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Biexcitons in fractional dimensional spaces are studied using variational quantum Monte Carlo. We investigate
the biexciton binding energy as a function of the electron-hole mass fraction o as well as study the dimensional
dependence of biexcitons for o0 = 0 and o = 1. As our first application of this model we treat the H, molecule in
two and three dimensions. Next we investigate biexcitons in carbon nanotubes within the fractional dimensional
model. To this end we find a relation between the nanotube radius and the effective dimension. The results of
both applications are compared with results obtained using different models and we find a reasonable agreement.
Within the fractional dimensional model we find that the biexciton binding energy in carbon nanotubes accurately

scales as E(r,e) = 1280 meV A/ (re), as a function of radius r and the dielectric screening ¢.
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I. INTRODUCTION

The confinement effect in nanostructures is responsible
for pronounced binding energies of excitonic complexes.!~!?
As a consequence charged excitons and biexcitons, which
are not detectable in bulk materials at room temperature,
play a significant role in highly confined systems such as
quantum wells>*>!3-15 and nanotubes.'®?> A popular method
used to treat excitons and biexcitons in quasi-two-dimensional
quantum wells is the fractional dimensional model,*?* in
which one models the confinement of the particles through
a modified Laplace operator and integration measure. The
fractional dimensional model was first applied to biexcitons
by Singh et al. in Ref. 5. In their work they imposed a square
structure on the wave function by which the Hamiltonian
reduced to an excitonlike Hamiltonian. Later, this approach
has been applied by other authors.*>> The method by Singh
et al. has the advantage that one arrives at an equation that
can be solved analytically. However, the imposed square
structure is an approximation and it would be desirable to
solve the fractional dimensional biexciton equation without
such a constraint. In this work we estimate a solution to the
radial Hamiltonian in Hylleraas coordinates, where the only
structural assumptions are given by the form of our variational
trial function.

We have recently estimated the binding energy of tri-
ons in fractional dimensional spaces.’®?’ In Ref. 27 we
established the foundation for solving N particle problems
in fractional dimensional spaces using variational quantum
Monte Carlo (VQMC). We used a model proposed by Palmer
and Stavrinou’® to estimate the binding energy of the trion.
Moreover, we demonstrated that the model produces results
that are in good agreement with experiments for both carbon
nanotubes (CNTs) and GaAs quantum wells. Thus the basis
for solving the biexciton equation in fractional dimensional
space has been established and additionally we expect that this
model can predict the biexciton binding energy accurately for a
wide variety of systems thereby uniting estimates for quantum
wires, wells, and nanotubes in a single framework, 14-3-23-25-29

In this paper we estimate the binding energy of biexcitons
in fractional dimensional spaces. We present biexciton binding
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energies as a function of the fractional dimension D as well
as give the mass fraction spectrum for various dimensional
parameters. Since the fractional dimensional model covers
many different geometries we give two applications to illus-
trate the applicability. As the first application we estimate
the energy of the hydrogen molecule. This application serves
as an illustrative and simple example of how this model can
be applied to systems of integer dimension. As the second
application of this model we investigate biexcitons on the
surface of a cylinder: First we establish a relationship between
the cylinder radius r and the fractional dimension D. To this
end we use the model given in Refs. 18 and 20 to determine
the exciton energy in CNTs. Then we calculate the biexciton
energy as a function of the cylinder radius and the results are
compared with the results given in Refs. 16, 17, 19, and 21.
Finally we present the biexciton binding energies for various
CNT species, before we conclude on the applicability of the
fractional dimensional space technique.

