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Abstract. For many decades the Boltzmann distribution function has been used to calculate
the non-equilibrium properties of mobile particles undergoing the combined action of various
scattering mechanisms and externally applied force fields. When the latter give rise to the
occurrence of inhomogeneous potential profiles across the region through which the particles
are moving, the numerical solution of the Boltzmann equation becomes a highly complicated
task. In this work we highlight a particular algorithm that can be used to solve the time
dependent Boltzmann equation as well as its quantum mechanical extension, the Wigner–
Boltzmann equation. As an illustration, we show the calculated distribution function describing
electrons propagating under the action of both a uniform and a pronouncedly non-uniform
electric field.

1. Introduction
In this paper we propose the method of characteristic curves as an alternative approach to
solve the time dependent Boltzmann equation and other kinetic equations with a similar
kernel structure, such as the Wigner–Boltzmann equation. In section 2 we briefly outline
the corresponding algorithm which is thoroughly described in [1]. In section 3, we illustrate
and discuss how the algorithm can be exploited most conveniently to calculate the Boltzmann
distribution function for an electron gas moving in two different force field profiles, whereas
section 4 provides the conclusions.

2. Characteristic curves of the Boltzmann equation
Consider an ensemble of mobile, charged particles with band mass m moving through a force field
F(r). Providing a classical tool to quantify the probability of finding a particle with momentum
p at a position r at an arbitrary time instant t > 0, the Boltzmann distribution function f(r,p, t)
satisfies the time-dependent Boltzmann transport equation (BTE)

∂f(r,p, t)

∂t
+

p

m
· ∇f(r,p, t) + F(r) · ∇pf(r,p, t) = QB[f(r,p, t)]. (1)

Appearing as a functional of f(r,p, t), the Boltzmann collision integral QB[f(r,p, t)]
incorporates the transition probabilities associated with all relevant, microscopic scattering
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mechanisms that may affect the particle flow. A straightforward algorithm providing an iterative,
numerical solution of Eq. (1) can be constructed by observing that the classical trajectories R(s)
and P(s), traversed by a particle in phase space between the time instants s = −t and s = 0
are in fact the characteristic curves of the BTE. Indeed, inserting Newton’s equations

dR(s)

ds
=

P(s)

m
,

dP(s)

ds
= F[R(s)], (2)

together with the function T (s) = t+ s into Eq. (1), we may turn the left-hand side of the latter
into a complete differential, reduce the BTE to an ordinary differential equation and integrate
it formally while interpreting r and p as “initial” position and momentum,

f(r,p, t) = f0(R(−t),P(−t)) +

∫ t

0

ds QB[f(R(s − t),P(s − t), s)], (3)

where we need to specify the initial distribution function f0(r,p). Requiring merely the history
of the distribution function during the time interval [−t, 0], Eq. (3) can easily be recast in a
forward step algorithm

f(r,p, tn) = f(R(−∆t),P(−∆t), tn−1) + ∆tQB

[

f(R(−∆t),P(−∆t), tn−1)
]

, (4)

by choosing an equidistant time grid tn = n∆t, n = 0, 1, 2, . . . ,N . The time step ∆t should be
small compared with the system’s characteristic times such as dwell times, scattering times etc.,
whereas tN represents the numerical onset of the steady state (if any), i.e. the time at which
f(r,p, tN ) does not appreciably differ from its previous values.
Though being devised originally to tackle the BTE, one may as well use the algorithm defined
in Eq. (4) to investigate the Wigner–Boltzmann distribution function fW(R,p, t) obeying the
Wigner–Boltzmann transport equation (WBTE) [1, 5, 6, 7]

∂fW(R,p, t)

∂t
+

p

m
· ∇RfW(R,p, t) = QB[fW(R,p, t)] + QW[fW(R,p, t)] (5)

that may be considered a pragmatic quantum mechanical extension of the BTE where r is
replaced with R, the so-called “center-of-mass” coordinate. As such, it borrows the Boltzmann
collision integral QB from the BTE to include decoherent scattering processes while non-locality
effects are described by the Wigner kernel

W (R,p) = −
i

!

∫

d3x
[

U
(

R +
x

2

)

− U
(

R −
x

2

)]

exp

(

−
ip · x

!

