toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yusupov, M.; Saraiva, M.; Depla, D.; Bogaerts, A. url  doi
openurl 
  Title Sputter deposition of MgxAlyOz thin films in a dual-magnetron device : a multi-species Monte Carlo model Type A1 Journal article
  Year 2012 Publication (up) New journal of physics Abbreviated Journal New J Phys  
  Volume 14 Issue 7 Pages 073043  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A multi-species Monte Carlo (MC) model, combined with an analytical surface model, has been developed in order to investigate the general plasma processes occurring during the sputter deposition of complex oxide films in a dual-magnetron sputter deposition system. The important plasma species, such as electrons, Ar+ ions, fast Ar atoms and sputtered metal atoms (i.e. Mg and Al atoms) are described with the so-called multi-species MC model, whereas the deposition of MgxAlyOz films is treated by an analytical surface model. Targetsubstrate distances for both magnetrons in the dual-magnetron setup are varied for the purpose of growing stoichiometric complex oxide thin films. The metal atoms are sputtered from pure metallic targets, whereas the oxygen flux is only directed toward the substrate and is high enough to obtain fully oxidized thin films but low enough to avoid target poisoning. The calculations correspond to typical experimental conditions applied to grow these complex oxide films. In this paper, some calculation results are shown, such as the densities of various plasma species, their fluxes toward the targets and substrate, the deposition rates, as well as the film stoichiometry. Moreover, some results of the combined model are compared with experimental observations. Note that this is the first complete model, which can be applied for large and complicated magnetron reactor geometries, such as dual-magnetron configurations. With this model, we are able to describe all important plasma species as well as the deposition process. It can also be used to predict film stoichiometries of complex oxide films on the substrate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000307072500003 Publication Date 2012-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 2 Open Access  
  Notes Approved Most recent IF: 3.786; 2012 IF: 4.063  
  Call Number UA @ lucian @ c:irua:100100 Serial 3111  
Permanent link to this record
 

 
Author Piñera, I.; Cruz, C.M.; van Espen, P.; Abreu, Y.; Leyva, A. pdf  doi
openurl 
  Title Study of dpa distributions in electron irradiated YBCO slabs through MCCM algorithm Type A1 Journal article
  Year 2012 Publication (up) Nuclear instruments and methods in physics research: B: beam interactions with materials and atoms Abbreviated Journal  
  Volume 274 Issue Pages 191-194  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The Monte Carlo assisted Classical Method (MCCM) consists on a calculation procedure for determining the displacements per atom (dpa) distribution in solid materials. This algorithm allows studying the gamma and electron irradiation damage in different materials. It is based on the electrons elastic scattering classic theories and the use of Monte Carlo simulation for the physical processes involved. The present study deals with the Monte Carlo simulation of electron irradiation effects on YBa2Cu3O7-x (YBCO) slabs using the MCNPX code system. Displacements per atom distributions are obtained through the MCCM for electron irradiation up to 10 MeV. In-depth dpa profiles for electrons and positrons are obtained and analysed. Also, dpa contributions from each atomic specie in the material are calculated. It was found that the dpa distribution is more homogeneous in the material volume when increasing energy of incident electrons. Also, the dpa produced by positrons has no relevance when irradiating with electrons, in contrast with previous similar gamma irradiation studies. All the results are presented and discussed in this contribution. (C) 2011 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000301611900031 Publication Date 2011-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-583x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:97819 Serial 8595  
Permanent link to this record
 

 
Author Kuznetsov, A.S.; Cuong, N.T.; Tikhomirov, V.K.; Jivanescu, M.; Stesmans, A.; Chibotaru, L.F.; Velázquez, J.J.; Rodríguez, V.D.; Kirilenko, D.; Van Tendeloo, G.; Moshchalkov, V.V. pdf  doi
openurl 
  Title Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing Type A1 Journal article
  Year 2012 Publication (up) Optical materials Abbreviated Journal Opt Mater  
  Volume 34 Issue 4 Pages 616-621  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The effect of heat treatment on the structure and luminescence of Ag nanoclusters doped oxyfluoride glasses was studied and the implication for drawing the corresponding fibers doped with luminescent Ag nanoclusters has been proposed. The heat treatment results, first, in condensation of the Ag nanoclusters into larger Ag nanoparticles and loss of Ag luminescence, and further heat treatment results in precipitation of a luminescent-loss nano- and microcrystalline Ag phases onto the surface of the glass. Thus, the oxyfluoride fiber doped with luminescent Ag nanoclusters was pulled from the viscous glass melt and its attenuation loss was 0.19 dB/cm in the red part of the spectrum; i.e. near to the maximum of Ag nanoclusters luminescence band. The nucleation centers for the Ag nanoclusters in oxyfluoride glasses have been suggested to be the fluorine vacancies and their nanoclusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000300124500006 Publication Date 2011-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-3467; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.238 Times cited 25 Open Access  
  Notes Methusalem Approved Most recent IF: 2.238; 2012 IF: 1.918  
  Call Number UA @ lucian @ c:irua:93632 Serial 811  
Permanent link to this record
 

