PHYSICAL REVIEW A 86, 022101 (2012)

Scattering of a Dirac electron on a mass barrier
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The interaction of a wave packet (and in particular the wave front) with a mass barrier is investigated in one
dimension. We discuss the main features of the wave packet that are inherent to two-dimensional wave packets,
such as compression during reflection, penetration in the case when the energy is lower than the height of the
barrier, waving tails, precursors, and the retardation of the reflected and penetrated wave packets. These features
depend on the wave-packet envelope function which we demonstrate by considering the case of a rectangular
wave packet with sharp front and trailing edges and a smooth Gaussian wave packet. The method of Fourier

integral for obtaining the nonstationary solutions is used.
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I. INTRODUCTION

Progress in nanotechnology has triggered a broad interest
in low dimensional physics. The separation of graphene by
mechanical exfoliation in 2004 [1,2] opened a broad range
of activity for theoretical and experimental researchers. The
interest rose due to the peculiar properties of graphene such
as ultrarelativistic behavior of charge carriers with a Fermi
velocity 300 times smaller than the velocity of light, the linear
spectrum close to K and K’ points in the momentum plane that
can be described by the massless Dirac-Weyl equation [1,3],
an unconventional quantum Hall effect [4], and the perfect
transmission through arbitrarily high and wide barriers, the
so-called Klein tunneling [5].

The energy levels or the spectrum of the electron system
typically investigated as being the main characteristics of
quantum nanostructures (such as quantum dots) are found by
considering the stationary Schrodinger equation [6]. Recently,
a scientific interest has shifted to the investigation of quantum
dynamics including quasibound states [7], electron beams,
wave packets, and their control by means of barriers and other
nonhomogeneous structures [8—10]. Unfortunately, due to the
above-mentioned Klein effect and the gapless spectrum the
control of electrons in graphene by means of electric fields
is inefficient. Therefore, the search for other possibilities to
control electrons in graphene becomes of interest. Recently,
the creation of a gap in the electron spectrum [11] as well
as the control of the valley isospin [12,13] was predicted by
introducing a mass term into the Dirac-Weyl Hamiltonian.
This possibility was experimentally demonstrated by the
proper arrangement of dopants in the graphene sheet [14]
or by inducing electron-electron interactions [15]. Therefore,
the investigation of the nonstationary solutions of the Dirac
equation describing the interaction of electrons with mass
barriers becomes timely. Such sophisticated systems and
problems are a challenge for numerical simulation. But in
order to obtain a physical understanding of the behavior of
such systems it is very helpful to invent and analyze simple
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models that are able to demonstrate the main physical features
of interest.

The purpose of the present work is to demonstrate the
mean properties of wave packets, such as their reflection
and penetration into mass steps and barriers, the appearance
of precursors, the formation of evanescent waves, and the
Zitterbewegung, using very simple analytically solvable one-
dimensional (1D) models. Comparing the results obtained
for a rectangular wave packet with the ones having a rather
soft Gaussian shaped wave packet we demonstrate that their
propagation depends on the shape of the wave packet. In
our analysis we pay special attention to the appearance
of so-called precursors that were predicted by Sommerfeld
nearly 100 years ago for electromagnetic waves traveling
in a dispersive media [16]. We also focus on the waving
after-effects that can be related to the Zitterbewegung that was
predicted by Schrodinger for relativistic electrons [17] and
which we predict should be observable in graphene [18]. The
results were obtained applying the Fourier integral technique
for solving the nonstationary Dirac equation and analyzing the
solution by means of integration in the complex wave-vector
plane.

The paper is organized as follows. In Sec. II we introduce
the problem and the method of its solution considering the
reflection of the Dirac wave packet from a hard wall. In Sec. I1I
results for scattering of a plane-wave type wave function by
the mass barrier are discussed, which enables us to present
the nonstationary solutions for the reflected front in the form
of a complex integral in Sec. IV. The penetration of the front
of the wave packet into the barrier is considered in Sec. V,
and in Sec. VI the scattering of the rectangular wave packet
is studied. Section VII is devoted to the description of the
scattering of a Gaussian wave packet. Our conclusions are
presented in Sec. VIII.

II. REFLECTION OF A WAVE PACKET FROM
A HARD WALL

We consider the motion of a 1D wave packet that is
described by the following Dirac-Weyl equation:

ii\ll(x,t) = —iaxilll(x,t) + O(x)o, V(x,t), (D)
dt 0x
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where o, and o, are the Pauli matrices and the symbol ®(x)
stands for the Heaviside step function whose value is zero for
negative argument and unity for the positive one. The last term
will be referred to as the mass term, that leads to a gap in the
electron spectrum close to the K and K’ points.