II. FRACTIONAL DIMENSIONAL MODEL FOR
BIEXCITONS

Following the approach in Ref. 27 we introduce three
parameters «, 8, and y to control the collapse of axes and we
define the fractional dimension as D = « + 8 + y. Moreover,
we define the inner product as?*?7-30
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Adopting effective Rydbergs Ry* = 13.6 eV 11/e? and effec-
tive Bohrradiiay = 0.529 A &1, as units of energy and length,
the general (m,n)-Hamiltonian for m electrons and n holes
can be approximated by introducing Hylleraas coordinates,
removing the center-of-mass motion, and neglecting the contri-
butions from the angular parts of the kinetic-energy operators.
Here, u = m.my, /(m, + my,) is the reduced electron-hole mass
and ¢ is the static dielectric constant. In the following, let i, j,
and k be electron indices, and a, b, and ¢ hole indices. Then
after separating the kinetic energy into contributions from the
electrons and holes we obtain?!
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where o = m,/my, is the electron-hole mass fraction and
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Here r;; is the distance between the ith and jth particle (see
Fig. 1). The kinetic-energy operators for the holes 7}, are found
by substituting i, j,k with a,b,c in T;.

In order to estimate the ground-state energy of Eq. (3) we
chose a trial function

Vr = AWe,x + ¥3.0)Po11)/(D-1)b1.c:
X (r3) P o +1)/(D=1),b3,c,(124), )

FIG. 1. Schematic illustration of the geometry of the biexciton.
Filled circles illustrate electrons and hollow circles illustrate holes.
Solid lines represent attractive Coulomb interactions while dashed
lines are repulsive Coulomb interactions.
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with

Ve, x = exp |: -

D 1(t‘?"lz + xria+8&rg + X’”23)],

and

ar

Dy po(r) = exp (m)
which has been constructed such that it can model two free
excitons as well as two excitons bound to each other. Here all
parameters a,by,b;,c1,c2,x,§ > 0 are positive real numbers
and A is a normalization constant. The wave function is
composed of three factors: ¥ 5 + ¥y e, Por1)/(D=1),b1,c, (713,
and @ 41y/(D-1),b,,¢, (r24). The first factor serves to model the
attraction between the electrons and holes, the second factor
models the electron-electron repulsion, and the third factor the
hole-hole repulsion. When x — £ the first factor reduces to
24¢ ¢ thereby modeling a biexciton in which all electron-hole
pairs are equally strongly bound. In contrast, when x — 0
and £ > 0 one finds a superposition of free exciton pairs. The
second and third factors of the wave function are modified
Jastrow-type wave functions, which, in general, are known??
to model the correlation effects with good accuracy.

The local energy was found as®® E; = W, ' HW; using
the (2,2) Hamiltonian defined in Eq. (3) for the probability
distribution p = \II%W with

4

W= bl il 6)
i=2

The expectation value of the energy can be evaluated as*
| M
E~— Zl EL(x), ™

where M is the number of sampling points and x; € RV is the
ith configuration sampled from the probability density o(x). In
the following we denote the biexciton energy E and define the
biexciton binding energy as Ep = 2Ex — E, which is positive
for stable biexcitons. Here Ex is the exciton binding energy.
Also, we denote the singlet biexciton by B,, for mass fraction
0.

III. RESULTS

A. General biexciton tendencies

The variational coefficients in Eq. (5) were optimized
using the stochastic gradient method.’*3> This method was
used to optimize the energy and to determine the variational
coefficients for selected mass fractions and dimensions. The
coefficients in between the optimized ones were determined
by using appropriate interpolations. We examined the auto-
correlation function for a wide variety of configurations to
ensure that the sampling points were uncorrelated. Typically
simulations were carried out with acceptance rates between
70% and 90% and every walker was moved 50 steps in between
sampling of the energy. With all calculations given here we
provide the standard deviation as error bars. One should
notice that while this quantity is a measure of the statistical
uncertainty of the sampling process it does not include the
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FIG. 2. (Color online) Mass fraction dependence of the fraction
dimensional biexciton binding energy for D =3, D =2.5, D =2,
and D = 1.7. The dimensions were chosen such that the results cover
biexcitons in bulk materials (D = 3), confined to the plane (D = 2),
in quantum wells (D = 2.5), and in CNTs (D = 1.7). All energies are
expressed in effective Rydberg Ry*, which is a material dependent
unit. The results are therefore universal, rather than reflecting the
properties of a specific material.

numerical inaccuracies arising from the singularities®’ in the
integration weight Eq. (6).