 
Author Kuznetsov, A.S.; Lu, Y.-G.; Turner, S.; Shestakov, M.V.; Tikhomirov, V.K.; Kirilenko, D.; Verbeeck, J.; Baranov, A.N.; Moshchalkov, V.V. url  doi
openurl 
  Title Preparation, structural and optical characterization of nanocrystalline ZnO doped with luminescent Ag-nanoclusters Type A1 Journal article
  Year 2012 Publication (up) Optical materials express Abbreviated Journal Opt Mater Express  
  Volume 2 Issue 6 Pages 723-734  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline ZnO doped with Ag-nanoclusters has been synthesized by a salt solid state reaction. Three overlapping broad emission bands due to the Ag nanoclusters have been detected at about 570, 750 and 900 nm. These emission bands are excited by an energy transfer from the exciton state of the ZnO host when pumped in the wavelength range from 250 to 400 nm. The 900 nm emission band shows characteristic orbital splitting into three components pointing out that the anisotropic crystalline wurtzite host of ZnO is responsible for this feature. Heat-treatment and temperature dependence studies confirm the origin of these emission bands. An energy level diagram for the emission process and a model for Ag nanoclusters sites are suggested. The emission of nanocrystalline ZnO doped with Ag nanoclusters may be applied for white light generation, displays driven by UV light, down-convertors for solar cells and luminescent lamps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304953700004 Publication Date 2012-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2159-3930; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.591 Times cited Open Access  
  Notes We are grateful to the Methusalem Funding of Flemish Government for the support of this work. Y.-G. L. and S. T. acknowledge funding from the Fund for Scientific Research Flanders (FWO) for a postdoctoral grant and under grant number G056810N. The microscope used in this study was partially financed by the Hercules Foundation. J.V. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No246791 – COUNTATOMS and ERC Starting Grant 278510 VORTEX. The authors acknowledge the guidance of Prof. G. Van Tendeloo, EMAT Antwerpen University, in transmission electron microscopy study in this work. ECASJO_; Approved Most recent IF: 2.591; 2012 IF: 2.616  
  Call Number UA @ lucian @ c:irua:97709UA @ admin @ c:irua:97709 Serial 2707  
Permanent link to this record
 

 
Author Arsoski, V.; Čukarić, N.; Tadić, M.; Peeters, F.M. pdf  doi
openurl 
  Title Exciton states in a nanocup in the presence of a perpendicular magnetic field Type A1 Journal article
  Year 2012 Publication (up) Physica scripta Abbreviated Journal Phys Scripta  
  Volume T149 Issue Pages 014054-014054,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The exciton states in a strained (In,Ga)As/GaAs nanocup are theoretically determined. We explore how the nanocup bottom thickness (t) affects the magnetic field dependence of the exciton energy. Strain distribution is computed by the continuum mechanical model under the approximation of isotropic elasticity. The exciton wave functions are expanded into products of the electron and hole envelope functions. For small t, the exciton ground state has zero orbital momentum and exhibits small oscillations of the second derivative when the magnetic field increases. When t approaches the value of the cup height, however, the exciton levels exhibit angular momentum transitions, whose behavior is similar to that for type-II quantum dots. Small oscillations of the oscillator strength for exciton recombination are found when the magnetic field increases. An increase in thickness of the nanocup bottom has only a small effect on those oscillations for the optically active exciton states, but the exciton ground state becomes dark when the magnetic field increases. Hence, the results of our calculations show that an increase in thickness of the nanocup bottom transforms the exciton ground energy level dependence on magnetic field from the one characteristic of type-I rings to the one characteristic of type-II dots.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Stockholm Editor  
  Language Wos 000303523500055 Publication Date 2012-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949;1402-4896; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.28 Times cited 2 Open Access  
  Notes ; This work was supported by the EU Network of Excellence SANDiE, the Ministry of Education and Science of Serbia, the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 1.28; 2012 IF: 1.032  
  Call Number UA @ lucian @ c:irua:99135 Serial 1117  
Permanent link to this record
 

 
Author Grujić, M.; Zarenia, M.; Tadić, M.; Peeters, F.M. pdf  doi
openurl 
  Title Interband optical absorption in a circular graphene quantum dot Type A1 Journal article
  Year 2012 Publication (up) Physica scripta Abbreviated Journal Phys Scripta  
  Volume T149 Issue Pages 014056-014056,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the energy levels and optical properties of a circular graphene quantum dot in the presence of an external magnetic field perpendicular to the dot. Based on the Dirac-Weyl equation and assuming zero outward current at the edge of the dot we present the results for two different types of boundary conditions, i.e. infinite-mass (IMBC) and zigzag boundary conditions. We found that the dot with zigzag edges displays a zero-energy state in the energy spectra while this is not the case for the IMBCs. For both boundary conditions, the confinement becomes dominated by the magnetic field, where the energy levels converge to the Landau levels as the magnetic field increases. The effect of boundary conditions on the electron-and hole-energy states is found to affect the interband absorption spectra, where we found larger absorption in the case of IMBCs. The selection rules for interband optical transitions are determined and discussed for both boundary conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Stockholm Editor  
  Language Wos 000303523500057 Publication Date 2012-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949;1402-4896; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.28 Times cited 5 Open Access  
  Notes ; This work was supported by the EuroGraphene program of the ESF (project CONGRAN), the Ministry of Education and Science of Serbia, the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.28; 2012 IF: 1.032  
  Call Number UA @ lucian @ c:irua:99136 Serial 1688  
Permanent link to this record
 

