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Quantum-size oscillations of the basic physical characteristics of a confined fermionic condensate are a
well-known phenomenon. Its conventional understanding is based on the single-particle physics, whereby the
oscillations follow variations in the single-particle density of states driven by the size quantization. Here we
present a study of a cigar-shaped ultracold superfluid Fermi gas, which demonstrates an important many-body
aspect of the quantum-size coherent effects, overlooked previously. The many-body physics is revealed here in the
atypical crossover from the Bardeen-Cooper-Schrieffer (BCS) superfluid to the Bose-Einstein condensate (BEC)
induced by the size quantization of the particle motion. The single-particle energy spectrum for the transverse
dimensions is tightly bound, whereas for the longitudinal direction it resembles a quasi-free dispersion. This
results in the formation of a series of single-particle subbands (shells) so that the aggregate fermionic condensate
becomes a coherent mixture of subband condensates. Each time when the lower edge of a subband crosses the
chemical potential, the BCS-BEC crossover is approached in this subband, and the aggregate condensate contains
both BCS and BEC-like components.
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I. INTRODUCTION

A crossover from the weakly interacting BCS superfluid of
Cooper pairs to a BEC of tightly bound moleculelike pairs [1,2]
is one of the most important phenomena in the physics of
fermionic condensates (see also the review [3]). Although the
BCS-BEC crossover was originally discussed in the context
of semiconductor materials in the presence of superconducting
correlations [1] (for recent activity on this subject, see [4,5]), it
was first demonstrated in experiments with ultracold superfluid
Fermi gases [3]. In the standard scenario the BCS-BEC
crossover for ultracold fermions is achieved via a Feshbach
resonance in the particle scattering. Here we report a different
mechanism to achieve the BCS-BEC crossover, inducing it by
quantum-size (QS) effects in a cigar-shaped superfluid Fermi
gas.

The QS effects in superfluid or superconducting systems
have their origin in the geometric quantization of the single-
particle motion and reveal themselves in the oscillations
of the basic condensate properties. Such oscillations have
been theoretically investigated in many different systems,
e.g., ultrathin films [6], quantum striped superconductors and
superconducting heterostructures at the atomic limit [7,8],
superconducting metallic nanowires [9], and a pancake-shaped
superfluid Fermi gas [10]. Recently, atomically uniform
Pb nanofilms were fabricated, which resulted in the first
experimental observation of the QS oscillations in the critical
temperature [11]. An interesting experimental study of 6Li
Fermi gas in a pancake-shaped trap was also recently reported
[12] where the effects of the transverse quantization on the
aspect ratio of the atomic cloud were demonstrated. This
opens up new prospects for the study of QS oscillations of
the properties of fermionic condensates in ultracold Fermi
gases with tunable confinement parameters. Conventional
understanding of the QS oscillations follows from the fact that
the single-particle energy spectrum for the quantum-confined

dimensions is tightly bound, whereas along the other dimen-
sions it resembles a quasi-free dispersion. This results in
the formation of a series of single-particle subbands. The
lower edge (bottom) of such a subband coincides with the
corresponding discrete single-particle level associated with
the confined dimensions. When the energy spacing between
subbands is systematically decreased, e.g., by decreasing the
relevant trapping frequency for superfluid fermionic atoms or
the thickness of an atomically uniform metallic nanofilm, the
subband lower edges sequentially cross the chemical potential
μ. Each time this happens, the single-particle density of states
(DOS) at μ increases, leading to a higher critical temperature,
larger excitation gap, etc., which is referred to as the shape or
QS resonance [6,7,9].

In the present work, based on a study of a cigar-shaped
ultracold superfluid Fermi gas, we demonstrate that the QS
coherent effects cannot be fully understood in terms of
the single-particle physics. The total or aggregate fermionic
condensate in the system of interest is a coherent mixture of
the subband components (condensates), and each component
undergoes a BCS-BEC crossover when the lower edge of the
corresponding single-particle subband crosses μ. As a result of
such an atypical BCS-BEC crossover, the total condensate is a
coherent mixture of both the BCS and BEC-like components,
which is most pronounced at the shape resonances.