In Fig. 2 we have given the mass fraction dependence of
the biexciton binding energy for D =3, D =2.5, D =2,
and D = 1.7. Results for D =3 and D = 2 correspond to
biexcitons in bulk materials and confined to a plane surface,
respectively, whereas D = 2.5 is expected to describe the
properties of biexcitons in GaAs quantum wells of width?’
L ~ 240 A. Finally, D = 1.7 is expected to describe the
properties of biexcitons in CNTs with an effective radius of
r =0.1a}.3262736 A gpecial case of the three-dimensional
biexciton is By, which includes the hydrogen molecule H,.
We compared the results for D =2 and D =3 with the
calculations done in Refs. 37 and 38, where the authors
investigated the biexciton energy as a function of the electron-
hole mass fraction using the ordinary Laplace operators in two
and three dimensions. Our model underestimated the energies
with at most 6%. We also found that the general tendencies
of the mass fraction dependence are correct and thus our
relatively simple estimate describes a wide variety of systems
to reasonable precision.

In Fig. 2 it is observed that the mass fraction serves as a
parameter to enhance the biexciton energy. For materials with
o < 0.1 the biexciton binding energy increases significantly
meaning that experimental observation of biexcitons will be
more likely in nanostructures, where the electron-hole mass
fraction is small. An example of a material where the mass
fraction may play a role is GaAs, with mass fractions around*”
o = 0.2. In contrast, for CNTs where the mass fraction!$2
o € [0.8,1], it is a reasonable approximation to assume that
the dependence on o of the energy can be neglected. This
simplifies the problem as one only needs to find the dependence
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of the energy on the effective cylinder radius. This allows
for simple fits similar to those presented in Refs. 16 and
19. In terms of the mass fraction, CNTs are a poor choice
of nanostructures for measuring biexciton binding energy.
However, one should keep in mind that effective units play
a significant role in the determination of the physical energies
as well, and thus the energy dependence on the electron
and hole masses does not solely enter through the mass
fraction. The effective Rydberg is proportional to the reduced
electron-hole mass u = m,my,/(m, + my,). Therefore not only
materials with low mass fraction o but also materials with
large reduced masses p are good candidates for measuring
the biexciton binding energies. Finally, it is worth noting
that the dielectric screening also plays an important role in
determining the biexciton binding energies as the effective
Rydberg is proportional to £~2. For CNTs this parameter is
largely determined by the surrounding material and is typically
taken to be>10-2022.26.27 ¢ < [3 4 4.5]. Within this interval the
effective Rydberg roughly varies by a factor of 2 and the
relatively small screening, compared to, e.g., GaAs (Ref. 39)
(¢ &~ 13), leads to a very large effective Rydberg Ry* in CNTs.
The difference in dielectric constant yields energies differing
by roughly a factor of 15.

Next we focus on the biexcitonic energy as a function
of dimensionality D, i.e., the confinement. The results are
given in Fig. 3. First of all, the biexciton binding energy is
increasing with decreasing dimension as would be expected
from a physical point of view. Second, it is seen that the
binding energy of the By biexciton is larger than that of B
for all dimensions D. When o = 0 one has a case that is
analogous with the hydrogen molecule H,: In terms of the
coordinates of relative motion it can be verified that the holes
become localized when o is lowered by investigating the
probability distribution p, similar to what was done for trions
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FIG. 3. (Color online) Biexcitonic energy for mass fractions o =
0 and o0 = 1 as a function of the dimension D. The dimension D is
a parameter that reflects the confinement of the biexciton. It is seen
that increasing the dimensional confinement is an effective way of
enhancing the biexciton binding energy as the energy is enhanced
with more than a factor of 100 in going from D =3 to D = 1.5 for
B;. Inset: Full energy E of the By and B, biexcitons.
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in Ref. 27. Consequently the kinetic energy is reduced as a
result of the two holes (or electrons) becoming stationary,
meaning that the binding energy Ep is increased. In this
context it is important to note that the exciton Hamiltonian
is independent of the mass fraction' and that this is not
the case for the general many body fractional dimensional
Hamiltonian in Eq. (3). If one calculates the fraction between
the binding energy of By and B it is found that the By binds
from 2.5 times stronger than By at D = 1.5 up to 4 times
at D = 3. On the one hand this clearly demonstrates that
the choice of material (which determines the mass fraction)
is not negligible when designing nanostructures in which
biexcitons should be observable. On the other hand, however,
the confinement constitutes a much more effective parameter
in enhancing the biexciton binding energy as one roughly
finds a factor of 100 in difference between the energies at
D =3 and D = 1.5 for B;. In conclusion, four key parameters
determine the binding energy of the biexciton, the first being
the electron-hole mass fraction, the second being the reduced
electron-hole mass, the third being the dielectric screening,
and the fourth being the confinement of the particles. The first
three are determined by the choice of material and suspension
medium whereas the fourth is a result of the system geometry.
Especially, low-dimensional nanostructures with D < 2.0 and
low dielectric constants are promising to measure the biexciton
binding energy at room temperature.