In order to simplify the notations in the above equation, the
results are presented in dimensionless notations based on the
height of the mass barrier V. So, the energy is measured in
V units, the time is measured in 72/ V units, and the unit of
length is hvg/V, where the symbol vy stands for the Fermi
velocity. For the sake of illustration we took V = 53 meV,
what is achieved by depositing the single graphene layer on a
boron nitride substrate [19]. Then the time unit is a hundredth
of a ps, and the unit of length is about 10 nm.

Presenting the wave function as a two component spinor

W) = (ﬁgjg) @

we have to solve the following set of two differential equations
for the wave-function components:

u; = —v, —10(x)u, (3a)
v, = —uy +10(x)v. (3b)

Apart from the wave-function components themselves the
wave packet can be characterized by the local density

p(x.1) = lux,0)* + [v(x,0f, (4)
the local current
Jj(x,t) = 2Re [u*(x,t)v(x,1)], 5)

and some averaged values: the number of particles in the wave
packet (the norm of the wave function)

N(t):/ dxp(x,t), (6)

o0

the mean position

X)) =N / ” dxxp(x,t), (7)

the mean velocity

V(t)y=N"'@) / h dxj(x,t), (8)

and the width of the wave packet
o0
w(t) = N~'(1) / dx [x — X(OF p(x.1). ©9)
—00

In order to introduce the necessary definitions and illustrate
the method of solving the time dependent Dirac equation
we start with the most simple problem: the reflection of the
wave packet from a hard wall. This means that Eq. (3) without
the last term (i.e., the massless Dirac equation) will be solved
in the negative part of the x axis (—oo < x < 0) and the hard
wall will be taken into account by the boundary condition

u(0,£) + iv(0,£) = 0 (10)

which was derived and discussed in Ref. [13].
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This solution can be easily composed of two (incident and
reflected) freely propagating wave packets. The incident wave
packet moving to the right side can be presented as

W) = % (})ew—w@(: —0. o an

that satisfies the above massless equation with any envelope
function ®(x). In order to satisfy the boundary condition
Eq. (10) at any time ¢ we have to add the reflected wave
packet

a1 —igaen
w (x,t)_ﬁ(_1>e d(r+x), (12

that propagates to the left.
The most interesting feature of the wave function con-
structed in such a way as

W(x,1) = W, + U (x,p), (13)

and describing the Dirac electron reflection from the hard wall
is the absence of the interference of the incident and reflected
wave packets. Indeed, denoting

fr =100 F x), (14)
we present the density as

p(x,t) = |fy —if-I>+ | fr +if-|?
= fi P+ )P = 101 — )P + D¢ +)F (15)

and the current as

Je.t) =Re{(fT +if)(fr +ifo)}
=Re{|fT]* — | f > +2iRe(f} f-)}
=|fTP=1f 1P =100t —x)* — | +x)*. (16)

Thus, the density and current are expressed just through the
corresponding individual values of the incident and reflected
wave packets without any interference terms.

In order to trace how the reflection depends on the form of
the envelope function we consider in detail two extreme shapes
of wave packets: a wave packet with a rectangular envelope as
an example of a wave packet with abrupt edges and a rather
soft Gaussian one.

We choose the following envelope for the rectangular wave
packet:

Cb( _l 2 42
x) = ~0@ /4~ x). (17)

Inserting this into Egs. (7)—(9) we obtain the following mean
values:

2 4t2 2 2
Xy = o (- L) o (C_2). (189
da 4

vy = —Leo(r- )Xo (% _p
T 4 a 4 ’

a? 412 — g2 2 a? 2
HN=——(——) o— -},
Wi =1 ( 4a ) <4 )

characterizing the reflection of the rectangular wave packet
from the hard wall. They are shown in Fig. 1(a). We would
like to draw the reader’s attention to the following features

(18b)

(18¢)

022101-2



SCATTERING OF A DIRAC ELECTRON ON A MASS BARRIER

(a)
16w/a*

-4 1
-4 -2

0
tA20

FIG. 1. (Color online) Evolution of mean values for the Dirac
wave packet in time: the mean coordinate of the wave packet (green
dashed curve), the mean velocity (blue dotted curve), and the width
(red solid curve). (a) Rectangular wave packet with envelope Eq. (17)
and (b) the Gaussian one with envelope Eq. (19).

of this simple example of reflection: (1) the wave packet is
reflected before it reaches the wall, (2) it is compressed during
the reflection, and (3) its dimensions are restored after the
reflection. This behavior can be compared with the one of a
rubber ball hitting a hard wall: due to its finite extension the
ball changes the direction of motion before its center reaches
the wall and it is squeezed during the collision.