This paper is organized as follows. In Sec. II we outline
the relevant formalism for calculating the “wave function”
of a condensed fermionic pair in the cigar-shaped superfluid
Fermi gas. In Sec. III we analyze numerical results for the
fermionic-pair wave function with the focus on the atypical
BCS-BEC crossover induced by the QS effects as dependent
on the perpendicular (transverse) trapping frequency. In
Sec. IV we discuss technical details of the approximations
used in our approach and show that the results here reported
are not sensitive to these approximations. Our conclusions are
given in Sec. V.
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II. FORMALISM

Our analysis is based on a numerical solution of the
Bogoliubov–de Gennes (BdG) equations for 6Li atoms trapped
by a harmonic axially symmetric potential U (r) = M(ω2

⊥ρ2 +
ω2

‖ z2)/2, with r = {ρ,φ,z} cylindrical coordinates and ω‖ �
ω⊥. Calculations are performed for zero temperature as the
BdG equations are appropriate to describe the BCS-BEC
crossover in spatially nonuniform fermionic systems at nearly
zero temperatures. In particular, it has been shown in [13] that
the BdG equations reproduce the Gross-Pitaevskii equation for
the condensate wave function on the BEC side of the crossover.

To clearly display the underlying physics, we employ
the Anderson semianalytical approximation [14] according
to which the spatial dependence of the particlelike uν(r)
and holelike vν(r) wave functions appearing in the BdG
equations is chosen to be proportional to the corresponding
single-particle wave function ϕν(r) (see the discussion in
Sec. IV), i.e.,

uν(r) = Uνϕν(r), vν(r) = Vνϕν(r), (1)

where ν = {j,n,m} are the three quantum numbers associated
with the longitudinal motion along the z axis, the radial
motion, and the angular momentum, respectively. ϕν(r) =
ϑnm(ρ,φ)χj (z) is the product of the eigenfunctions of the
two-dimensional (2D) and one-dimensional (1D) harmonic
oscillators. Inserting Eq. (1) into the BdG equations, one
gets a system of two linear equations for the coefficients Uν

and Vν (chosen real). A nontrivial solution exists when the
corresponding determinant is equal to zero, which gives the
quasiparticle energy Eν = √

λ2
ν + 
2

ν , where λν = h̄ω⊥(1 +
2n + |m|) + h̄ω‖(j + 1/2) − μ is the single-particle energy
measured from the chemical potential, and 
ν is the corre-
sponding pairing energy. Then, together with the normalization
condition U2

ν + V2
ν = 1, the BdG equations yield U2

ν = (1 +
λν/Eν)/2, V2

ν = (1 − λν/Eν)/2. These expressions forUν and
Vν make it possible to find the BCS-like self-consistency
equation given by (at T = 0)


ν = 1

2

∑
ν ′

Vνν ′ 
ν ′

(
1

Eν ′
− 1

λν ′

)
, (2)

with the interaction matrix Vνν ′ = g
∫

d3r|ϕν(r)|2|ϕν ′(r)|2
and g the coupling constant. The second term in brackets
of Eq. (2) eliminates the ultraviolet divergence: This is a
convenient simplification that, to first approximation, models
the rigorous regularization for a spatially nonuniform system
reported in [15] (see the discussion in Sec. IV). We avoid the
ultraconfinement regime where the effective dimensionality
of the system reduces and the particle scattering becomes
different from the three-dimensional (3D) case (see, e.g., [3]).
Here we take μ � 2h̄ω⊥ and, in addition, the absolute value of
the s-wave scattering length a (a < 0) is chosen smaller than
l‖,l⊥, where lα = √

h̄/(Mωα). With this choice the interatomic
collisions can be regarded as a 3D process (see the discussion
in Sec. IV) for which we use the standard expression of the
pseudopotential theory g = 4πh̄2|a|/M , with M the atomic
mass.