All binding energies presented up to now have been given
in units of effective Rydberg Ry* and are therefore universal
energies. This means that they can be applied to a wide variety
of systems if one knows the electron and hole masses, the
static dielectric constant and the dimension of the system.
Biexcitons form a quite general class of complexes covering
everything from the hydrogen molecule**~* to the positronium
molecule.** Besides covering the standard two-dimensional
(2D) and 3D cases, the interpolation of the Laplacian operators
makes the model applicable in the description of biexciton
energies in quasi-two-dimensional quantum wells*> and
CNTs.262736 In the hope that our results will serve as a
guideline for experimentalists as well as other theoretical
physicists we here give curve fits of the energy as a function of
the dimension D for the two limiting cases (0 = 0ando = 1),

5
G
Eo(D)=3 e ”, ®)
i=1

with the coefficients given in Table I.

To demonstrate how this work is applied to real physical
systems we give two examples of applications. First, we study
the H, molecule in two and three dimensions. This example
serves to confirm that the model exhibits the correct limiting
behavior. Then, in the next section, we turn our attention

TABLE . Fitting coefficients in units of Ry* for biexciton binding
energies.

1 (&) 3 Cq Cs
By —400 3361 —11728 18359 —11495
B, —308 2468 —8489 13251 —8379
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toward a more sophisticated application, namely biexcitons
in CNTs.

B. H, molecule

For the H, molecule the effective Rydberg is Ry* =
13.6 eV and the electron-hole mass fraction is o = 0. Using
Eq. (8) we find Ey(3) = —2.23Ry* = —30.32 eV, in three
dimensions, which should be compared with the true energy*’
of —31.66 eV, giving an error of 4.2%. Similarly, we can now
estimate the energy of the H, molecule in two dimensions
as Eyp(2) = —10.16Ry* = —138 eV. This result should be
compared with the variational result reported in Ref. 42
where the authors found E = —141 eV, giving a difference
of roughly 2.5%.

Since the description of atoms and molecules in Hylleraas
coordinates has proven to be precise in comparison with
experiment’! we expect that the deviation arises from the
variational trial wave function. While modification of the trial
wave function would be likely to give more precise energies,
it would, however, be preferable to extend this model using a
diffusion quantum Monte Carlo (DQMC) approach, in which
case the obtained energies would be exact within the obtained
statistical errors.*

IV. BIEXCITONS IN CARBON NANOTUBES

As the second application we study biexcitons on the
surface of a cylinder. While the cylindrical geometry has been
used successfully in the description of electron-hole complexes
in CNTs,>16:18-20 piexcitons in CNTs have not been studied
using a fractional dimensional model yet.

This section is organised as follows: First we give a brief
review of past efforts with regard to the biexciton binding
energy in CNTs followed by a discussion of the effective
units in CNTs, which is important in order to conclude on
the agreement between the models for actual CNTs. Then we
discuss the dimensionality of CNTs, i.e., the relation between
the nanotube radius r and the dimension D, for which we
establish an expression. Using this relation we estimate the
biexciton binding energy in CNTs as function of nanotube
radius. These results are compared with the results in Refs. 16,
17, 19, and 21 and we conclude on the overall agreement with
these studies. We further explain the Kataura modulation of
the biexciton binding energies. Through these considerations
we show that the biexciton binding energy is proportional to
r~'e~!. Finally, we calculate the biexciton binding energy for
a wide variety of CNT species.