In the case of a Gaussian wave packet the following
envelope function was chosen:

igx

—x%/40
@ro)iii , (19)

P(x) =

where the parameter o characterizes the width of the wave
packet and plays the same role as the parameter a in the
previous case of a rectangular wave packet. Now inserting
this expression into Eqgs. (11)—(13) and then into Eqs. (7)—(9)
we obtain the following averaged values:

X(1) = —‘/2?05”/2” — terf(1/v/20), (20a)
V(t) = —erf(t/v/20),

2
w(t) =0 41> — [,/%ﬁe"zﬂ” — terf(t/x/%):| ., (20c)

(20b)
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where the symbol erf stands for the error function. These
dependencies are shown in Fig. 1(b). Comparing Figs. 1(a)
and 1(b) we see that qualitatively they are the same, and
consequently the reflection of the Dirac wave packet from
the infinite wall is not sensitive to the form of the envelope
function. This nonsensitivity is quite expected because the
dispersionless propagation of the wave packet described
by Eq. (1) without the mass term is not spoiled by the
dispersionless boundary condition Eq. (10).

III. MASS BARRIER OF A FINITE HEIGHT

Now we consider our main problem: the interaction of a
wave packet with a mass barrier of finite height. This problem
is much more complicated than the previous one because now
the wave packet spends some time inside the barrier region
which is a dispersive medium, and as a consequence the wave
packet will not conserve its shape.

As the Dirac equation is linear with coordinate independent
coefficients a natural way to solve the problem is by using
Fourier transformation. Thus, we choose the initial condition
(say the position of the wave packet at time ¢ = 0), expand it
into Fourier series (here integral over momentum k), and then
change the exponent in the integrand by the function that obeys
the time dependent Dirac equation in both regions (the barrier
and free motion region) and is consistent with the boundary
conditions at the point x = 0. For this purpose we recap briefly
the main results for scattering of a plane-wave (exponent) type
wave function.

We assume that in the region of free motion (—oo < x < 0)
there are incident and reflected waves with energy ¢ = k, and
here the total wave function reads

\Il(free)(x,t) — \I’(in)(x,l) + \Il(rﬂ)(x,t)

— \/LE {(})eikx +R (_11>€ikx}€ikt. (21)

In the barrier region (0 < x < 00) there is only an outgoing
wave moving to the right with the same energy k and

momentum x = +/k* — 1. We present its wave function as

T (VAT e
(tr) - ikx ,—ikt
WO (x 1) = T (m)e ekt (22)

Now equating both wave-function components at the point
x = 0 we obtain the following wave reflection and penetration
amplitudes:

Rk) =k —«,
T(k) = Vk(Vk+1 -k —1).

Equations (21) and (22) together with definitions Eq. (23)
enable us to present the time dependent wave function of any
wave packet in the form of the integral along some contour in
the complex k plane.

(23a)
(23b)

IV. REFLECTION OF A STEEP FRONT

First we consider the motion of the wave packet with the
rectangular envelope function. Fortunately, due to the linearity
of the Dirac equation this problem can be decomposed into
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the motion of two fronts corresponding to the leading and
trailing edges of this wave packet. That is why we start with
the reflection of a steep front from the mass barrier and choose
the initial incident wave packet as

. 1 /1\ .
Y(x,0) = — ( >e“”®(—x). 24)
V2 \1

It coincides with the freely propagating front where the
leading edge has reached the barrier. This function can be
presented by the following Fourier integral:

(inc) :L 1 L OO ikx
wino)(y () (1) dke™ k), (25)

where

0 ) 1
— li(g—k)+alx _
f k) /_oo dxe G—bta (26)
Here the symbol « stands for the regularization parameter—a
small positive value that will be set to zero at the end of the
calculation.

Now according to our strategy we replace the exponent
exp(ikx) in the integrand of the Fourier integral (25) by the
solution of the time dependent Dirac equations (21) and (22)
describing the reflection and penetration into the barrier of this
exponent type wave function. The wave function of the wave
packet obtained in this way consists of three parts. Two of
them are defined in the free motion region (—oo < x < 0) and
describe the incident front

Wiy ) = 1 (1 1/‘ dketx=0 27
HU= V2\1)2Jck—q+ia

and the reflected one

1 1 [ e ke — o)dk
W () = - 1 _/' e ( .K) .28
ﬁ —1 2 c k — q +ix

The third part of the wave function is defined in the region
0 < x < oo and describes the front that penetrates the barrier:

