, yielding:

1

τ±nxny

∣∣∣∣∣
No in-scattering

≡ meLz
~3

∑
n′x,n

′
y ,±′

M
n′xn

′
y ,k
′
z

nxny ,kz∣∣∣k±′z,n′xn′y ∣∣∣ . (10)

A better approximation to decouple the equations, is retrieved assuming that the relaxation

times are the same for every sub-band state at the Fermi level. In this case one gets the
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following closed form expression for the relaxation time:

1

τ±nxny

∣∣∣∣∣
Equal RT

(11)

≡ meLz
~3

∑
n′x,n

′
y ,±′

M
n′xn

′
y ,k
′
z

nxny ,kz∣∣∣k±′z,n′xn′y ∣∣∣
(

1−
k±
′

z,n′xn
′
y

k±z,nxny

)
.

Note that this approximation is also underlying the well-known bulk form of the relaxation

time,22 τ (k)−1Bulk =
∑

k′ P (| k〉 →| k′〉)
(

1− k̂ · k̂′
)

. This approximation has been used pre-

viously to incorporate incoming scattering,18 but its validity is not guaranteed and one can

easily see that the effective relaxation time could become negative in Eq. (11).

The correct way to solve the BTE perturbatively, is by solving the complete set of coupled

equations in Eq. (7) for all the different relaxation times. Because it is a system of linear

equations, finding the solution just boils down to the inversion of a large square matrix, i.e.:
τ+11

τ+12
...

τ+n∗xn∗y

 = (12)



1
τ+
11

∣∣∣
No in-sc.

+
meLzM

11−
11+

~3k+
z,11

−meLz
∑
±±M

12±
11+

~3k+
z,11

· · · −meLz
∑
±±M

n∗xn
∗
y±

11+

~3k+
z,11

−meLz
∑
±±M

11±
12+

~3k+
z,12

1
τ+
12

∣∣∣
No in-sc.

+
meLzM

12−
12+

~3k+
z,12

· · · −meLz
∑
±±M

n∗xn
∗
y±

12+

~3k+
z,12

...
...

. . .
...

−
meLz

∑
±±M

11±
n∗xn∗y+

~3k+
z,n∗xn∗y

−
meLz

∑
±±M

12±
n∗xn∗y+

~3k+
z,n∗xn∗y

· · · 1
τ+
n∗xn∗y

∣∣∣∣
No in-sc.

+
meLzM

n∗xn
∗
y−

n∗xn∗y+

~3k+
z,n∗xn∗y



−1
1

1
...

1

 .

Note that only positive momentum states need to be considered, as the opposite momenta

yield the same relaxation times. We have introduced the labels n∗x, n
∗
y to denote the highest

integer values corresponding with the highest sub-band having states below the Fermi-energy.

Denoting the matrix inverse in Eq. (12) by Tnxny ,n′xn′y , we can obtain the correct state-

dependent relaxation times τ±nxny without having approximated the solution of the perturbed

BTE:

τ±nxny =
∑
n′xn

′
y

Tnxny ,n′xn′y . (13)
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These relaxation times can be interpreted as the state-dependent lifetimes, such that a sub-

band quantized generalization of the Drude conductivity appears in Eq. (6). Results of the

correct relaxation times and resulting conductivities, compared to the approximated forms

[No in-scattering, Eq. (10), and Equal RT, Eq. (11)] are shown in section IV.

III. MATRIX ELEMENTS

A. Surface roughness

To model the surface roughness, we first introduce four functions providing the fluc-

tuations around the flat, ideal boundaries wire: Sx=0(y, z), Sx=D(y, z), Sy=0(x, z) and

Sy=D(x, z). Typically one supposes Gaussian or exponential autocorrelation functions to

model the boundary roughness:

〈Sx=0(y, z)Sx=0(y
′, z′)〉 = ∆2e

− (y−y′)2+(z−z′)2

Λ2/2 (Gaussian),

〈Sx=0(y, z)Sx=0(y
′, z′)〉 = ∆2e

−
√

(y−y′)2+(z−z′)2
Λ/
√

2 (exp.),

with standard deviation ∆ and correlation length Λ. We will calculate the scattering matrix

elements for Gaussian correlated rough surfaces.