 
Author Mortet, V.; Zhang, L.; Eckert, M.; D'Haen, J.; Soltani, A.; Moreau, M.; Troadec, D.; Neyts, E.; De Jaeger, J.C.; Verbeeck, J.; Bogaerts, A.; Van Tendeloo, G.; Haenen, K.; Wagner, P. pdf  doi
openurl 
  Title Grain size tuning of nanocrystalline chemical vapor deposited diamond by continuous electrical bias growth : experimental and theoretical study Type A1 Journal article
  Year 2012 Publication (up) Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 209 Issue 9 Pages 1675-1682  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, a detailed structural and spectroscopic study of nanocrystalline diamond (NCD) thin films grown by a continuous bias assisted CVD growth technique is reported. This technique allows the tuning of grain size and phase purity in the deposited material. The crystalline properties of the films are characterized by SEM, TEM, EELS, and Raman spectroscopy. A clear improvement of the crystalline structure of the nanograined diamond film is observed for low negative bias voltages, while high bias voltages lead to thin films consisting of diamond grains of only ∼10 nm nanometer in size, showing remarkable similarities with so-called ultrananocrystalline diamond. These layers arecharacterized by an increasing amount of sp2-bonded carbon content of the matrix in which the diamond grains are embedded. Classical molecular dynamics simulations support the observed experimental data, giving insight in the underlying mechanism for the observed increase in deposition rate with bias voltage. Furthermore, a high atomic concentration of hydrogen has been determined in these films. Finally, Raman scattering analyses confirm that the Raman line observed at ∼1150 cm−1 cannot be attributed to trans-poly-acetylene, which continues to be reported in literature, reassigning it to a deformation mode of CHx bonds in NCD.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000308942100009 Publication Date 2012-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 31 Open Access  
  Notes M.E. and E.N. acknowledge financial support from, respectively, the Institute for Promotion of Innovation through Science and Technology in Flanders (IWT), and the Research Foundation-Flanders (FWO). J.V. gratefully acknowledges financial support from the GOA project “XANES meets ELNES” of the research fund of the University of Antwerp. Calculation support was provided by the University of Antwerp through the core facility CALCUA. G.V.T. acknowledges the ERC grant COUNTATOMS. The work was also financially supported by the joint UAUHasseltMethusalem “NANO” network, the Research Programs G.0068.07 and G.0555.10N of the Research Foundation-Flanders (FWO), the IAP-P6/42 project “Quantum Effects in Clusters and Nanowires”, and by the EU FP7 through the Integrated Infrastructure Initiative “ESMI” (No. 262348), the Marie Curie ITN “MATCON” (PITN-GA-2009-238201), and the Collaborative Project “DINAMO” (No. 245122). Approved Most recent IF: 1.775; 2012 IF: 1.469  
  Call Number UA @ lucian @ c:irua:101516UA @ admin @ c:irua:101516 Serial 1364  
Permanent link to this record
 

 
Author Jalabert, D.; Pelloux-Gervais, D.; Béché, A.; Hartmann, J.M.; Gergaud, P.; Rouvière, J.L.; Canut, B. doi  openurl
  Title Depth strain profile with sub-nm resolution in a thin silicon film using medium energy ion scattering Type A1 Journal article
  Year 2012 Publication (up) Physica Status Solidi A-Applications And Materials Science Abbreviated Journal Phys Status Solidi A  
  Volume 209 Issue 2 Pages 265-267  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The depth strain profile in silicon from the Si (001) substrate to the surface of a 2 nm thick Si/12 nm thick SiGe/bulk Si heterostructure has been determined by medium energy ion scattering (MEIS). It shows with sub-nanometer resolution and high strain sensitivity that the thin Si cap presents residual compressive strain caused by Ge diffusion coming from the fully strained SiGe layer underneath. The strain state of the SiGe buffer have been checked by X-ray diffraction (XRD) and nano-beam electron diffraction (NBED) measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000303382700005 Publication Date 2011-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.775; 2012 IF: 1.469  
  Call Number UA @ lucian @ c:irua:136430 Serial 4497  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. pdf  doi
openurl 
  Title Rigid-plane phonons in layered crystals Type A1 Journal article
  Year 2012 Publication (up) Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 249 Issue 12 Pages 2604-2607  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The determination of the layer number ${\cal N}$ in nanoscale thin layered crystals is a challenging problem of technological relevance. In addition to innovative experimental techniques, a thorough knowledge of the underlying lattice dynamics is required. Starting from phenomenological atomic interaction potentials we have carried out an analytical study of the low-frequency optical phonon dispersions in layered crystals. At the gamma point of the two-dimensional Brillouin zone the optical phonon frequencies correspond to rigid-plane shearing and compression modes. We have investigated graphene multilayers (GML) and hexagonal boron-nitride multilayers (BNML). The frequencies show a characteristic dependence on ${\cal N}$. The results which are represented in the form of fan diagrams are very similar for both materials. Due to charge neutrality within layers Coulomb forces play no role, only van der Waals forces between nearest neighbor layers are relevant. The theoretical results agree with recent low-frequency Raman results on rigid-layer modes [Tan et al., Nature Mater. 11, 294 (2012)] in GML and double-resonant Raman scattering data on rigid-layer compression modes [Herziger et al., Phys. Rev. B 85, 235447 (2012)] in GML. (C) 2012 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000312215300072 Publication Date 2012-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 1 Open Access  
  Notes ; This work has been supported by the Flemish Science Foundation (FWO-Vl) and the Bijzonder Onderzoeksfonds, Universiteit Antwerpen (BOF-UA). ; Approved Most recent IF: 1.674; 2012 IF: 1.489  
  Call Number UA @ lucian @ c:irua:105992 Serial 2907  
Permanent link to this record
 