1 eGR4+ 1 —k
(tr) _
WO(x ) = —szc—k_q — (K_k 1). (29)

Equation (27) is trivial because its integrand has just a
single singular point in the lower part of the complex k plane,
namely, the pole at the point k = ¢ — i«. Thus, choosing the
integration contour C by passing that point from above and
enclosing it by the upper or lower semicircle (depending on
the sign of the parameter x — ¢ in the exponent) we calculate
the residue at this pole and obtain the following wave function
of the incident front:

in 1 1 igx—t
W (x, 1) = G (1) Ot — x)e'1™ ™, (30)
that describes the motion of this front with a constant velocity
equal to unity due to the absence of dispersion in the free
motion region.

The two other integrals Egs. (28) and (29) are more
complicated because of the radicals ¥k = +/k2 — 1 in their
integrands leading to branching points at kx = £1 in the
complex k plane. Consequently, we have to make a cut in
this plane and choose the position of the integration contour
accordingly. How this is done by taking the causality principle
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FIG. 2. (Color online) The complex k plane, pole, cut, and
contour for the integration in Egs. (28) and (29): (a) initial contour,
(b) transformation of the contour in the case ¢ > 1, and (c)
transformation of the contour in the case ¢ < 1.

into account is shown in Fig. 2(a). The choice of the Riemann
sheet is defined by the requirement Im« > 0 in the upper half
plane, and this is determined by the fact that at large momentum
k (positive or negative) the value of x should approximately
coincide with the value of k. The choice of the integration
contour C laying above both singularities (pole and cut) is
in agreement with the requirement that the integral Eq. (28)
should be zero in the case of x < —¢ as the reflected front
cannot move faster than with unit velocity.

In the case of x > —t the argument of the exponent has
the opposite sign and that is why the contour can be enclosed
by the lower semicircle and transformed into two contours
encircling the singularities as is shown in Figs. 2(b) and 2(c),
corresponding to the contributions of pole and cut.

The pole contribution is calculated by means of the residue
technique and it gives

q>§(ﬂ>e(x,t) =0O(x + t)R(q)eiq()‘th)% (_11> . (3D
It coincides with the result presented in Sec. III for scattering
of a plane wave. The single difference is that now the exponent
has a steep leading edge.
The calculation of the cut contribution is more complicated.
It cannot be calculated analytically, and a numerical evaluation
of the integral is necessary. This integral depends essentially
on the energy ¢ = ¢ of the incident front, namely, whether it
is larger or smaller than the height of the barrier.

A. Above the barrier reflection (¢ > 1)

For g > 1 the contours Cy and Cp are separated horizon-
tally [see Fig. 2(b)] and the pole of the integrand does not
complicate the calculation of the cut contribution along the
contour Cp. That is why we transformed this contribution
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FIG. 3. (Color online) The wave function of the reflected front as
a function of the variable & = x + ¢: the real part of the component
u = —v (blue dashed curve), the imaginary part of it (green dotted
curve), the local density (red thick solid curve), and the same local
density with only the pole contribution included (black thin solid
curve). (a) Above the barrier reflection with energy g = 2. (b) Below
the barrier reflection with ¢ = 0.6.

into two real integrals that depend on the single argument
E=x+1t,

Ol (.1
. 2 1 V1-k2 .
= ®G/E) = —— /0 k7 {4 cos(ke) +i sinké)).

(32)

and integrated this numerically.

A typical result is shown in Fig. 3(a). There are two points
worth mentioning. First, at the beginning of the front there is
some overshoot of the wave-function modulus squared (the
local density) as compared with the one when only the pole
contribution is taken into account (as was already mentioned
the pole contribution coincides with the result of plane-wave
scattering). Second, the above-mentioned local density tends
to the pole contribution with increasing £ = x + ¢ (when we
are going away from the leading edge of the front) but notice
that some oscillations are still present. Following [10] the
overshoot can be explained as follows. According to Fourier
transform Eq. (27) the incident front can be considered as a
superposition of numerous plane waves with energies larger
and smaller than the height of the barrier whose interaction
with the barrier can be examined independently due to above-
mentioned linearity of the problem. In spite of the fact that
the mean energy of the front g is larger than the height of
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the barrier, the plane waves in the above superposition with
energy less than the barrier height are completely reflected
and this reflection results in the above-mentioned overshoot.
Next, we see the oscillating after-effect in the local density
of the reflected front [see the thick red curve in Fig. 3(a)]
that slowly tends to the pole contribution with increasing of &
shown by the thin black steplike curve. Comparing definitions
(4) and (5) and having in mind that both reflected wave
components differ only by sign (v = —u) we conclude that
the same oscillations are present in the current density as well.
This after-effect is closely related to the Zitterbewegung [9].
Usually this trembling motion of the electron is explained by
means of interference between positive- and negative-energy
relativistic wave-function components. The interference itself
is not sufficient and some additional perturbation is necessary.
In our case this is the dispersive mass barrier that mixes the
eigenfunctions of the free-electron motion. Compare with the
reflection from the infinite barrier described in Sec. I where
these components were not mixed.