The matrix elements 〈nxny± | VSR | n′xn′y±′〉 are given by:

〈nxny± | VSR | n′xn′y±′〉 (14)

=
1

Lz

D∫
0

dx

D∫
0

dy

+Lz/2∫
−Lz/2

dz ψ∗nx (x)ψ∗ny (y) e−ik
±
z,nxny z

× [H(x, y, z)−H0(x, y, z)]ψn′x (x)ψn′y (y) e
ik±
′

z,n′xn′y
z
,

with the approximated Hamiltonian H0 given by:

H0 (r) =

0, r ∈ [0, D]× [0, D]× [−Lz/2,+Lz/2]

U, r /∈ [0, D]× [0, D]× [−Lz/2,+Lz/2]
,

and ψnx(x) = D−1/2 sin (nxπx/D). The difference between the correct and approximate

Hamiltonian is only non-zero near the boundaries that are shifted due to roughness. This

difference diverges if the potential well height U is infinitely high, rendering the integral

in Eq. (14) divergent. We can however expand Eq. (14) up to first order of the roughness
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function Sx=0(y, z), which yields a finite result, first introduced by Prange and Nee.23 The

resulting matrix element for the x = 0 surface reads:

〈nxny± | VSR,x=0 | n′xn′y±′〉 (15)

≈ 2

√
EnxEn′x
DLz

D∫
0

dy

+Lz/2∫
−Lz/2

dz ψ∗ny (y) e−ik
±
z,nxny zSx=0(y, z)ψn′y (y) e

ik±
′

z,n′xn′y
z
.

Averaging the squared absolute value appearing in Fermi’s golden rule with the surface

roughness autocorrelation functions, we arrive at:〈∣∣〈nxny± | VSR,x=0 | n′xn′y±′〉
∣∣2〉

Sx=0

(16)

≈ 4
EnxEn′x
D2

∆2

L2
z

D∫
0

dy

+Lz/2∫
−Lz/2

dz

D∫
0

dy′
+Lz/2∫
−Lz/2

dz′ ψ∗ny (y)ψny (y′)ψn′y (y)ψ∗n′y (y′)

× exp

[
−ik±z,nxnyz + ik±z,nxnyz

′ + ik±
′

z,n′xn
′
y
z − ik±′z,n′xn′yz

′ − 2

Λ2
(y − y′)2 − 2

Λ2
(z − z′)2

]
,

for the Gaussian model. The integral can be solved analytically, as its integrand is a product

of exponentials of terms that are only linear and quadratic in y, y′, z and z′. In practice, we

can reduce the analytical expression by dropping terms that disappear when the correlation

length is much smaller than Lz. We can however not make a similar simplification for D,

as typical values of Λ in nanowires fabricated today have correlation lengths comparable to

the diameter. Note that the total matrix element value is just the sum of the contribution

of all the different surfaces, because we suppose that the surfaces are not cross-correlated.

B. Grain-boundaries

The interaction potential representing N grain-boundaries in the nanowire is given by a

series of delta functions,

VGB(x, y, z) =
N∑
α=1

UGBLGBδ (z − zα) , (17)

where the grain-boundary planes (z = zα) are perpendicular to the transport direction and

represent the misaligned planes of the crystal grains. The strength of the grain-boundary

potential is represented by UGBLGB, having the dimensions of energy times distance, the

two factors respectively representing the energy barrier height of the grain-boundary and its
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width. The positions of the grain-boundaries, zα, are distributed according to a Gaussian

distribution g (z1, . . . , zN),

g (z1, . . . , zN) =

exp

[
−

N−1∑
α=1

(
zα+1 − zα − Lz

N

)2
/2σ2

GB

]
Lz (2πσ2

GB)(N−1)/2
.