 
Author Sels, D.; Brosens, F.; Magnus, W. pdf  doi
openurl 
  Title Classical trajectories : a powerful tool for solving tunneling problems Type A1 Journal article
  Year 2012 Publication (up) Physica: A : theoretical and statistical physics Abbreviated Journal Physica A  
  Volume 391 Issue 1/2 Pages 78-81  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract In the realm of Ehrenfests theorem, classical trajectories obeying Newtons laws have been proven useful to construct explicit solutions to the time-dependent WignerLiouville equation. Whereas previous works have particularly focused on the initial distribution function as a vehicle found to carry the signatures of quantum statistics into the time-dependent solution, the present paper shows that the LagrangeCharpit method based on classical trajectories can be successfully invoked as well to tackle quantum mechanical features with no classical counterpart, such as tunneling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000297230700010 Publication Date 2011-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4371; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.243 Times cited 7 Open Access  
  Notes ; ; Approved Most recent IF: 2.243; 2012 IF: 1.676  
  Call Number UA @ lucian @ c:irua:92359 Serial 370  
Permanent link to this record
 

 
Author Lin, N.S.; Misko, V.R.; Heitmann, T.W.; Yu, K.; Plourde, B.L.T. pdf  doi
openurl 
  Title Density dependence of the rectification of vortex motion in a circular asymmetric channel Type A1 Journal article
  Year 2012 Publication (up) Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 479 Issue Pages 137-139  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the rectification of vortex motion in an asymmetric ring channel in a Corbino setup. With an applied ac current, the motion of vortices in the channel is rectified by the asymmetric potential and induces a dc net flow. The net flow in such a system strongly depends on vortex density, and we distinguish “single-vortex'' rectification regime (for low density, when each vortex is rectified individually) determined by the potential-energy landscape inside each cell of the channel and ”multi-vortex'', or "collective'', rectification (high density case) when the interaction between vortices becomes important. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000308580600032 Publication Date 2012-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.404 Times cited Open Access  
  Notes ; This work was supported by the "Odysseus'' Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl), the Interuniversity Attraction Poles (IAP) Programme – Belgian State – Belgian Science Policy, and the FWO-Vl (Belgium). ; Approved Most recent IF: 1.404; 2012 IF: 0.718  
  Call Number UA @ lucian @ c:irua:101873 Serial 635  
Permanent link to this record
 

 
Author de Aquino, B.R.C.H.T.; Cabral, L.R.E.; de Souza Silva, C.C.; Albino Aguiar, J.; Milošević, M.V.; Peeters, F.M. pdf  doi
openurl 
  Title Dynamic phases of vortex-antivortex molecules in a Corbino disk with magnetic dipole on top Type A1 Journal article
  Year 2012 Publication (up) Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 479 Issue Pages 115-118  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We performed a molecular dynamics study of vortex-antivortex motion in a superconducting disk with a magnetic dot on top, in the Corbino disk geometry. In this system, vortices and antivortices are forced to move in opposite azimuthal directions by a radially applied current. The dot is magnetized out of plane in order to stabilize composite vortex-antivortex configurations, with vortices closer to the center of the disk and antivortices near to the disk edge. We observe that the interplay between the spatially inhomogeneous current distribution, the screening currents induced by the dipole, and the attractive vortex-antivortex (v-av) interaction result in different dynamical phases. At low current values, antivortices which are distributed at outer rings – remain bounded to vortices at inner rings and the whole configuration rotates rigidly. Above a threshold current, vortices and antivortices unbind and move at different angular velocities in a highly correlated way. Finally, at very strong drive, vortex-antivortex attraction is overhelmed by the external current Lorentz force, causing them to move in opposite directions. (C) 2011 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited Open Access  
  Notes Approved Most recent IF: 1.404; 2012 IF: 0.718  
  Call Number UA @ lucian @ c:irua:101870 Serial 764  
Permanent link to this record
 

 
Author Tempère, J.; Vermeyen, E.; Van Duppen, B. pdf  doi
openurl 
  Title Skyrmion rows, vortex rows, and phase slip lines in sheared multi-component condensates Type A1 Journal article
  Year 2012 Publication (up) Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 479 Issue Pages 61-64  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract When a condensate is sheared by imparting a velocity to a part of the condensate, phase singularities must appear at the interface between the region that is still at rest and the region that has acquired a velocity. For helium, Feynman argued that these phase singularies will arrange themselves in the form of a vortex row. BoseEinstein condensates of ultracold atomic gases differ from helium in that the healing length is generally much larger and is, in fact, tunable. Another difference is that multicomponent condensates can be created, where the two components forming the mixture are usually two different hyperfine states of the condensed atoms. These two components can be manipulated separately and can be interconverted. In this contribution, we investigate how these additional degrees of freedom, available in quantum gases, change what happens in sheared condensates. In particular, we consider skyrmion rows as an alternative to vortex rows, and we also consider phase slip lines filled with the second, unmoving component, in a condensate mixture. We show that depending on the ratios of the interaction strengths between the components, and depending on the shear velocity, skyrmion rows and phase slip lines can become lower in energy than vortex rows, and hence should be observable in quantum gases. Moreover, we find that the velocity field affects the stability region of the condensate with respect to phase separation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000308580600013 Publication Date 2012-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 1 Open Access  
  Notes ; This work was supported by the Research Foundation – Flanders (FWO) through Projects G.0356.06, G.0370.09 N, G.0180.09 N, and G.0365.08. E. V. acknowledges financial support in the form of a Ph.D. fellowship of the Research Foundation – Flanders (FWO). ; Approved Most recent IF: 1.404; 2012 IF: 0.718  
  Call Number UA @ lucian @ c:irua:100617 Serial 3040  
Permanent link to this record
 