B. Below the barrier reflection (¢ < 1)

If the front energy is lower than the height of the barrier
some problem with the cut contribution appears because
the pole is located exactly in the interval —1 < x < 1 and
interferes with the integration contour Cp that is shown in
Fig. 2(b). Therefore, we changed the cut and transformed
the above integration contour into the Cp as shown in
Fig. 2(c). The pole contribution gives the same result as
in Eq. (31). Calculating the cut contribution as the integral
along the Cp contour we changed the integration variable
k = expli(w + ¢)] in Eq. (28), presented this integral as

/2
P () = —? / dg./cos ge™F
0
oiG0/2=Esing)  ,—i(3¢/2—Esing)
x |: q+iet? q+ie ¢
and calculated this integral numerically. A typical result is
shown in Fig. 3(b).

Comparing the curves in both Figs. 3(a) and 3(b) we note
some differences. In the case of the below barrier reflection
instead of an overshoot in the red thick solid curve that
corresponds to the leading edge we see some diminishing
of the electron density. This can be explained by the same
superposition of many Fourier harmonics as in the previous
above the barrier reflection case. Among them there are
harmonics with energy larger than the barrier height. They
do not reflect but penetrate the barrier that finally causes the
above-mentioned lack of density at the reflected front.

} . (33)

V. PENETRATION INTO THE BARRIER

The calculation of the front part that penetrates the barrier
is similar to the calculation of the reflected one presented in
the previous sections. The only difference is that the integral
Eq. (28) now is replaced by the integral Eq. (29). It leads to
the different wave-function components that depend on both
(x and r) arguments.

Calculating the integral Eq. (29) along the same contours
in the complex k plane shown in Figs. 2(a) and 2(b) we divide
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(a)1.5

0.5

FIG. 4. (Color online) The local density [Eq. (4), solid curves]
and current [Eq. (5), dotted curves] in the front that penetrate the
barrier for different time ¢ values. The thin vertical lines indicate the
motion with the group velocity x = vgt. (a) Above barrier reflection
with ¢ = 1.5. (b) Below barrier reflection with g = 0.6.

this contribution into two parts. As in the case of reflection the
pole contribution is trivial:

lljl()gl)e(x’t) _ ®(t :/%T(Q) (\/\/ZII i_ })ei)(«/qz_—le—ikt. (34)

It represents the result obtained by the scattering of plane
waves truncated at the point x = ¢ due to the finite velocity of
the front.

The contribution of the cut was calculated using the
formulas analogous to Egs. (32) and (33) depending on
whether the energy of the front is larger or smaller than the
height of the barrier.

A. Above the barrier penetration (g > 1)

A typical result for the penetration of the front into the
barrier with energy larger than the height of the barrier is
shown in Fig. 4(a). The local density and current are shown
as functions of the coordinate x in the case of different time
¢t values. As was already pointed out the barrier acts as a
dispersive medium. That is why the form of the front is
not conserved, and the local density (actually the modulus
of the wave function squared) and the current demonstrate
a rather sophisticated behavior. Three important points are
worth mentioning. First, the leading edge of the front is
transformed into a sharp peak that moves with unit velocity
inherent to the front in the dispersionless free motion region
(x < 0). In the case of electromagnetic pulses it is known as

PHYSICAL REVIEW A 86, 022101 (2012)

a precursor [16]. The physical explanation of its appearance
is as follows. The theory of dispersion in the classical [20]
and quantum [21] version, and the mechanical analogy of the
Klein-Gordon equation [22] as well, implies that the medium in
which the waves propagate has its own degrees of freedom that
actually causes the dispersion of waves in a stationary regime.
This stationary regime corresponds to the excited state of the
medium and, consequently, needs some time to be established.
That is why the first piece of the front (the precursor itself)
moves through the unexcited medium and does not undergo
any dispersion. Speaking figuratively one can imagine that
the precursor prepares the media for the propagation of the
main part of the pulse or front. In an analogous way one
may consider the mass barrier region as a medium with inner
degrees of freedom whose quantum analog is the difference
of the ground-state energies of the two sublattices when we
consider the graphene in the tight-binding approximation.
Consequently, the precursor has to be present in our Dirac
electron case.