The grain-boundaries are on average uniformly distributed along the wire, with standard

deviation σGB. The squared matrix element, averaged over the grain-boundary positions,

has a non-zero result only for Umklapp scattering because of the definition of the potential

in Eq. (17):

〈
|〈nxny± | VGB | nxny∓〉|2

〉
zα

=
U2
GBL

2
GB

L2
z

∑
α,α′

〈
e−i2(k

±
z,nxny)(zα−zα′ )

〉
z1,...,N

≈ U2
GBL

2
GB

L2
z

∑
α,α′

+Lz/2∫
−Lz/2

dz1

+∞∫
−∞

dz2 · · ·
+∞∫
−∞

dzN g (z1, . . . , zN) e−i2k
±
z,nxny (zα−zα′ )

≈ NU2
GBL

2
GB

L2
z

sinh

[
2
(
k±z,nxnyσGB

)2]
cosh

[
2
(
k±z,nxnyσGB

)2]
− cos

[
2k±z,nxnyLz/N

] .
In analogy with Mayadas,5 we have made two approximations that affect the result very

little as long as N is quite large and σGB � Lz. In the third line we have extended the

integration limits of zα with α between 2 and N from −∞ to +∞ and in the last line we have

neglected the O (1/N) part of the solution. The total matrix element that should be inserted

into Eq. (8) is just the sum of the boundary surface contributions and the grain-boundary

contributions, because the correlations between boundary surfaces and grain-boundaries

appearing in the cross-terms, e.g. 〈〈i | VSR | f〉〈f | VGB | i〉〉S,zα , are considered to be zero.

IV. RESULTS & DISCUSSION

A. Relaxation times

The relaxation times due to surface roughness and grain-boundaries for all Fermi level

states, calculated using Eq. (13), are plotted for a copper nanowire with 3.3 nm sides in
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(a) Surface roughness (b) Grain boundaries

FIG. 2. The relaxation times for all Fermi level states of a wire with cross-section of 9 by 9

aCu (D ≈ 3.3 nm) are shown as a function of their transport momentum kz, limited to positive

momenta. Constant Fermi wave vector kF is shown as a red, dashed line. The simulated wire has

(a) surface roughness with ∆ = 0.1D and Λ = 10 nm or (b) grain-boundaries with UGB = 1.5eV,

LGB = aCu, Lz/N = D and σGB = Lz/2N .

(a) Surface roughness (b) Grain boundaries

FIG. 3. The conductivity contributions of all the Fermi level states as a function of kz are shown

for a copper wire with cross-section of 9 by 9 aCu (D ≈ 3.3 nm). Constant Fermi wave vector kF

and −kF are shown as red, dashed lines. In case of (a) surface roughness, ∆ = 0.1D and Λ = 10

nm are considered, in case of (b) grain-boundaries, UGB = 1.5eV, LGB = aCu, Lz/N = D and

σGB = D/2 are considered.

Fig. 2 as a function of kz. Only the relaxation times for the positive momentum states are

shown, but the negative momentum states have the same relaxation time as their opposite

kz state. Clearly, the relaxation time is not constant in general, indicating that the equal

RT approximation is not a good approximation. Moreover, the relaxation time is largest for

the states with the highest transport momentum, such that the conductivity contribution

of these states is enhanced both by their high momentum and lifetime.

The relaxation times of surface roughness are strongly peaked for high kz states. The
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states with high nx, ny have more energy in the transverse direction, thus a larger scattering

matrix element as can be seen in Eq. (16) and a dramatic decrease of their lifetime. There

is some spread in the relaxation times because the states with sub-band indices close to

nx = ny are slightly more stable than the states close to nx/y = 1. The relaxation times

are in general quite large, of the order of 100 fs. In contrast, the grain-boundary relaxation

times are only of the order of 1-10 fs. The high kz states are also the most stable, but the

difference is much less, and can be attributed solely to the difference in the density of states.