Equation (2) can be viewed as a system consisting of
multiple condensates with the pairing gaps 
ν coupled
through the interaction matrix Vνν ′ . Furthermore, for the

cigar-shaped trap the interlevel energy spacing corresponding
to the quantization in the z direction is sufficiently small so
that the single-particle spectrum can be viewed as a sequence
of the subbands (n,m). Indeed, differences between 
ν’s
within the same subband are almost insignificant (and disap-
pear in the limit l‖ → ∞). It is therefore useful to distinguish
separate subband contributions to the system characteristics,
i.e., to treat the system as a coherent mixture of multiple
subband-dependent pair condensates.

By solving Eq. (2) we obtain the set of 
ν . To probe
the spatial pairing correlations (the main point of our study),
the anomalous correlation function 
(r,r′) = 〈ψ̂↑(r)ψ̂↓(r′)〉
needs to be calculated. Following the original works of
Gor’kov [16] and Bogoliubov [17], it can be viewed as the
wave function of a condensed fermionic pair. Using our
subband-based classification, we can represent 
(r,r′) (using
the Bogoliubov canonical transformation) as a sum over the
relevant subbands


(r,r′) =
∑
nm


nm(r,r′), (3)

where 
nm(r,r′) = ϑnm(ρ,φ)ϑ∗
nm(ρ ′,φ′)ψnm(z,z′) and at zero

temperature

ψnm(z,z′) = 1

2

∑
j

χj (z)χ∗
j (z′)
nmj

(
1

Enmj

− 1

λnmj

)
. (4)

Due to pairing, 
(r,r′) is localized as a function of the
longitudinal relative coordinate z − z′ (in the x,y plane it
is confined by the trapping potential) and the characteristic
localization length, i.e., the longitudinal fermionic-pair size,
is calculated as

ξ0 =
[
N−1

∫
d3r d3r ′ |
(r,r′)|2(z − z′)2

]1/2

, (5)

where N = ∫
d3r d3r ′|
(r,r′)|2 is the normalization factor.

Similarly, one can define a subband-dependent fermionic-pair
size ξ

(nm)
0 given by Eq. (5), with 
(r,r′) and N replaced by


nm(r,r′) and the corresponding normalization factor Nnm.
We note that while other definitions of the condensed-pair size
are possible, the resulting expressions differ only by a constant
factor [18,19].

III. ATYPICAL BCS-BEC CROSSOVER

As an illustration we consider a mixture of 6Li fermionic
atoms with two interacting spin states, |F,mF 〉 = |1/2,1/2〉
and |1/2,−1/2〉. The corresponding scattering length a can
be significantly modified through a broad Feshbach resonance
with experimentally reported values on the BCS side from
−250 to −100 nm [20]. For our numerical calculations we
take a = −140 and −180 nm. We choose ω||/(2π ) = 240 Hz,
μ = 100h̄ω‖, and ω⊥ is assumed to be variable leading to
tunable QS effects. (We found it convenient to present our
results versus the ratio s = μ/h̄ω⊥.) For the above choice of
the parameters the particle density in the center of the trap
is found to be about 1012–1013 cm−3, with kF |a| = 0.7–0.9.
This is consistent with most experiments where the particle
density is reported in the range 1012–1015 cm−3 and kF |a| ∼ 1
[3]. The characteristics of our trapping potential are chosen
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similar to those realized in recent experiments with quasi-
1D Fermi gases. In particular, one can compare ω

exp
‖ /(2π ) =

200 Hz and the ratio ω
exp
‖ /ω

exp
⊥ = 0.001 reported in [21] with

our values 240 Hz and 0.02–0.04. Note that ω‖/ω⊥ is larger
in our calculations because, as already mentioned above, we
avoid the ultraconfinement regime for the transverse motion
of atoms that is realized in [21] and where only one transverse
level (i.e., one subband) is occupied.

