|
Record |
Links |
|
Author |
Verreck, D.; Van de Put, M.; Sorée, B.; Verhulst, A.S.; Magnus, W.; Vandenberghe, W.G.; Collaert, N.; Thean, A.; Groeseneken, G. |
|
|
Title |
Quantum mechanical solver for confined heterostructure tunnel field-effect transistors |
Type |
A1 Journal article |
|
Year |
2014 |
Publication |
Journal of applied physics |
Abbreviated Journal |
J Appl Phys |
|
|
Volume |
115 |
Issue |
5 |
Pages |
053706-53708 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
Heterostructure tunnel field-effect transistors (HTFET) are promising candidates for low-power applications in future technology nodes, as they are predicted to offer high on-currents, combined with a sub-60 mV/dec subthreshold swing. However, the effects of important quantum mechanical phenomena like size confinement at the heterojunction are not well understood, due to the theoretical and computational difficulties in modeling realistic heterostructures. We therefore present a ballistic quantum transport formalism, combining a novel envelope function approach for semiconductor heterostructures with the multiband quantum transmitting boundary method, which we extend to 2D potentials. We demonstrate an implementation of a 2-band version of the formalism and apply it to study confinement in realistic heterostructure diodes and p-n-i-n HTFETs. For the diodes, both transmission probabilities and current densities are found to decrease with stronger confinement. For the p-n-i-n HTFETs, the improved gate control is found to counteract the deterioration due to confinement. (C) 2014 AIP Publishing LLC. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
American Institute of Physics |
Place of Publication |
New York, N.Y. |
Editor |
|
|
|
Language |
|
Wos |
000331645900040 |
Publication Date |
2014-02-05 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0021-8979;1089-7550; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.068 |
Times cited |
15 |
Open Access |
|
|
|
Notes |
; D. Verreck acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by imec's Industrial Affiliation Program. ; |
Approved |
Most recent IF: 2.068; 2014 IF: 2.183 |
|
|
Call Number |
UA @ lucian @ c:irua:115825 |
Serial |
2780 |
|
Permanent link to this record |