 
Author Komendová, L.; Shanenko, A.A.; Milošević, M.V.; Peeters, F.M. pdf  doi
openurl 
  Title The healing lengths in two-band superconductors in extended Ginzburg-Landau theory Type A1 Journal article
  Year 2012 Publication (up) Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 479 Issue Pages 126-129  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the vortex profiles in two-gap superconductors using the extended Ginzburg-Landau theory. The results shed more light on the disparity between the effective length scales in two bands. We compare the behavior expected from the standard Ginzburg-Landau theory with this new approach, and find good qualitative agreement in the case of LiFeAs. (C) 2011 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000308580600029 Publication Date 2012-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 1 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-INSTANS network. ; Approved Most recent IF: 1.404; 2012 IF: 0.718  
  Call Number UA @ lucian @ c:irua:101871 Serial 3585  
Permanent link to this record
 

 
Author Zhao, H.J.; Misko, V.R.; Peeters, F.M. pdf  doi
openurl 
  Title Vortex configurations with non-monotonic interaction Type A1 Journal article
  Year 2012 Publication (up) Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 479 Issue Pages 130-133  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The pattern formation of the vortex states with non-monotonic inter-vortex interaction is investigated. Our applied model has a short-range repulsive (r < r(c)) and long-range attractive (r > r(c)) potential. We numerically calculate the stable states using molecular-dynamics simulations. The obtained vortex patterns are comparable with the vortices states in low kappa type-II superconductors and recently discovered "type-1.5'' superconductors. We also analyze the nearest neighbor distribution of the obtained patterns. (C) 2012 Published by Elsevier B.V.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000308580600030 Publication Date 2012-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 9 Open Access  
  Notes ; We acknowledge fruitful discussions with Ernst Helmut Brandt. This work was supported by the "Odysseus'' Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl), the IAP and FWO-Vl. ; Approved Most recent IF: 1.404; 2012 IF: 0.718  
  Call Number UA @ lucian @ c:irua:101872 Serial 3864  
Permanent link to this record
 

 
Author Sliem, M.A.; Turner, S.; Heeskens, D.; Kalidindi, S.B.; Van Tendeloo, G.; Muhler, M.; Fischer, R.A. pdf  doi
openurl 
  Title Preparation, microstructure characterization and catalytic performance of Cu/ZnO and ZnO/Cu composite nanoparticles for liquid phase methanol synthesis Type A1 Journal article
  Year 2012 Publication (up) Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 14 Issue 22 Pages 8170-8178  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Stearate@Cu/ZnO nanocomposite particles with molar ratios of ZnO ∶ Cu = 2 and 5 are synthesized by reduction of the metalorganic Cu precursor [Cu{(OCH(CH3)CH2N(CH3)2)}2] in the presence of stearate@ZnO nanoparticles. In the case of ZnO ∶ Cu = 5, high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) combined with electron-energy-loss-spectroscopy (EELS) as well as attenuated total reflection Fourier transform infrared (ATR-IR) spectroscopy are used to localize the small amount of Cu deposited on the surface of 35 nm sized stearate@ZnO particles. For ZnO ∶ Cu = 2, the microstructure of the nanocomposites after catalytic activity testing is characterized by HAADF-STEM techniques. This reveals the construction of large Cu nanoparticles (2050 nm) decorated by small ZnO nanoparticles (35 nm). The catalytic activity of both composites for the synthesis of methanol from syn gas is evaluated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000304102200033 Publication Date 2012-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 16 Open Access  
  Notes Fwo Approved Most recent IF: 4.123; 2012 IF: 3.829  
  Call Number UA @ lucian @ c:irua:98377 Serial 2702  
Permanent link to this record
 