Second, as seen in Fig. 4(a) the main part of the front is
retarded with respect to the above precursor. It carries the
energy of the front, which is the reason why it moves with
the group velocity vy = de/dq = \/q?> — 1/q. In the case of
g = 1.5 we have v, ~ 0.75, which is indicated by thin vertical
lines in Fig. 4(a).

And at last the third point is that in spite of the homogeneous
barrier region we see the waving behavior far from the leading
edge of the local density and current that are related to the
above-mentioned Zitterbewegung and which is much more
pronounced in the penetrated front.

B. Below the barrier penetration (¢ < 1)

A typical result is shown in Fig. 4(b) for the case of below
barrier penetration when the front energy is lower than the
height of the barrier.

Here again we see the precursor moving with unit velocity
that makes the below the barrier reflection analogous to the
above the barrier one. But now instead of preparing the barrier
for the wave propagation this precursor constructs step by step
the evanescent wave that is inherent to the under the barrier
reflection of plane waves. This process needs some resources.
That is why the precursor loses its intensity (becomes narrower
during its motion) in contrast to the penetration with the energy
larger than the height of the barrier where such losses are not
noticeable [compare the precursors in Figs. 4(a) and 4(b)]. The
oscillatory behavior of the penetrated fronts are also seen in
the local density and current. This is in agreement with the fact
that the mass barrier is a dispersive medium.

VI. PENETRATION OF THE RECTANGULAR WAVE
PACKET INTO THE MASS BARRIER

The reflection and penetration of the steep fronts considered
in the previous sections enable us to construct the result for
the rectangular wave-packet reflection by the mass barrier. The
result is obtained as the superposition of two fronts with the
proper shift A and amplitudes chosen. The most interesting
case is the below the barrier reflection that is shown in Fig. 5
in the case of g = 0.9. The reflected wave packet is shown
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FIG. 5. (Color online) (a) Reflected rectangular wave packet with
shift A = 5 between the opposite fronts as a function of § = x + ¢:
the real (blue dashed curve) and imaginary (green dotted curve) wave-
function components and the local density (red solid curve); black
dashed rectangular shows the wave packet reflected by a hard wall.
(b) Local density (solid curves) and current (dotted curves) for the
penetrated part of the wave packet, at a given time.

in Fig. 5(a). It depends on the argument £ = x + ¢ as in the
case of the front considered in the previous sections. The part
of the wave packet that penetrates the barrier is a function
of both x and ¢ arguments. The local density is shown as a
function of x in Fig. 5(b) for given time ¢ = 7 (red solid curve)
together with the current (blue dashed curve). Here we see
two precursors. One of them constructs the evanescent wave,
introducing some charge into the barrier, and later the other
one destroys it, extracting that charge out of the barrier region.
The part of that evanescent wave is clearly seen between those
precursors. It is interesting to establish whether all charge is
extracted or some of it is left in the barrier and continues its
motion towards +oo0.

The easiest way to clear this point up is to compare the
density in the reflected wave packet [the red solid curve in
Fig. 5(a)] with the black dashed curve in the same figure
that represents the wave packet reflected by the hard wall.
It is evident that the area below the red solid curve is smaller
than the one below the black dashed curve. This means that
the number of particles reflected by the finite mass barrier
is smaller than this amount in the incident wave packet;
consequently, some amount of the wave packet penetrates the
barrier and moves there towards +oc in spite of the fact that its
mean energy is smaller than the height of the barrier (¢ < 1).
This fact is even better seen in Fig. 6 where the total number
of particles in the reflected wave packet is shown as a function
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FIG. 6. (Color online) The number of particles in the reflected
wave packet as a function of time for different g values in the case
when this number for incident wave packet is Ny = 5.

of time. Notice that N is smaller than Ny = 5 (the number of
particles in the incident wave packet) in the asymptotic region
(for large time ¢), indicating explicitly that the closer ¢ is to
unity the larger the amount of the wave packet that penetrates
the barrier.

In Fig. 5(a) we see one more interesting feature. It is a
long waving tail that appears due to the above-mentioned
degrees of freedom of the barrier. They are excited by the
incident wave packet and then radiate the energy even after
the incident wave packet disappears. It is remarkable that
mathematically this tail follows from the contribution of the
cut to the reflected wave function Eq. (33). In the case of large
& values (which corresponds to the large time ¢ asymptotic)
the contribution to the integral is given by the contour edges
and leads to the standard power type 1/£ (nonexponential)
behavior, that appears in many systems characterized by a
continuous spectrum, which for example were discovered in
hydrodynamics [23].