A. Oscillations of longitudinal fermionic-pair size

To reveal the many-body aspect of the QS effects, we
first need to consider how 
ν’s change with s = μ/h̄ω⊥.
Figures 1(a) and 1(c) show 〈
〉, i.e., the pairing gap averaged
over the Fermi surface, as a function of s calculated for
a = −140 and −180 nm, respectively. As can be seen, 〈
〉
increases in the vicinity of integer values of s. This condition
for the developing of a shape resonance [6] is satisfied when
the bottom of a subband, referred to as the resonant subband,
approaches the chemical potential and the DOS increases. As a
result, 〈
〉 exhibits QS oscillations with changing ω⊥ similar to
those reported for a pancake-shaped superfluid Fermi gas [10].

Now, based on the data for 〈
〉, we demonstrate that
the conventional single-particle picture of the QS oscillations
fails to explain the corresponding changes in the two-particle
characteristics. This is illustrated by the results for the longi-
tudinal fermionic-pair size ξ0 shown in Figs. 1(b) and 1(d).
Similar to the averaged pairing gap, ξ0 exhibits remarkable
QS oscillations. However, using the standard BCS estimate
ξ0 ∝ h̄vF /〈
〉, with vF the Fermi velocity at the center of
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FIG. 1. (Color online) Panels (a) and (c) demonstrate the QS
oscillations of the averaged pairing gap 〈
〉 for scattering lengths
a = −140 and −180 nm, respectively. Panels (b) and (d) show the
corresponding changes in the longitudinal fermionic-pair size ξ0 [see
Eq. (5)] and the subband fermionic-pair size ξ

(nm)
0 for subbands

(n,m) = (0,0), (0,±1), and (0,±2).

the trap, and taking into account the variations of 〈
〉 in
Fig. 1, we obtain for ξ0 a decrease by a factor of 1.6 when
s increases from 1.8 to 2.1 at a = −140 nm. Note that the
corresponding change in vF is negligible (see the data for
single-particle density discussed in Sec. III C). This is a
considerable underestimation of the numerical results given by
Fig. 1(b), where ξ0|s=1.8/ξ0|s=2.1 ≈ 3. A similar discrepancy
is found for a = −180 nm.

A detailed analysis shows that this discrepancy is related
to a significant redistribution of the fermionic condensate over
the available subbands. This is seen from Fig. 1(b), where
ξ0 is compared with ξ

(nm)
0 for subbands (n,m) = (0,0),(0, ±

1),(0, ± 2). When s � 1.9, the main contribution to the pair
condensate comes from subband (n,m) = (0,0), i.e., 
 ≈

0,0, and we obtain ξ0 ≈ ξ

(0,0)
0 . As the system goes through

the resonance that develops at s = 2, ξ0 drops and approaches
ξ

(0,±1)
0 . In this case, two resonant subbands (n,m) = (0,±1)

make the largest contribution to the total condensate, i.e., about
70% at s = 2.1. At the next resonance, s = 3, ξ0 decreases
again and approaches ξ

(0,±2)
0 , which points to the enhancement

of the contribution 
0,±2. At larger s the effect is weakened
because the total number of contributing subbands increases
while the relative contribution of a particular resonant subband
diminishes. Results for a = −180 nm in Fig. 1(d) exhibit a
similar behavior.

B. Squeezing of fermionic-pair wave function

The arguments given in Sec. III A demonstrate that the
redistribution of the fermionic condensate over the available
subbands has a significant effect on ξ0. Another contributing
factor is the large variation in the subband pair size ξ