 
Author Ao, Z.M.; Hernández-Nieves, A.D.; Peeters, F.M.; Li, S. pdf  doi
openurl 
  Title The electric field as a novel switch for uptake/release of hydrogen for storage in nitrogen doped graphene Type A1 Journal article
  Year 2012 Publication (up) Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 14 Issue 4 Pages 1463-1467  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Nitrogen-doped graphene was recently synthesized and was reported to be a catalyst for hydrogen dissociative adsorption under a perpendicular applied electric field (F). In this work, the diffusion of H atoms on N-doped graphene, in the presence and absence of an applied perpendicular electric field, is studied using density functional theory. We demonstrate that the applied field can significantly facilitate the binding of hydrogen molecules on N-doped graphene through dissociative adsorption and diffusion on the surface. By removing the applied field the absorbed H atoms can be released efficiently. Our theoretical calculation indicates that N-doped graphene is a promising hydrogen storage material with reversible hydrogen adsorption/desorption where the applied electric field can act as a switch for the uptake/release processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000298754500018 Publication Date 2011-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 67 Open Access  
  Notes ; Financial support of the Vice-Chancellor's Postdoctoral Research Fellowship Program (SIR50/PS19184) and the ECR grant (SIR30/PS24201) from the University of New South Wales are acknowledged. This work is also supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.123; 2012 IF: 3.829  
  Call Number UA @ lucian @ c:irua:96266 Serial 3578  
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Vagov, A.V.; Axt, V.M.; Perali, A.; Peeters, F.M. url  doi
openurl 
  Title Atypical BCS-BEC crossover induced by quantum-size effects Type A1 Journal article
  Year 2012 Publication (up) Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A  
  Volume 86 Issue 3 Pages 033612  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Quantum-size oscillations of the basic physical characteristics of a confined fermionic condensate are a well-known phenomenon. Its conventional understanding is based on the single-particle physics, whereby the oscillations follow variations in the single-particle density of states driven by the size quantization. Here we present a study of a cigar-shaped ultracold superfluid Fermi gas, which demonstrates an important many-body aspect of the quantum-size coherent effects, overlooked previously. The many-body physics is revealed here in the atypical crossover from the Bardeen-Cooper-Schrieffer (BCS) superfluid to the Bose-Einstein condensate (BEC) induced by the size quantization of the particle motion. The single-particle energy spectrum for the transverse dimensions is tightly bound, whereas for the longitudinal direction it resembles a quasi-free dispersion. This results in the formation of a series of single-particle subbands (shells) so that the aggregate fermionic condensate becomes a coherent mixture of subband condensates. Each time when the lower edge of a subband crosses the chemical potential, the BCS-BEC crossover is approached in this subband, and the aggregate condensate contains both BCS and BEC-like components.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000308639500004 Publication Date 2012-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 34 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). The authors thank C. Salomon and C. Vale for their valuable explications of the experimental situation and interest to our work. We are grateful to G. C. Strinati, D. Neilson, and P. Pieri for useful discussions. M. D. C. acknowledges support of the EU Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR). A. P. gratefully acknowledges financial support of the European Science Foundation, POLATOM Research Networking Programme, Ref. No. 4844 for his visit to the University of Antwerp. A. A. S. acknowledges financial support of the European Science Foundation, POLATOM Research Networking Programme, Ref. No. 5200 for his visit to the University of Camerino. ; Approved Most recent IF: 2.925; 2012 IF: 3.042  
  Call Number UA @ lucian @ c:irua:101844 Serial 203  
Permanent link to this record
 

 
Author Matulis, A.; Masir, M.R.; Peeters, F.M. url  doi
openurl 
  Title Scattering of a Dirac electron on a mass barrier Type A1 Journal article
  Year 2012 Publication (up) Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A  
  Volume 86 Issue 2 Pages 022101  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The interaction of a wave packet (and in particular the wave front) with a mass barrier is investigated in one dimension. We discuss the main features of the wave packet that are inherent to two-dimensional wave packets, such as compression during reflection, penetration in the case when the energy is lower than the height of the barrier, waving tails, precursors, and the retardation of the reflected and penetrated wave packets. These features depend on the wave-packet envelope function which we demonstrate by considering the case of a rectangular wave packet with sharp front and trailing edges and a smooth Gaussian wave packet. The method of Fourier integral for obtaining the nonstationary solutions is used.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000306991200001 Publication Date 2012-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 9 Open Access  
  Notes ; This research was supported by the Flemish Science Foundation (FWO-Vl) and (in part) by the Lithuanian Science Council under Project No. MIP-79/2010. ; Approved Most recent IF: 2.925; 2012 IF: 3.042  
  Call Number UA @ lucian @ c:irua:100822 Serial 2948  
Permanent link to this record
 

 
Author Matsubara, M.; Amini, M.N.; Saniz, R.; Lamoen, D.; Partoens, B. url  doi
openurl 
  Title Attracting shallow donors : hydrogen passivation in (Al,Ga,In)-doped ZnO Type A1 Journal article
  Year 2012 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 16 Pages 165207  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The hydrogen interstitial and the substitutional AlZn, GaZn, and InZn are all shallow donors in ZnO and lead to n-type conductivity. Although shallow donors are expected to repel each other, we show by first-principles calculations that in ZnO these shallow donor impurities attract and form a complex, leading to a donor level deep in the band gap. This puts a limit on the n-type conductivity of (Al,Ga,In)-doped ZnO in the presence of hydrogen.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000310131300008 Publication Date 2012-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes Iwt; Fwo; Bof-Noi Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:101780 Serial 202  
Permanent link to this record
 

 
Author Rønnow, T.F.; Pedersen, T.G.; Partoens, B. url  doi
openurl 
  Title Biexciton binding energy in fractional dimensional semiconductors Type A1 Journal article
  Year 2012 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 4 Pages 045412-045412,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Biexcitons in fractional dimensional spaces are studied using variational quantum Monte Carlo. We investigate the biexciton binding energy as a function of the electron-hole mass fraction sigma as well as study the dimensional dependence of biexcitons for sigma = 0 and sigma = 1. As our first application of this model we treat the H(2) molecule in two and three dimensions. Next we investigate biexcitons in carbon nanotubes within the fractional dimensional model. To this end we find a relation between the nanotube radius and the effective dimension. The results of both applications are compared with results obtained using different models and we find a reasonable agreement. Within the fractional dimensional model we find that the biexciton binding energy in carbon nanotubes accurately scales as E(B)(r,epsilon) = 1280 meV angstrom/(r epsilon), as a function of radius r and the dielectric screening epsilon.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000298922200008 Publication Date 2012-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes ; ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:96234 Serial 231  
Permanent link to this record
 