VII. REFLECTION AND PENETRATION OF THE
GAUSSIAN WAVE PACKET INTO THE MASS
BARRIER

Now let us consider the opposite case: the penetration into
the mass barrier of a wave packet with a rather soft envelope.
We consider the Gaussian wave packet replacing the initial
condition Eq. (24) by the following one:

(inc) 1 1 igx e—x2/2(7

Applying the same scheme as in Sec. IV we present the above
wave function as the Fourier integral (25) with the following
Fourier transform:

k) = (o) /4eoakr/2, (36)

Inserting this Fourier transform into Eq. (25) and replacing
the exponent exp(ikx) by the exponential solution of time
dependent Dirac equations (21) and (22) as we did before
we obtain the integral representation of the incident Gaussian
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wave packet in the free motion region —oo < x < 0,

1/4 A
2‘;3/4 (i)/;dke—a(q—k)z/}i—zk(x—z)’ 37)

its reflected part in the same region,
W (x 1)
o /4 1 B} o
_ —o(q—k)*/2—ik(x+t)
and the one penetrated into the barrier (0 < x < 00),
W, 1)

1/4
= i dke  RUX 1+ R(k) o0 @—k)* /2+ik(x—1)
273/% J e 1 — R(k)

Wi (x, 1) =

(39)

The calculation of these three integrals differs, however,
from the calculation of the previous ones in the case of the
steep front or rectangular wave packet. The matter is that due
to the exponent with momentum k squared the integrand has
a more sophisticated singularity at infinity. That is why the
integration contour cannot be shifted to co, the method applied
previously fails, and we have to look for other possibilities
to consider those integrals. We demonstrate the method of
calculation in the case of the most simple integral Eq. (37)
for the incoming wave packet. Analyzing the argument of the
single integrand exponent we see that the complex k plane
can be divided into four sectors as shown in Fig. 7(a). In two
of them, shown by green shadowing, the exponent increase
for |k| — oo. Consequently, the integration contour C has to
avoid these two sectors and must be located completely in the
two other white sectors. It is evident that going from —oo to
oo this integration contour has to cross the saddle point & that
is obtained by equating the derivative of the argument of the

FIG. 7. (Color online) (a) Forbidden sectors in the complex k
plane and the integration contour for the calculation of the integrals
Egs. (37)—(39). (b) Transformation of the integration contour in the
case x < t.
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exponent to zero,

%[a(k —q)°/2 — ik(x = D]lt=ty = ko —q — i(x —1) =0,
(40)

and
ko=q +i(x —1). 41

The value of the integral can be easily estimated by the
saddle-point method. We used the numerical integration over
the contour Cy shown in Fig. 7(b) by the horizontal red
solid line. By the way the integral Eq. (37) can be calculated
analytically and it reads

U (1N sy e 00
_ iq(x—
d(x,t) = 7 <1> e ro) (42)

which corresponds to the initial condition Eq. (35) that moves
with unit velocity to the right, conserving its form, as it should
be in the dispersionless free motion region (—oo < x < 0).
Thus in the case of the Gaussian wave packet the saddle-point
contribution to the integrals is the analog of the contribution
of the pole in the case of a rectangular wave packet (or in the
pure exponent case).

Integrals (38) and (39) are more complicated due to the
radical in the function R(k) in the integrands. Because of these
radicals there are branching points, and we have to make the
cut in the complex k plane connecting them as is shown in
Fig. 7(b). Calculating these integrals it is important to check the
relative position of the cut and the saddle point that according
to Eq. (41) depends on the sign of (x — ¢). So, if x > ¢ the
horizontal contour C crossing the saddle point lays above the
cut, and consequently only that contribution has to be taken
into account. In the case of x < ¢ as we see in Fig. 7(b) the
contour Cy is located below the cut. In this case the contribution
of the cut (namely, the integration over the contour Cp) has
to be added. In the case of integrals Eqgs. (38) and (39) we
performed the integration numerically taking into account the
above-mentioned features of the contours.