(n,m)
0

when the bottom of the corresponding subband crosses μ,
as seen in Figs. 1(b) and 1(d). A further insight is obtained
by considering how 
nm(r,r′) decays with increasing z − z′.
This decay of the subband pair wave function 
nm(r,r′) is
controlled by its longitudinal component ψnm(z,z′) defined
by Eq. (4). Figure 2 shows |ψnm(0,z)| as a function of z for
subbands (n,m) = (0,0) [panel (a)] and (0,±1) [panel (b)]
at s = 1.8, 2.2, and 2.8 (for a = −140 nm). As seen, ψ0,0(0,z)
is a slowly decaying oscillatory function for all values of
s, which is typical for loosely bound Cooper pairs in a
bulk superconductor. Contrary to this, ψ0,±1(0,z) exhibits a
crossover from the strongly localized (at s = 1.8) to the BCS
weakly localized regime (at s = 2.8) when the system passes
through the resonance associated with s = 2. At s = 1.8 the
lower edge of subbands (n,m) = (0,±1) is situated slightly
above μ, whereas at s = 2.2 and s = 2.8 it is slightly below
and far below μ, respectively. The edge of subband (0,0) is
far below μ for all given values of s. Notice that at s = 1.8
subband (0,0) makes a contribution of about 95% to the total
condensate while subbands (0,±1) yield only 5%. At s = 2.2
the contribution of subband (0,0) decreases down to 30%, as
opposed to the contribution of subbands (0,±1) that increases
up to about 70%.

The results of Fig. 2 are understood as follows. When the
lower edge of a single-particle subband is far below μ, the
ratio of the pair-interaction energy [22] to the longitudinal
kinetic energy in this subband is small, as expected in
conventional weak-coupling BCS theory. However, when the
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FIG. 2. (Color online) Spatial profile of the modulus of ψnm(0,z)
for subbands (0,0) (a) and (0, ± 1) (b). The data for μ/h̄ω‖ =
1.8, 2.2, and 2.8 are given in each panel and calculated at zero
temperature.

subband edge approaches μ, the longitudinal kinetic energy
is reduced, and the ratio strongly increases, which means
that the pair-interaction prevails over the longitudinal motion.
This forces the fermionic pairs in this subband to squeeze
in the longitudinal direction [see Fig. 2(b)]. Thus, the effect
follows from a redistribution of the kinetic energy between the
longitudinal and transverse degrees of freedom in the subband
whose lower edge crosses μ. This drop in the fermionic-
pair size is in fact an atypical example of the BCS-BEC
crossover that takes place in a single subband. However, unlike
previously discussed systems, here the crossover is driven by
the QS effects, which prompted the term atypical. Qualitative
difference between the partial condensates associated with
different subbands explains the failure of the BCS estimate
ξ0 ∝ h̄vF /〈
〉 in the analysis of the results in Figs. 1(b) and
1(d).

Since the classical paper by Cooper [23] it is well known
that the configuration of the phase space available for the
scattering of time-reversed fermions plays a crucial role for
the formation of condensed fermionic pairs. Indeed, only a
strong enough attractive interaction between fermions with
opposite spin in 3D is able to produce a two-body bound
state in the vacuum. However, when the scattering of fermions
is influenced by the presence of a filled Fermi sea, i.e.,
the available phase space is restricted by exclusion of the
single-particle states inside the Fermi sea, we arrive at
the Cooper instability resulting in the formation of weakly
bound in-medium pairs of fermions for arbitrary strength
of the attractive interaction. Restricting the phase space by
removing the filled Fermi sea, one actually removes long-range
contributions in the Cooper-pair wave function, which, say,
“encourage” fermions to form in-medium bound states. Our
results show that the additional reconfiguration of the phase
space, such that the band of single-particle states splits up into
a series of lower-dimensional subbands, can further modify the
scenario of pairing through the atypical BCS-BEC crossover.