A. Brief review of past CNT biexciton efforts

During the last six years, many papers have in-
vestigated biexcitons and nonlinear optical properties of
CNTs.!6:17:19214451 Biexcitons in CNTs were first studied'®
by Pedersen et al. in 2005. In this work the authors used
a cylindrical geometry and assumed that the biexciton was
completely delocalized around the circumference to arrive
at an effective one-dimensional Hamiltonian. The problem
was solved using a Gaussian basis expansion and it was
concluded that biexcitons in CNTs are stable particles.
Later, Kammerlander et al. investigated the full cylindrical
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biexcitonic Hamiltonian through VQMC'”"* and DQMC.""
The authors concluded that the biexciton binding energy was
twice the magnitude of that found in Ref. 16. Moreover, they
found that the biexciton binding energies exhibit a pronounced
Kataura behavior in contrast to the findings in Ref. 16 where
it was concluded that the biexciton binding energy to a large
extent only depends on the radius of the CNTs rather than the
chiral index. Recently a one-dimensional investigation?! of
biexcitons was carried out in which the author concluded that
the biexciton binding energy scales as »~%°. This is in contrast
to the r~! dependence predicted in Ref. 16. Finally, the first
study of dependence on the dielectric screening was done in
Ref. 47. It was found that the screening is more pronounced for
biexcitons than for excitons in large diameter CNTs meaning
that the biexciton binding energy is expected to be less than
half the values predicted by phenomenological models.

In 2007 the first experimental study reporting on biexcitons
in CNTs*® was conducted by Styers-Barnett et al. Studying the
transient absorption spectra of SWCNTSs using a femtosecond
laser pulse they observed a shift in the induced absorption
bands, which was attributed to biexciton formation. The
observed binding energies were found to be in good agreement
with theoretical estimates.'®!”! As of today no signatures of
the biexciton have been found in photoluminescence spectra.**
It has been suggested that multiple excitons recombine
through a nonradiative Auger process.** However, this idea
was investigated theoretically by Watanabe er al. and it
was concluded that biexciton formation is not prevented
by Auger recombination.*® While biexcitons have not been
observed directly in photoluminescence spectra** it is still
possible that biexcitons will be observed through two-photon
absorption experiments. But in light of the many different
results presented in literature on biexcitons in CNTs, there
is need for further investigations of the biexciton binding
energies.

The goal of the following subsections is to show how
one can apply the fractional dimensional model to estimate
the biexciton energy in highly confined systems. CNTs are
especially well suited for this purpose due to their low-
dimensional geometry. As the fractional dimensional model
has previously been applied successfully to excitons and trions
in CNTs, we also expect that it will predict the biexciton
binding energies accurately.

B. Effective units of CNTs

All energies in Sec. II are expressed in effective Rydberg
Ry* and are therefore not applicable when comparing with
experiment. For completeness of this work we give an example
of how to convert the effective energies into real physical
values. We consider CNTs with chirality (7,5) as an example.
In our previous work we demonstrated that a dielectric constant
of ¢ = 3.4 predicts the trion energy with high precision when
compared with the experimental results in Ref. 52. With this
in mind we assume that ¢ = 3.4 is a reasonable value. In order
to obtain the effective electron and hole masses we used a
nearest-neighbor tight-binding model with a transfer integral
of*Y t = —2.89 eV and a hopping integral of s = 0.1. Using
this model the effective electron and hole masses for (7,5)
CNTs are found to be m, ~ 0.081mqy and mj; ~ 0.087m,,
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respectively, giving a reduced mass of u & 0.042m resulting
in an effective Rydberg?’ Ry* ~ 49 meV. Using that (7,5)
CNTs have an effective Bohr radius of aj = 0.529 Ae/u =
43 A, the effective radius of a (7,5) CNT is r = 0.092a}.
In order to determine the dimension of the cylinder we
followed the approach given in Ref. 36, which has been
proven to be quite accurate.”® The dimension was determined
as follows: One calculates the exciton energy Ex(r) on the
surface of a cylinder. The dimension D is then given by the
relation®® D = /=4/Ex + 1. This method ensures that the
exciton binding energy is predicted correctly by the fractional
dimensional model. For (7,5) CNTs one finds an effective
dimension of D = 1.70 for which the binding energy is
2Ex — E; ~ 1.88Ry* = 92 meV.