A typical result for the above barrier reflection of
the Gaussian wave packet is shown in Fig. 8. In Fig. 8(a)
the reflected wave packet is shown. We see that it differs
from the one of the rectangular wave packet or front [see
for comparison Figs. 3 and 5(a)]. There is no overshoot or
lack of intensity at the edges, and the reflected wave packet
conserves more or less its Gaussian form. The matter is that
the Gaussian wave packet actually has no leading and trailing
edges. The increase (or decrease) of intensity in the Gaussian
wave packet is slow, the barrier manages to adjust itself
for reflection, and the sophisticated features that we met in
the case of rectangular wave-packet reflection are not present.
The single reminder of the previously considered reflection
of the rectangular wave packet is the small asymmetry of the
reflected Gaussian wave packet, some retardation of it as com-
pared with the reflection of the Gaussian wave packet by the
hard wall (shown by the thin dashed black curve), and the long
waving tail after the reflected wave packet. The wave packet
that penetrates the barrier is shown in Fig. 8(b). This differs
qualitatively from the rectangular wave-packet case. There are
no precursors, and the form of the penetrated wave packet is
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FIG. 8. (Color online) Above the barrier reflection of the Gaus-
sian wave packet: the blue dashed and green dotted curves — the
real and imaginary part of wave-function component u (for reflected
wave packet it coincides with the component —v), and the red solid
curve — the density. (a) — reflected wave packet as a function of
& = x +t, the thin dashed black curve — the density of the incident
wave packet when it is reflected from the hard wall as in Sec. II.
(b) — The wave packet that penetrates the barrier, the thin dashed
black curve — the density of the incident wave packet propagating in
the absence of the barrier.

rather close to a Gaussian. It is remarkable that this form is
more or less the same even in the case of below the barrier
reflection (¢ < 1) as seen in Fig. 9(a), only the amplitude is
smaller and the width larger what is caused by the dispersion
of the barrier medium. We see no precursors and no formation
of an evanescent wave. So, in the case of the below the barrier
reflection the penetrated wave packet exhibits qualitatively the
same Gaussian form with small asymmetry and this packet
is essentially retarded as compared with the motion of the
wave packet in the absence of the barrier (shown by the thin
dashed black curve) and a rather large spreading that, as it
was already mentioned, appears due to the wave dispersion
in the barrier. To our mind the retardation of the penetrated
wave packet apparently illustrates the problem of the time
interval that the wave packet spends in the barrier that was
intensively discussed 15 to 20 years ago (see the discussion in
Ref. [24]).

In the case of the below the barrier penetration the part of
the Gaussian wave packet continues its motion in the barrier
towards 400 as it was in the rectangular wave-packet case,
which is clearly seen in Fig. 9(b) where the total number of
particles in the barrier is shown as a function of time ¢. This
is clearly demonstrated by the nonzero asymptotic of these
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FIG. 9. (Color online) (a) — the same as in 8(b) but for the below
the barrier reflection case; (b) — the total number of particles in the
barrier (6).

values at large ¢ explicitly indicate that. These values increase
when the energy g approaches the top of the barrier being
essentially larger for short wave packets.

VIII. CONCLUSIONS

We considered a simple 1D model of wave-packet reflection
and penetration into a mass barrier. Interesting behavior was
already found when considering reflection off a hard wall
which is due to the fact that the wave packet is not a point
particle. For example we found already reflection before the
wave packet reached the wall, there was a compression of
the wave packet during reflection, and the width of the wave
packet was restored after reflection.

The dependence on the wave-packet shape was discussed
by considering two limiting shapes, namely, the rectangular
wave packet with sharp leading and trailing edges and the
Gaussian wave packet which has a rather soft form.

The most crucial differences of the wave-pack reflection
and penetration into the mass barrier with those calculated
for standard scattering of exponents were revealed in the
case of the rectangular wave packet. Here the dispersion of
the electron wave in the barrier showed itself to the full extent.
We found different structures moving with different velocities.
The leading edge of the front moves with velocity equal to
unity because it moves through the unprepared dispersive
medium of the barrier. Meanwhile the main piece of the wave
packet (or front) moves, however, with the group velocity,
which is the reason why it is retarded.
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At the leading edge of the reflected front we see some
overshoot or failure of some intensity due to the fact that
the front itself is a superposition of many exponents that are
reflected with different probabilities. In the case of a soft
Gaussian wave packet the features of reflection and penetration
are quite different. The main difference is the absence of the
precursors. The matter is that the soft leading edge of the wave
packet prepares the medium of the dispersive barrier gradually,
and there is no possibility for the precursor (moving in the
unprepared media) to appear. Nevertheless some rudiments of
the above features can still be revealed. That is the distortion of
the wave-pack form, making its leading edge sharper and the
trailing edge more prolonged. Next, we see some retardation

PHYSICAL REVIEW A 86, 022101 (2012)

of the reflected and penetrated wave packet as compared with
the motion in the absence of the barrier.

We also demonstrated that for the Gaussian wave packet in
the case when the mean wave-pack energy is lower than the
height of the barrier part of the wave packet penetrates into
the barrier and moves along it, more or less conserving its
shape.
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