C. Coherent mixture of BCS and BEC-like condensates

The BCS-BEC crossover in a resonant subband also reveals
itself in the properties of the aggregate condensate of the sys-
tem. However, the effect depends on the relative contribution
of a resonant subband. It is maximal at the corresponding
resonance and diminishes away from the resonance. This
contribution similarly drops when the total number of relevant
subbands increases, and thus, as for other quantities, the lowest
resonances (i.e., for s = 2 and 3) are the most visible in ξ0.
Effects of the subband BCS-BEC crossover on the aggregate
condensate can be estimated by calculating the quantity γ =
kF ξ0 [24]. For the BCS system γ � 1, i.e., the Cooper-pair size
greatly exceeds the mean distances between particles, and this
leads to a considerable overlap between the fermionic pairs.
For γ � 1 such an overlap is absent, and the system becomes
a BEC of tightly bound pointlike molecules. The intermediate
crossover region is reached when 1/π � γ � 2π [24]. For
s = 1.9, i.e., just before the resonance at s = 2, we obtain
γ ≈ 10 and so the system is in the BCS regime. At s = 2.1
we find γ ≈ 4, which corresponds to the intermediate regime
of the BCS-BEC crossover. The size-dependent drops in ξ0

become larger for smaller |a| (on the BCS side of the Feshbach
resonance); see Fig. 1. The reason for this is twofold. First,
at smaller |a| the energy window for contributing subbands
also decreases, which means that the relative contribution of
resonant subbands is larger. Second, the difference between
ξ

(nm)
0 in neighboring subbands increases, as seen in Figs. 1(c)

and 1(d), and this increases the magnitude of variations
in ξ0.

Variations in ξ0 are accompanied by substantial changes in
the spatial profile of the order-parameter 
(r) = −g
(r,r).
Figure 3 shows the contour plots of 
(ρ,z) for a = −140 nm
and T = 0, calculated (a) slightly below the resonance, at
s = 1.9, (b) close to the resonance, at s = 2.1, and (c) above

-10 -5 0 5 100

1

2

(c)

(b)

(a)

μ/ ω
⊥
 = 2.8, a = -140 nm

μ/ ω
⊥
 = 2.1, a = -140 nm

μ/ ω
⊥
 = 1.9, a = -140 nm

Δ(ρ,z)

z/l||

ρ  
/l ⊥

0

0.09

-10 -5 0 5 100

1

2 Δ(ρ,z)

z/l||

ρ 
/l ⊥

0

0.09

-10 -5 0 5 100

1

2 Δ(ρ,z)

z/l||

ρ 
/l ⊥

0

0.06

FIG. 3. (Color online) Contour plots of the order parameter

(ρ,z) obtained for a = −140 nm (at T = 0) below the resonance at
μ/h̄ω⊥ = 1.9 (a), in the vicinity of the resonance at μ/h̄ω⊥ = 2.1 (b)
and far beyond it at μ/h̄ω⊥ = 2.8 (c).

033612-4



ATYPICAL BCS-BEC CROSSOVER INDUCED BY . . . PHYSICAL REVIEW A 86, 033612 (2012)

-10 -5 0 5 100

1

2 np(ρ,z)

z/l||

ρ  
/l ⊥

0

6.3

-10 -5 0 5 100

1

2

(c)

(b)

(a)

np(ρ,z)

μ/hω
⊥
 = 2.8, a = -140 nm

μ/hω
⊥
 = 2.1, a = -140 nm

μ/hω
⊥
 = 1.9, a = -140 nm

z/l||

ρ 
/l ⊥

0

5.5

-10 -5 0 5 100

1

2 np(ρ,z)

z/l||

ρ  
/l ⊥

0

6.9

FIG. 4. (Color online) Contour plots of the single-particle density
np(ρ,z) (given in units of 1012 cm−3) calculated for the same
parameters as in Figs. 3(a)–3(c), respectively.

the resonance, at s = 2.8. In the first case the pair condensate
is almost uniformly distributed over the trap with two peaks at
the edges of the condensate cloud. These peaks are typical for a
confined BCS condensate and can be explained by the presence
of the turning points in the trajectories of particles with energy
close to μ. When the resonance develops [Fig. 3(b)], the spatial
distribution of the condensate acquires a pronounced bimodal
character with an additional sizable peak around z = 0 due
to the contribution of resonant subbands (0,±1). The bimodal
character clearly indicates that the system becomes a coherent
mixture of two qualitatively different condensates: The first is
associated with subband (0,0) and has properties typical for the
BCS system; the second is due to resonant subbands (0,±1)
and displays a typical BEC-like behavior (the formation of
bosoniclike states distributed at the center of the trap).