For actual CNTs the effective radius (i.e., in units of aj)
is found in a small range around 0.1aj, which can easily be
verified either by using same the tight-binding approach or
by using the expressions for the effective electron and hole
masses given in Ref. 53. The latter was used in Ref. 19 to
determine the effective units, whereas the former has been
used in Ref. 20. Within the model used by Kammerlander 97%
of the semiconducting nanotubes with chiral index 10 < 2n +
m < 200 have an effective Bohr radius 0.08a3 < r < 0.15aj.
Within the tight-binding model it is found that 98% are in the
region 0.07a} < r < 0.13aj.

C. Dimensionality of CNTs

We found the exciton energy (in effective Ry*) on the
surface of a cylinder using a basis expansion as explained
in Ref. 20 for r € [0,0.4]a}. Using the exciton energy the
dimension was found as explained in Sec. IV B. The result has
been shown in the inset of Fig. 4. The dimension is accurately
fitted by

D(ry~2— exp(—alrbl) +r exp(—azrb2), 9)
4 7 T 14 T

= Present workf |
é\ Ref. 19 Q
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FIG. 4. (Color online) Binding energy as function of r where
the mapping in Eq. (9) is used to convert the radius into dimension.
For comparison we have also given the results in Refs. 16, 17, 19,
and 21. Inset: Relation between the effective nanotube radius and the
dimension D calculated using the model in Ref. 20. The fit is given
in Eq. 9).
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with a; = 3.4, by =0.48, a, = 2.0, and b, = 0.23. Notice
that the limits of D(r) are intuitive: for r — 0 the system
effectively becomes a one-dimensional system as D(r) — 1
and for r — oo the dimension is found to be D(r) — 2.
Using this relation between r and D we calculated the
biexciton binding energy Eg(D) as a function of r, which
is shown in Fig. 4, together with other results published in
literature.

First of all, notice that the overall agreement between the
results presented here, the basis expansion presented in Ref. 16,
the VQMC calculations given in Ref. 17, the DQMC curve fit
givenin Ref. 19 and the one-dimensional result given in Ref. 21
is reasonably good. The model presented here gives binding
energies that are well above the one-dimensional models,
Refs. 16 and 21, and that are higher than or equal to the
VQMC estimate in Ref. 17 on the interval [0.05,0.35]a}.

Second, the difference in the asymptotic behavior of the
results presented here and the DQMC results in Ref. 19 when
r — oo is noticed. The small deviation is a result of the
quality of the variational estimate in Eq. (8), which predicts
a binding energy of 0.58Ry*, in two dimensions, whereas
the correct value for o = 1 is*’ 0.77Ry*. Improvement of the
trial function would presumably correct this problem. For the
purpose of studying biexcitons in CNTs the limiting behavior
is, however, of little importance as the effective radii are
found on the interval 0.07a} < r < 0.15a}, as discussed in
the previous section. This area has been shaded in Fig. 4.
Finally, one notices that for radii r below 0.12a}; the fractional
dimensional model predicts a larger energy than previous
investigations.