 
Author Sena, S.H.R.; Pereira, J.M.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Cyclotron resonance of trilayer graphene Type A1 Journal article
  Year 2012 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 8 Pages 085412  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The cyclotron resonance energies, the corresponding oscillator strengths, and the cyclotron absorption spectrum for trilayer graphene are calculated for both ABA and ABC stacking. A gate potential across the stacked layers leads to (1) a reduction of the transition energies, (2) a lifting of the degeneracy of the zero Landau level, and (3) the removal of the electron-hole symmetry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000307273100009 Publication Date 2012-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes ; This work was supported by the National Council for the Improvement of Higher education (CAPES), the Brazilian Council for Research (CNPq), the Flemish Science Foundation (FWO-V1), the bilateral projects between Flanders and Brazil and the CNPq and FWO-V1, and the ESF-Eurographene project CONGRAN. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:100815 Serial 604  
Permanent link to this record
 

 
Author Badalyan, S.M.; Peeters, F.M. url  doi
openurl 
  Title Effect of nonhomogenous dielectric background on the plasmon modes in graphene double-layer structures at finite temperatures Type A1 Journal article
  Year 2012 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 19 Pages 195444-195444,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We have calculated the plasmon modes in graphene double layer structures at finite temperatures, taking into account the inhomogeneity of the dielectric background of the system. The effective dielectric function is obtained from the solution of the Poisson equation of a three-layer dielectric medium with graphene sheets located at the interfaces, separating the different materials. Due to the momentum dispersion of the effective dielectric function, the intra- and interlayer bare Coulomb interactions in the graphene double layer system acquires an additional momentum dependence-an effect that is of the order of the interlayer interaction itself. We show that the energies of the in-phase and out-of-phase plasmon modes are determined largely by different values of the spatially dependent effective dielectric function. The effect of the dielectric inhomogeneity increases with temperature, and even at high temperatures the energy shift induced by the dielectric inhomogeneity and temperature itself remains larger than the broadening of the plasmon energy dispersions due to the Landau damping. The obtained new features of the plasmon dispersions can be observed in frictional drag measurements and in inelastic light scattering and electron energy-loss spectroscopies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304394800011 Publication Date 2012-05-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 67 Open Access  
  Notes ; We thank G. Vignale for useful discussions and acknowledge support from the Flemisch Science Foundation (FWO-Fl) and the Belgian Science Policy (BELSPO). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:98941 Serial 826  
Permanent link to this record
 

 
Author Lipavsky, P.; Elmurodov, A.; Lin, P.-J.; Matlock, P.; Berdiyorov, G.R. url  doi
openurl 
  Title Effect of normal current corrections on the vortex dynamics in type-II superconductors Type A1 Journal article
  Year 2012 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 14 Pages 144516-144518  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Within the time-dependent Ginzburg-Landau theory we discuss the effect of nonmagnetic interactions between the normal current and supercurrent in the presence of electric and magnetic fields. The correction due to the current-current interactions is shown to have a transient character so that it contributes only when a system evolves. Numerical studies for thin current-carrying superconducting strips with no magnetic feedback show that the effect of the normal current corrections is more pronounced in the resistive state where fast-moving kinematic vortices are formed. Simulations also reveal that the largest contribution due to current-current interactions appears near the sample edges, where the vortices reach their maximal velocity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000309809700007 Publication Date 2012-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes ; The authors are grateful to Alex Gurevich and Tom Lemberger who brought the longitudinal f-sum rule to our attention. This work was supported by Grants GACR P204/10/0687 and P204/11/0015. We also acknowledge the support from the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). G.R.B. acknowledges individual support from FWO-Vl. P.-J.L. acknowledges support from Old Dominion University. P.M. acknowledges support through UA research index SR-614-1203. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:102168 Serial 827  
Permanent link to this record
 

 
Author Shakouri, K.; Szafran, B.; Esmaeilzadeh, M.; Peeters, F.M. url  doi
openurl 
  Title Effective spin-orbit interaction Hamiltonian for quasi-one-dimensional quantum rings Type A1 Journal article
  Year 2012 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 16 Pages 165314-165314,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effective Hamiltonian for an electron in a quasi-one-dimensional quantum ring in the presence of spin-orbit interactions is derived. We demonstrate that, when both coupling types are simultaneously present, the effective Hamiltonian derived by the lowest-radial-state approximation produces energy spectra and charge densities which deviate strongly from the exact ones. For equal Rashba and Dresselhaus coupling constants the lowest-radial-state approximation opens artifactal avoided crossings in the energy spectra and deforms the circular symmetry of the confined charge densities. In this case, there does not exist a ring thin enough to justify the restriction to the lowest radially quantized energy state. We derive the effective Hamiltonian accounting for both the lowest and the first excited radial states, and show that the inclusion of the latter restores the correct features of the exact solution. Relation of this result to the states of a quantum wire is also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000303068800006 Publication Date 2012-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 32 Open Access  
  Notes ; This work was partially supported by Polish Ministry of Science and Higher Education and its grants for Scientific Research. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:98258 Serial 855  
Permanent link to this record
 