For the considered values of σGB, the matrix elements themselves are almost independent of

the states. The correct relaxation times for a nanowire with grain-boundaries and surface

roughness are retrieved by adding the matrix element contributions of surface roughness

and grain-boundaries together. Because surface roughness is much less important, we study

their contribution separately to clearly see the different scaling behavior.

The conductivity contribution to each state as a function of kz is shown in Fig. 3 for the

same wire, according to Eq. (6). For grain-boundaries the conductivity is sharply peaked

around the Fermi wave vector kF, much less so for surface roughness. The difference in

conductivity for grain-boundary scattering and surface roughness scattering is large, as was

expected from the large difference in relaxation times in Fig. 2. The kz degeneracy of the

different states can be clearly recognized in the different lines of the grain-boundary plot.

B. Resistivity scaling

The resistivity, defined as the inverse of the conductivity, is different for the different

methods (exact or approximate) of obtaining the relaxation times. The correct result, using

Eq. (13), is compared with results obtained with the approximations discussed in section

II for both grain-boundaries and surface roughness in Fig. 4. The resistivity is shown for

Cu nanowires with diameters ranging from approximately 1 up to 6 nm. It is plotted for a

discrete set of diameters, namely the integer multiples of the atomic lattice constant. Larger

diameters above 6 nm can also be reached with our method, but the required computa-

tion time rapidly increases,24 most of the CPU time being spent to calculating the surface

roughness matrix elements.

Figure 4 (a) shows that neglecting the incoming scattering largely overestimates the resis-

tivity. Assuming equal relaxation times gives a much better result, which, however, deviates
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FIG. 4. The resistivity is shown for copper nanowires of different diameters. The exact result

(Exact) is compared to the approximative methods explained in section 4 (No In-Scattering and

Equal RT). (a) Scaling roughness size: ∆ = 0.1D, constant correlation length: Λ ≈ 10 nm (b)

Scaling grain-boundary density: Lz/N = D, scaling standard deviation: σGB = D/2, UGB = 1.5eV,

LGB = aCu. Note that the Equal RT and Exact results coincide.

substantially from the correct resistivity. This is plausible because incoming scattering of

states with similar transport momentum kz can have a stabilizing effect on a particular

current-carrying state. This effect is included in the exact solution as well as in the approx-

imated solution relying on equal relaxation times, both having the same order of magnitude

resistivity approximately a factor of 10 smaller than the other one. The resistivity is un-

derestimated by the equal RT assumption because it overestimates the incoming scattering

for the states carrying most of the current, thus enhancing their conductivity contribution.

The underestimation of the resistivity may be compensated by the appearance of “negative”

relaxation times, sometimes even leading to a much higher resistivity result. This effect can

be seen in the deviations of the Equal RT curve around 2 nm.

For grain-boundaries, in Fig. 4 (b), the approximations work a lot better. In this case

neglecting the incoming scattering underestimates the resistivity, whereas equal relaxation

times lead to the exact result, because there is only Umklapp scattering. The fully reflected

states comply automatically with the equal RT assumption automatically because of symme-

try. Scattering occurring only between states with the same sub-band indices is an artifact

of the simple grain-boundary model and is not expected to emerge in more general grain-

boundary modeling. Strangely enough, neglecting the incoming scattering underestimates

the resistivity. Incoming scattering of the opposite kz state equilibrium distribution is auto-
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(b) Grain boundaries

FIG. 5. The resistivity is shown for different diameter, copper nanowires with different types of

surface roughness and grain-boundary properties. (a) The surface properties for the 16 by 16 aCu

(D ≈ 5.8 nm) wire are given by ∆ = 0.1D, Λ = 10nm ≈ 1.75D in all three cases. For the constant

roughness curve, the numerical values of ∆ and Λ are kept constant when simulating smaller

nanowires. For scaling roughness size, the roughness standard deviation is scaling as ∆ = 0.1D,

while ∆ = 0.1D and Λ = 1.75D are taken for the scaling roughness size and correlation plot

points. (b) For the two cases, the 16 by 16 aCu wire has an average intermediate distance of grain-

boundaries equal to D, a standard deviation of D/2 potential barrier determined by UGB = 1.5eV,

LGB = aCu. For Scaling GB density, the intermediate distance and standard deviation scale,

whereas for Constant GB density the numerical values of the 16 by 16 wire are taken for every

diameter.

matically included in the relaxation time, which is an overestimate in this case, explaining

a lower resistivity.

In Fig. 5 different scenarios for surface roughness and grain-boundaries are considered.

Remarkably, if the grain-boundary standard deviation is taken to be proportional to the

diameter, the resistivity does not increase whether the correlation length scales with the

diameter or not. Only when the standard deviation is constant for every diameter do we

observe an increase. The values of resistivity are also quite small for all the data points,

while the roughness standard deviation for every wire boundary of each data point is at least

10% of the wire diameter. There are also bumps in the resistivity plot showing up for all the

roughness properties at certain diameters, independent of the surface roughness properties.

This effect is due to sub-band quantization and it should be possible to confirm it with

high-precision measurements, if the grain-boundaries were only modestly contributing. This
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appears to be not the case, as can be seen in Fig. 5 (b). Note that the resistivity values are

proportional to UGB, the grain-boundary potential barrier. It is therefore very important

to assign a realistic value to it. To this end, we have estimated its value using data in the

15-100 nm regime.2526

Unlike the case of FS and MS, no strict power-law relation between diameter and resis-

tivity emerges. Nevertheless, we can still calculate an average scaling exponent by fitting

the best power-law: ρ ∝ Dα (α = −1 for FS and MS models). The scaling exponents for all

the simulated scenarios shown in Fig. 4 are given in Table I.

TABLE I. Approximate resistivity scaling exponents α (ρ ∝ Dα) are given for different surface

roughness and grain-boundary characteristics.

Scattering mechanism Properties α

Surface roughness ∆ ∝ D, Λ = constant 1.3

∆ = const., Λ = const. -0.8

∆ ∝ D, Λ ∝ D 0.1

Grain-boundaries Lz/N ∝ D -1

Lz/N = const. 0

V. CONCLUSION

We have developed a method to solve the scattering relaxation times exactly for electrons

moving through a metallic nanowire. The method relies on an effective mass description of

the electrons and the Boltzmann transport equation in the linear response regime, whereas

the collision terms are determined by Fermi’s golden rule. Our approach amounts to solving

a system of coupled equations, providing the electron relaxation times for every individual

state. Though being presented for zero temperature, the procedure can be generalized to

non-zero temperatures by including more states to the system of equations.

The framework has been applied to retrieve the relaxation times for surface roughness

and grain-boundary scattering in a metal nanowire with square cross-section. For both

scattering mechanisms the relaxation times depend strongly on the considered sub-band

state, the highest lifetime being reached for states with highest transport momentum, an
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effect that is pronounced for surface roughness scattering. For the grain-boundary model,

the relaxation times are uniquely determined by the value of kz through a linear relation,

while for surface roughness some spread for constant kz is observed and the relation is less

clear.

Realistic surface roughness and grain-boundary properties show that the resistivity is

largely dominated by grain-boundaries in nanowires with sides between 1 and 6 nm. The

order of magnitude of the relaxation times can differ by a factor of 10-100 and fast traveling

states are better protected against surface roughness scattering. When it comes to resistivity

scaling in terms of the wire diameter, substantial differences with FS and MS scaling for large

diameters are observed, both for surface roughness scattering and grain-boundary scattering.

If the density of grain-boundaries increases inversely proportional to the diameter, the scaling

law persists (α = −1). However, a constant density would stop the scaling (α = 0), while, if

grain-boundaries can be avoided, a wide range of approximate scaling exponents related to

surface roughness scattering (−1 ≤ α ≤ 1.5 for surface roughness characteristics considered

here) could be observed.
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