Note that contrary to the order parameter, the spatial
distribution of atoms does not exhibit such noticeable changes
at resonances, as seen from the comparison of Fig. 3 with
Fig. 4, where contour plots of the position-dependent single-
particle density np(r) are given. Due to the axial symmetry,
we have np(r) = np(ρ,z), and at zero temperature

np(ρ,z) =
∑
nmj

(
1 − λnmj − μ

Enmj

)
|ϑnm(ρ,ϕ)|2χ2

j (z), (6)

where the absolute value of the eigenfunction ϑnm(ρ,ϕ) does
not depend on ϕ. The sum in Eq. (6) is convergent and the
ultraviolet regularization is not required.

IV. DISCUSSION

Here we discuss details of approximations involved in our
study, including the Anderson solution to the BdG equations,
the ultraviolet regularization, and treating the interatomic
collisions as a 3D process.

The Anderson solution. Our calculations are based on the
BdG equations that can be, in principle, solved without ad-
ditional approximations. However, for the sake of transparent
physical interpretations, here we employ Anderson’s recipe for
an approximate solution to the BdG equations [see Eq. (1)].
We recall that the Anderson approximation incorporates only
the pairing of the time-reversed states [14], and the power of
this approximation is based on the fact that the interaction
matrix elements involving the time-reversed states are most
pronounced as compared to other pairing combinations.
Corrections to the Anderson solution were found in the range
of a few percent for quasi-1D superconducting condensate in
metallic nanowires [9], which allows one to expect a similar
accuracy of the Anderson approximation for a cigar-shaped
ultracold superfluid Fermi gas.

Notice that the energy spacing between the single-particle
levels is not directly related to the validity of the Anderson
ansatz. However, it can be an additional factor improving
accuracy of the ansatz. Indeed, when the energy spacing be-
tween single-particle levels exceeds the characteristic pairing
energy, the pairing of non-time-reversed states is suppressed
not only due to smaller coupling but, in addition, due to a
large interlevel spacing between the non-time-reversed states.
In this case the Anderson approximation becomes practically
exact. However, when the interlevel energy spacing is small as
compared to the pairing energy, this does not necessarily mean
a breakdown of the Anderson approximation. The pairing of
the non-time-reversed states will not be pronounced anyway,
thanks to the classical argumentation by Anderson [14]. For
instance, Anderson’s recipe yields exact solution for bulk
superconductors where the pairing energy is much larger than
the interlevel energy spacing.

The ultraviolet regularization. Notice that our simplified
3D-like regularization differs from the rigorous procedure
reported by Bruun and coauthors [15] for spatially nonuni-
form systems by the absence of an additional corrective
term. However, following arguments by Bruun himself and
Heiselberg in [25] [see the discussion just above Eq. (15) in
this reference], one can expect that the role of this corrective
term is not significant. Moreover, the authors of Ref. [25]
introduced a simple cutoff |λν | < μ and argued that such a
cutoff is “a first approximation to the more rigorous procedure
of Bruun et al.” for trapped Fermi gases. In Fig. 5 we show
results for 〈
〉 calculated with this cutoff versus our data
from Fig. 1(a). Though 〈
〉 based on the cut-off procedure is
slightly different as compared to the averaged gap calculated
from Eq. (2), this difference practically disappears with a
small shift in the scattering length, i.e., a → a + 20 nm, in
the cut-off data. Thus, one can conclude that our simplified
ultraviolet regularization, which becomes exact by increasing
the number of subbands as the radial confinement is reduced,
does not affect our conclusions.

Interatomic collisions. Several explanations about inter-
atomic collisions in the cigar-shaped Fermi gas are also
needed. For our trapping potential we have ω‖/ω⊥ ∼ 0.01,
and looking at this aspect ratio, one might get the impression
that the two-particle scattering has an effectively 1D character
here. However, this is not correct. Though the character of the
interatomic scattering is rather complex in quasi-1D systems,
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FIG. 5. (Color online) The averaged energy gap 〈
〉 (in units of
μ) versus μ/h̄ω⊥: squares are results for a = −120 nm calculated
with the Bruun-Heiselberg cutoff |λν | < μ; circles are the data from
Fig. 1(a).

the choice of the 3D pseudopotential is well justified for our
range of parameters.

Based on the results for the binary atomic collisions in the
quasi-2D tightly confined system [26], one can consider that
the scattering amplitude in the quasi-1D system is a function
of the two important parameters |a|/l⊥ and Esc/h̄ω⊥ (with
Esc the scattering energy). Pronounced deviations from the
ordinary 3D scattering can be expected [26] when |a|/l⊥ � 1
and Esc/h̄ω⊥ � 1 (see also Refs. [27,28]).

In our calculations l⊥ varies from 0.35 to 0.5 μm when
μ/h̄ω⊥ increases from 2 to 4. So, one finds that |a|/l⊥ ≈
0.3–0.4 for a = −140 nm. The relevant scattering energies in
our problem can be roughly estimated as twice the chemical
potential measured from the lowest single-particle energy,
i.e., Esc ∼ 2(μ − h̄ω⊥). Using this estimate we find that for
our parameter choice Esc/h̄ω⊥ � 2 (as μ � 2h̄ω⊥), which
is directly related to the fact that our study is focused on
the case of multiple contributing subbands. Thus, Esc/h̄ω⊥
is too large and |a|/l⊥ is too small to favor pronounced 1D
modifications to the interatomic collisions. We note that the
choice of the 3D scattering length a = −140 and −180 nm
is not crucial for our predictions of the atypical BCS-BEC
crossover. We have performed additional calculations and
found even more pronounced variations of the fermionic-pair
size at a = −100 nm (see the discussion in the first paragraph
of Sec. III C).

It is also important to note that there is one exception
when the estimate of Esc in the previous paragraph does not
hold. In a resonant subband, whose bottom is located in the
vicinity of the chemical potential, the longitudinal motion of

atoms is depleted. As a result, the relevant energies of the
interband scattering in such a subband can be smaller than
h̄ω⊥. In this case modifications to the pseudopotential could
be pronounced, including the appearance of the confinement-
induced Feshbach resonance [27,28], if the ratio |a|/l⊥ were
large, i.e., |a|/l⊥ � 1. However, for |a|/l⊥ � 1 (this is our
case) the 1D modifications are reduced to almost insignificant
renormalization of a (see Ref. [27]). Thus, we can conclude
that the 1D modifications to the 3D pseudopotential can be
neglected for our choice of physical parameters.

V. CONCLUSIONS

In conclusion, we have demonstrated an atypical BCS-BEC
crossover induced by the quantum-size effects for a 6Li
superfluid gas in a cigar-shaped trap. For such a trap geometry
the transverse quantization of the particle motion results in
the formation of single-particle subbands so that the fermionic
condensate becomes a coherent mixture of subband-dependent
different condensates. Each time the lower edge of a subband
crosses the chemical potential, the subband fermionic-pair size
drops so that the fermionic pairing in this subband changes
qualitatively, displaying the BCS-BEC crossover. As a result,
the total fermionic condensate becomes a coherent mixture of
BCS and BEC-like components, and the longitudinal pair size
ξ0 associated with the aggregate condensate decreases. Radio-
frequency spectroscopy can be used to detect the quantum-size
driven squeezing of fermionic pairs [19]. Note that a similar
many-body physics driven by the quantum-size oscillations
can be expected for a pancake-shaped superfluid Fermi gas
with only a few available transverse levels (the experimental re-
alization of such a system, with observation of many subbands
due to quantum confinement, was recently reported in [12]).
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