)

. (6)

Entering the Wigner collision term

QW[fW(R,p, t)] =

∫

d3p′

(2π!)3
f(R,p′, t)W (R,p − p′), (7)

the kernel W (R,p) accumulates all non-local contributions arising from the potential energy
function U(r) which is related to the force field by F(r) = −∇U(r). In contrast to earlier works
[5, 7] relying as well on classical paths to solve the WBTE, we follow an alternative approach
and rewrite the WBTE such that its left-hand side is identical to that of the BTE. Accordingly,
the right-hand side consists of an effective collision term, given by

Q[fW(R,p, t)] = QB[fW(R,p, t)] + QW[fW(R,p, t)] + F(R) · ∇pfW(R,p, t), (8)

with F(R) = −∇RU(R). In spite of its internal complexity QW[fW] shares at least one feature
with its classical counterpart QB[fW], namely the mere dependence on times prior to the time
instant t appearing in the left-hand side of the WBTE. Consequently, the forward step algorithm
introduced in Eq. (4) can be usefully invoked to solve the time dependent WBTE as well.
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3. Examples
As an illustration, we calculate the distribution function of electrons moving through a simple
semiconductor device.

3.1. n-i-n diode
First, we consider an intrinsic semiconductor layer being sandwiched between two n+-doped
reservoirs to form a n-i-n diode. For the sake of simplicity, we treat this structure as a 1D
device with density and field profiles merely depending on the z coordinate and we discard any
inelastic scattering events (QB = 0). On the other hand, as the force field F (z) turns out to be
strongly localized inside the intrinsic region and the adjacent junction areas, it proves convenient
to rephrase the Wigner collision integral in terms of the Fourier transform F̃ (k) of the force field:

QW(Z, p, t) =
1

!

∫ +∞

−∞

dk F̃ (2k) e2ikZ ·
f(Z, p − !k, t) − f(Z, p + !k, t)

k
. (9)

Starting from an initial distribution with an empty intrinsic region, we reach a steady state after
about 300 time steps. The corresponding distribution function revealing the particle diffusion
into the central layer is shown in Fig. (1).
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Figure 1. Wigner–Boltzmann distribution for a n–i–n diode after 300 time steps. The intrinsic
region extends along the interval 0 ! Z ! 31.1. All quantities are expressed in atomic units.

3.2. Polaron scattering
Next, we consider an electron gas moving in a bulk, polar semiconductor and being driven
by a uniform electric field F applied along the z-direction. Consequently, the Wigner kernel

reduces to the Boltzmann force term with f(r,p, t) = f(pz, p⊥, t) and p⊥ ≡
√

p2
x + p2

y, while

QB describes the interaction of the electrons with longitudinal optical (LO) phonons having a
dispersion free energy !ωLO [9] or an equivalent temperature Θ = !ωLO/kB. Given the lattice
temperature T , the corresponding transition probabilities read

Π(p → p′) =
1

|p− p′|2

[

Ae δ

(

p2

2
−

p′2

2
− 1

)

+ Aa δ

(

p2

2
−

p′2

2
+ 1

)]

, (10)

where the absorption(emission) coefficients Aa(Ae) are proportional to the Fröhlich coupling
constant α,

Ae =
α

π
√

2
(1 + ν), Aa =

α

π
√

2
ν, ν =

1

eΘ/T − 1
, (11)

and all quantities are expressed in polaronic units (! = m = ωLO = 1). Fig. (2) compares the
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Figure 2. Polaron distribution function in equilibrium (left) and in the presence of a uniform
electric field after 500 time steps (right). The following parameters have been used: Aa = 0.2,
Ae = 1.0 and F = 1.0. All quantities are expressed in polaronic units (! = m = ωLO = 1).

initial distribution f0(p) with the steady-state distribution attained after 500 time steps. The
former describes a configuration with all electrons gathering inside the sphere |p| =

√
2 while

the latter develops an sharp maximum shifting to positive pz-values due to the action of the
uniform electric field. It should be noted that the same steady state distribution is found when
f0(p) is chosen otherwise, e.g. a simple Maxwellian.

4. Conclusion
The characteristic curves method provides a natural computational framework to evaluate the
time-dependent Wigner and Wigner–Boltzmann distribution functions. Accordingly, only an
initial distribution function needs to be specified and no artificial boundary conditions directly
impinging on the steady state (such as fixing the chemical potentials of the contacts) need to
be imposed.
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