D. Scaling of biexciton binding energies in CNT's

The slope with respect to radius of the biexciton bind-
ing energy in effective units is important as it determines
properties of the energy spectrum that may be helpful in
identifying the biexciton formation. For excitonic complexes
in CNTs the Kataura modulation in the energy spectrum
arises solely from the effective units Ry* = 13.6 eV 1/e* and
ap =0.529 Ae /u through the effective masses. In fact, one
gets a very pronounced Kataura plot if the biexciton binding
energy were constant Ep = ¢( as a function of the radius in
effective Bohr radii aj. In this case the biexciton binding
energy becomes proportional to the reduced electron-hole
mass 1, which exhibit this pattern.'®>3 For Eg = ¢, r"(in Ry*)
one finds that Ep (in €V) is proportional to ,u"“. If, however,
the energy is well described by c_;/r it is evident that the
Kataura structure vanishes as

Epr) = =L [Ry'] = S8 Ry*)
P Y T ALY
_coag o, _ c-1
= Al Ry*[eV] = 7.19 Aevgr[A] [eV],

becomes independent of 1. This was already noted in Ref. 16.
Here square brackets have been used to indicate the units
used. In our case Ep xr~! for r € [0.05a%,0.15a%] and
c—; was found to be c_; ~ 0.178Ry* aj giving Ep(r,e) ~
1280 meV A/(re). Thus as a result one would expect that
the actual CNT biexciton binding energies, to a large extent,
only depend on the CNT radius and not on the chiral index.
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FIG. 5. (Color online) Biexciton binding energy in CNTs cal-
culated using the fractional dimensional model (red squares). The
results were obtained by estimating the effective CNT radius for
the individual CNTs using a nearest-neighbor tight-binding model.
The radius was converted into an effective dimension through Eq. (9)
from which the biexciton binding energy was found using Eq. (8).
Finally the energy was converted into physical units using the
definition of the effective Rydberg. The solid line is a fit of found
energies. It is seen that the CNT binding energy within this model
follows roughly the relation E(r) = 375 meV A/r.

Moreover, the scaling of the biexciton binding energy in terms
of the dielectric constant also simplifies as the binding energy
becomes proportional to e~

We calculated the actual CNT binding energy for a wide
range of CNTs as explained in Sec. IV B using ¢ = 3.4. The
results are shown in Fig. 5. In comparison with the results in
Ref. 19 the Kataura effect is much more subtle in the present
calculations as was also expected from the previous discussion.
Consequently the energies are well described by the simple
relation Ez(r) ~ 375 meV A/r, which is in good agreement
with what was found in Ref. 16, but in contrast to the r~%¢
dependence found in Ref. 21. We also found the actual binding
energies to be twice the magnitude of those in Refs. 16 and 21,
while only slightly higher than those reported in Ref. 19.

In Ref. 54 the exciton binding energy was found to scale
as ¢ 1'% with the dielectric constant and the trion binding
energy has been found to scale as ¢~!° in Ref. 20. As
discussed earlier we here find that the biexciton binding energy
scales as e~!, which is in good agreement with a recent
calculation that include some many-body effects but excludes
the screening of interaction.*” It is worth noting, however, that
the present model produces energies of the same magnitude as
other phenomenological models,*” meaning that (1) the results
presented here are likely to be an overestimate of what will be
found experimentally, and (2) that the present work does not
account the screening of the interaction and thus we find no
saturation of the binding energy as a function of the dielectric
constant, in contrast to the what was found in Ref. 47 for the
calculation including screening effects.
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V. SUMMARY

In this paper we have shown how to apply VQMC to
estimate the biexciton binding energy in fractional dimensional
semiconductor structures. We have demonstrated the applica-
bility of the method by calculating the binding energy of the
H; molecule in two and three dimensions as well as estimating
the binding energy of biexcitons in CNTs. In both cases we
have found a reasonable agreement with other theoretical

PHYSICAL REVIEW B 85, 045412 (2012)

work. For CNTs we have established a relation between the
fractional dimension and the tube radius, and we have found
that the biexciton binding energy is inversely proportional to
the radius and the dielectric constant. Consequently we predict
that the Kataura modulation of the biexciton binding energy
is less pronounced than what was found by Kammerlander
et al.'” Finally we find the biexciton binding energy in CNTs
scales accurately as Eg(r,e) = 1280 meV A/(re) within the
fractional dimensional model.
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