 
Author Nasr Esfahani, D.; Covaci, L.; Peeters, F.M. url  doi
openurl 
  Title Electric-field-induced shift of the Mott metal-insulator transition in thin films Type A1 Journal article
  Year 2012 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 8 Pages 085110-085110,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The ground-state properties of a paramagnetic Mott insulator at half-filling are investigated in the presence of an external electric field using the inhomogeneous Gutzwiller approximation for a single-band Hubbard model in a slab geometry. We find that the metal-insulator transition is shifted toward higher Hubbard repulsions by applying an electric field perpendicular to the slab. The main reason is the accumulation of charges near the surface. The spatial distribution of site-dependent quasiparticle weight shows that it is maximal in a few layers beneath the surface, while the central sites where the field is screened have a very low quasiparticle weight. Our results show that above a critical-field value, states near the surface will be metallic, while the bulk quasiparticle weight is extremely suppressed but never vanishing, even for large Hubbard repulsions above the bulk zero-field critical value. Below the critical-field value, our results hint toward an insulating state in which the electric field is totally screened and the slab is again at half-filling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000300240100002 Publication Date 2012-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:97208 Serial 884  
Permanent link to this record
 

 
Author Badalyan, S.M.; Peeters, F.M. url  doi
openurl 
  Title Electron-phonon bound state in graphene Type A1 Journal article
  Year 2012 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 20 Pages 205453-205453,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The fine structure of the Dirac energy spectrum in graphene induced by electron-optical phonon coupling is investigated in the portion of the spectrum near the phonon emission threshold. The derived new dispersion equation in the immediate neighborhood below the threshold corresponds to an electron-phonon bound state. We find that the singular vertex corrections beyond perturbation theory strongly increase the electron-phonon binding energy scale. The predicted enhancement of the effective electron-phonon coupling can be measured using angle-resolved spectroscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304649400002 Publication Date 2012-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 12 Open Access  
  Notes ; We thank E. Rashba for the useful discussion and acknowledge support from the Belgian Science Policy (IAP) and BELSPO. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:98939 Serial 982  
Permanent link to this record
 

 
Author Kishore, V.V.R.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Electronic structure of InAs/GaSb core-shell nanowires Type A1 Journal article
  Year 2012 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 16 Pages 165439-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic and optical properties of InAs/GaSb core-shell nanowires are investigated within the effective mass k . p approach. These systems have a broken band gap, which results in spatially separated confinement of electrons and holes. We investigated these structures for different sizes of the InAs and GaSb core and shell radius. We found that for certain configurations, the conduction band states penetrate into the valence band states resulting in a negative band gap (E-g < 0), which leads to a conduction band ground state that lies below the valence band ground state at the Gamma point. For certain core-shell wires, only one conduction band state penetrates into the valence band and in this case, a minigap Delta opens up away from the Gamma point and as a consequence the electronic properties of the nanowire now depend on both E-g and Delta values.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000310131400005 Publication Date 2012-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 26 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:102164 Serial 1014  
Permanent link to this record
 

 
Author Krstajić, P.M.; Peeters, F.M. url  doi
openurl 
  Title Energy-momentum dispersion relation of plasmarons in graphene Type A1 Journal article
  Year 2012 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 20 Pages 205454-205454,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The many-body correction to the band structure of a quasi-free-standing graphene layer is obtained within the Overhauser approach, where the electron-plasmon interaction is described as a field theoretical problem. We find that the Dirac-like spectrum is shifted by Delta E(k = 0), which is on the order of 50-150 meV, depending on the electron concentration n(e), and is in semiquantitative agreement with experimental data. The value of the Fermi velocity is renormalized by several percents and decreases with increasing electron concentration as found experimentally.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304649900004 Publication Date 2012-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the ESF-EuroGRAPHENE project CON-GRAN, and the Serbian Ministry of Education and Science (project No. TR 32008). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:98937 Serial 1043  
Permanent link to this record
 

 
Author Badalyan, S.M.; Peeters, F.M. url  doi
openurl 
  Title Enhancement of Coulomb drag in double-layer graphene structures by plasmons and dielectric background inhomogeneity Type A1 Journal article
  Year 2012 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 12 Pages 121405  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The drag of massless fermions in graphene double-layer structures is investigated over a wide range of temperatures and interlayer separations. We show that the inhomogeneity of the dielectric background in such graphene structures, for experimentally relevant parameters, results in a significant enhancement of the drag resistivity. At intermediate temperatures the dynamical screening via plasmon-mediated drag enhances the drag resistivity and results in an upturn in its behavior at large interlayer separations. In a range of interlayer separations, corresponding to the crossover from strong to weak coupling of graphene layers, we find that the decrease of the drag resistivity with interlayer spacing is approximately quadratic. This dependence weakens below this range of interlayer spacing while for larger separations we find a cubic (quartic) dependence at intermediate (low) temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000309178100003 Publication Date 2012-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes ; We acknowledge support from the Flemisch Science Foundation (FWO-Vl) and the Belgian Science Policy (BELSPO). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:101834 Serial 1060  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: