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Effective spin-orbit interaction Hamiltonian for quasi-one-dimensional quantum rings
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The effective Hamiltonian for an electron in a quasi-one-dimensional quantum ring in the presence of spin-orbit
interactions is derived. We demonstrate that, when both coupling types are simultaneously present, the effective
Hamiltonian derived by the lowest-radial-state approximation produces energy spectra and charge densities which
deviate strongly from the exact ones. For equal Rashba and Dresselhaus coupling constants the lowest-radial-state
approximation opens artifactal avoided crossings in the energy spectra and deforms the circular symmetry of the
confined charge densities. In this case, there does not exist a ring thin enough to justify the restriction to the
lowest radially quantized energy state. We derive the effective Hamiltonian accounting for both the lowest and
the first excited radial states, and show that the inclusion of the latter restores the correct features of the exact
solution. Relation of this result to the states of a quantum wire is also discussed.
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I. INTRODUCTION

In semiconductor nanostructures containing a two-
dimensional electron gas spin-orbit (SO) interactions appear
due to the asymmetry of the structure (Rashba1 SO coupling)
or of the host crystal (Dresselhaus2 coupling). SO coupling
is extensively studied for its role in the relaxation, dephasing,
and spin manipulation in orbital degrees of freedom.3,4 Special
attention has been addressed to quantum rings5–21 in which the
SO coupling—the gate voltage controlled Rashba interaction22

in particular—introduces spin interference phenomena5 that
are considered for quantum information processing applica-
tions. The theoretical studies are based mostly on strictly
one-dimensional (1D) models7–16 using effective Hamilto-
nians for description of the spin dynamics, although two-
dimensional6,18–21 approaches are also applied.

Most of the studies on SO interaction in quantum rings
dealt with the pure Rashba interaction6–14,18–20 with neglected
contribution of the Dresselhaus effect. Nevertheless, in III-V
structures usually both SO coupling effects are present.
Moreover, the case where both types of SO interaction have
similar strength is particularly interesting: (i) for ballistic spin
transport,23 (ii) for the formation of persistent spin helix in
a two-dimensional electron gas,24,25 (iii) restoration of the
isotropy of the spin exchange in double quantum dots,26 (iv)
singlet-triplet avoided crossing in quantum dots,27 (v) tuning
the amplitude of the persistent current oscillations excited by
terahertz pulses,28 and (vi) deformation of the charge density
in circular quantum rings.16,17

1D ring modeling for a pure Rashba coupling is based on
an effective Hamiltonian,13 whose Hermitian form14 is taken
by averaging the two-dimensional energy operator over the
lowest state of the radial quantization. Similar operation was
performed for the treatment of rings when both SO coupling
types are present.15,16 In Ref. 17 it was found from a numerical
diagonalization that for equal Rashba and Dresselhaus cou-
pling constants the lowest-radial state approximation produces
results that qualitatively differ from the exact ones in both
the energy spectrum and the confined charge densities, and
that—quite counterintuitively—these differences pertain for

arbitrary small width of the ring. In this work, we develop an
analytical matrix form for the model Hamiltonian that accounts
for both the lowest and the first excited radial states. For a
single type of SO coupling the present model, when limited
to the lowest radial state, reproduces the formula of Frustaglia
and Richter29 for the energy spectrum. The lowest-radial-state
approximation is qualitatively correct as long as a single type
of SO coupling is present.6–14,18–20 We demonstrate that when
both Rashba and Dresselhaus SO interactions are present,
this model needs to be extended to the two lowest radial
states in order to correctly reproduce the features of the exact
eigenstates. An analogy of this problem for quantum wires is
also discussed.

The paper is organized as follows. In Sec. II we present
the Hamiltonian model for both quantum ring and quantum
wire and derive analytically an effective Hamiltonian matrix
form for each case by taking into account the lowest and the
first excited states. In Sec. III we give and discuss the results.
Finally, a brief conclusion is given in Sec. IV.

II. THEORY

We investigate separately two quantum structure types
in the presence of SO interactions: closed quantum rings
and open quantum wires. Both the structures are confined
within (001) and the magnetic field B = B êz is oriented
parallel to the growth [001] direction. The general form of the
Hamiltonian is

H0 =
(

P2

2m∗ + V (x,y)

)
1 + 1

2
gBμBσz + HR + HD, (1)

where P = −ih̄ �∇ + eA (A is the magnetic vector potential),
m∗ is the electron effective mass, V (x,y) is the confinement
potential, g represents the Landé factor, μB is the Bohr
magneton, and σi (i = x,y,z) stands for the ith component of
the Pauli matrices vector. HR and HD denote the linear Rashba
and Dresselhaus SO coupling terms, respectively. To derive
the effective Hamiltonian matrix for each case, we assume a
parabolic profile for the confinement potential V (x,y).
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A. Effective Hamiltonian for quantum ring

In this case it is convenient to represent the Hamiltonian
in polar coordinates. Using the symmetric gauge A = Br/2êϕ

we have

P = −ih̄
∂

∂r
êr − i

h̄

r

(
∂

∂ϕ
+ i

Bπr2

φ0

)
êϕ. (2)

The SO coupling terms take the form

HR = α

h̄
(pyσx − pxσy) = iα(− sin ϕσx + cos ϕσy)

∂

∂r

− iα

r
(cos ϕσx + sin ϕσy)

(
∂

∂ϕ
+ i

Bπr2

φ0

)
, (3)

and

HD = β

h̄
(pxσx − pyσy) = iβ(− cos ϕσx + sin ϕσy)

∂

∂r

+ iβ

r
(sin ϕσx + cos ϕσy)

(
∂

∂ϕ
+ i

Bπr2

φ0

)
, (4)

where φ0 = h
e

is the flux quantum and α and β are coupling
constants. To derive a Hermitian expression for the radial part
of the Hamiltonian, we consider the associated wave functions
of H0 as ψ0 = r− 1

2 ψ . We then obtain

〈H0〉 =
∫∫

ψ∗
0 (H0ψ0)r dr dϕ =

∫∫
ψ∗(Hrψ)dr dϕ

= 〈Hr〉, (5)

where Hr is a 2 × 2 matrix with the elements that, in the
operator form, are as follows:

Hr
11 = − h̄2

2m∗

[
∂2

∂r2
+ 1

4r2
− 1

r2

(
i

∂

∂ϕ
− Bπr2

φ0

)2
]

+V (r) + 1

2
gBμB, (6)

Hr
22 = Hr

11 − gBμB, (7)

Hr
12 = −1

r
(αe−iϕ + iβeiϕ)

(
i

∂

∂ϕ
− Bπr2

φ0

)

+ (αe−iϕ − iβeiϕ)

(
− 1

2r
+ ∂

∂r

)
, (8)

and

Hr
21 = 1

r
(−αeiϕ + iβe−iϕ)

(
i

∂

∂ϕ
− Bπr2

φ0

)

− (αeiϕ + iβe−iϕ)

(
− 1

2r
+ ∂

∂r

)
. (9)

In Eq. (6), V (r) = 1
2m∗ω2

r (r − r0)2 is the symmetric parabolic
confinement potential where ωr determines the effective width
of the ring around the average radius r0. The eigenfunctions of
Hr can be split as the sum of two spin-polarized spatial wave
functions,

ψ = ψ↑χ+ + ψ↓χ−, (10)

where χ+ and χ− are the σz eigenfunctions,

ψ↑ = 1√
2π

∑
n,l

an,l,↑eilϕRnl(r), (11)

and

ψ↓ = 1√
2π

∑
n,l

an,l,↓eilϕRnl(r), (12)

are the totally polarized spatial wave functions with spin-up
and spin-down, respectively. In Eqs. (11) and (12), l is the
orbital angular momentum quantum number and Rn,l(r) are
the radial wave functions.

Given the operator form of Hr , we now turn to derive
its analytical matrix representation. First, let us define the
following parameters to make expressions as compact as

possible: a1 ≡ m∗ωr/h̄, a2 ≡ Bπ/φ0, a3 ≡
√

a2
1 + a2

2 , and

a4 ≡ a2
1r0/a

2
3 . Using this definition we readily obtain the radial

part of Hr
11 as

e−ilϕH r
11e

ilϕ = h̄2

2m∗

(
− ∂2

∂r2
+ l2 − 1

4

r2
+ a2

3(r − a4)2

+ 2a2l + a2
2a4r0 + m∗gBμB

h̄2

)
. (13)

The last two terms in Eq. (13) are independent of both r and
l. For sufficient large value of ωr , it is possible to find a cutoff
radius rc � a4 so that the Gaussian distribution e−a3(r−a4)2/2

virtually drops to zero at r = rc. Then, for r > rc the term
(l2 − 1/4)/r2 is a very slow-varying function compared to the
parabolic term a2

3(r − a4)2, so that the radial functions become
independent of l: Rnl(r) = Rn(r). Under these conditions, the
normalized wave functions of the ground and first radial states
can be accurately approximated by (see the Appendix)

R0 =
(a3

π

) 1
4
e− a3

2 (r−a4)2
(14)

and

R1 =
(

4a3
3

π

) 1
4

(r − a4)e− a3
2 (r−a4)2

, (15)

respectively. In the following we ignore the terms Rn for
n > 1, since they correspond to energies that are too high
to contribute to the low-energy part of the electron spectrum.
Using the basis introduced in Eqs. (14) and (15), and not-
ing that 〈n′,l′|Hr

ij |n,l〉 ≡ ∫ ∞
0

∫ 2π

0 R∗
n′e−il′ϕH r

ijRne
ilϕdϕ dr ,

we find (see the Appendix)

〈n′,l′|Hr
11|n,l〉 = h̄2

2m∗ δn′,nδl′,l

(
a3(2n + 1) +

(
l2 − 1

4

)
a2

4

+ 2a2l + a2
2a4r0 + m∗gBμB

h̄2

)
, (16)

〈n′,l′|Hr
22|n,l〉 = 〈n′,l′|Hr

11|n,l〉 − gBμBδl′,lδn′,n, (17)

〈n′,l′|Hr
12|n,l〉

=
[(

l

a4
+ a2a4

)
δn′,n + a2√

2a3
δn′,n±1

]
(αδl′,l−1 + iβδl′,l+1)

+
(

−δn′,n

2a4
+

√
a3

2
(δn′,n−1 − δn′,n+1)

)
× (αδl′,l−1 − iβδl′,l+1), (18)
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and also

〈n′,l′|Hr
21|n,l〉 =

[(
l

a4
+ a2a4

)
δn′,n + a2√

2a3
δn′,n±1

]
(αδl′,l+1 − iβδl′,l−1)

−
(

−δn′,n

2a4
+

√
a3

2
(δn′,n−1 − δn′,n+1)

)
(αδl′,l+1 + iβδl′,l−1), (19)

where n′ and n can take the values 0 or 1.
Based on Eqs. (16)–(19), we introduce a Hamiltonian whose matrix components are each equivalent to a 4 × 4 matrix including

the effects of the two lowest radial states in addition to the spin

Hr (l′,l) ≡ 〈l′|Hr |l〉 =

⎛
⎜⎜⎜⎝

〈0,l′|Hr
11|0,l〉 0 〈0,l′|Hr

12|0,l〉 〈0,l′|Hr
12|1,l〉

0 〈1,l′|Hr
11|1,l〉 〈1,l′|Hr

12|0,l〉 〈1,l′|Hr
12|1,l〉

〈0,l′|Hr
21|0,l〉 〈0,l′|Hr

21|1,l〉 〈0,l′|Hr
22|0,l〉 0

〈1,l′|Hr
21|0,l〉 〈1,l′|Hr

21|1,l〉 0 〈1,l′|Hr
22|1,l〉

⎞
⎟⎟⎟⎠ . (20)

Two ranks of the above 4 × 4 matrix are due to the ground and
first radial states and the others come from the possible spin
states (spin-up and spin-down). Accordingly, each element in
the corresponding eigenvectors of Hr correspond to a four-
component vector as [a0,l,↑ a1,l,↑ a0,l,↓ a1,l,↓]T .

1. Relation to lowest-radial-state approximation
and Richter-Frustaglia limit

To approach the routine lowest-radial-state approximation
for a strictly 1D ring one sets n′ = n = 0 which reduces
Hr (l′,l) in Eq. (20) into a 2 × 2 matrix. Then it is enough to
consider the limit ωr → ∞ and exclude the terms diverging in
Eqs. (16)–(19); namely a3(2n + 1) in Eq. (16). In addition, it is
obvious that r = r0, a4 = r0, a2 = φ/r2

0 φ0 (φ is the magnetic
flux threading the ring), and also δn′,n±1 = 0. By fixing
the quantum number n = 0 we obtain the angle-dependent
components of the 2 × 2 Hamiltonian,

〈l′|Hr
11|l〉 = h̄2

2m∗r2
0

δl′,l

(
l + φ

φ0

)2

+ 1

2
δl′,lgBμB, (21)

〈l′|Hr
22|l〉 = 〈l′|Hr

11|l〉 − δl′,lgBμB, (22)

〈l′|Hr
12|l〉 =

(
l + φ

φ0

) (
α

r0
δl′,l−1 + i

β

r0
δl′,l+1

)

−1

2

(
α

r0
δl′,l−1 − i

β

r0
δl′,l+1

)
, (23)

〈l′|Hr
21|l〉 =

(
l + φ

φ0

) (
α

r0
δl′,l+1 − i

β

r0
δl′,l−1

)

+1

2

(
α

r0
δl′,l+1 + i

β

r0
δl′,l−1

)
. (24)

In Eq. (21) we ignored the constant term h̄2/8m∗r2
0 that does

not depend on l.
Now consider a case when only the Rashba SO coupling

is present; i.e., β = 0 and g = 0. Using Eqs. (21)–(24),
the eigenvalues can be obtained from the below eigenvalue

equation:⎛
⎝ h̄2

2m∗r2
0

(
l + φ

φ0

)2 α
r0

(
l + φ

φ0
+ 1

2

)
α
r0

(
l + φ

φ0
+ 1

2

)
h̄2

2m∗r2
0

(
l + φ

φ0
+ 1

)2

⎞
⎠ (

al,↑
al+1,↓

)

= ER

(
al,↑

al+1,↓

)
, (25)

which yields the eigenvalues previously derived by Richter-
Frustaglia,29

ER = h̄2

2m∗r2
0

[
1

4
+

(
l + φ

φ0
+ 1

2

)2

±
(

l + φ

φ0
+ 1

2

)√
1 +

(
2αm∗r0

h̄2

)2
]
. (26)

B. Effective Hamiltonian for quantum wire

We consider a quantum wire that is confined parabolically in
[010] direction by the potential V (y) = 1

2m∗ω2
wy2. The wire

is aligned along the x axis and the potential is independent
of x component. Therefore, the overall wave function has a
definite wave number kx along the wire so that the relevant
spin-polarized spatial wave functions can be written as

φ↑(↓) = eikxx
∑

n

bn,↑(↓)φn(y), (27)

where φn(y) is the wave function in y direction. Using the
Coulomb gauge A = (−By,0,0) the Hamiltonian in Eq. (1)
reads

H0 = h̄2k2
x

2m∗

(
1 − ω2

c


2

)
1 + p2

y

2m∗ 1 + 1

2
m∗
2 (y − y0)2 1

+α
(py

h̄
σx − kxσy

)
+ β

(
kxσx − py

h̄
σy

)
+ 1

2
gBμBσz,

(28)

where ωc = eB/m∗ is the cyclotron frequency, 
 =√
ω2

c + ω2
w is the effective confinement strength due to

the parabolic potential and the magnetic field, and y0 =
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h̄ωckx/m∗
2. The momentum operator py can be written
in terms of the standard ladder operators ay and ay

† as
py = i

√
m∗
h̄/2(a†

y − ay). Then, in the basis of the occu-
pation number operator N̂ = ay

†ay [i.e., φn(y) = |n〉, where
n = 0,1,2, . . .], we obtain the matrix representation of the
Hamiltonian components,

〈n′|Hw
11|n〉 = δn,n′

[
h̄2k2

x

2m∗

(
1 − ω2

c


2

)
+ h̄


(
n + 1

2

)

+ gBμB

2

]
, (29)

〈n′|Hw
22|n〉 = 〈n′|Hw

11|n〉 − gBμBδn,n′ , (30)

〈n′|Hw
12|n〉 = kxδn,n′ (β + iα) +

√
m∗

2h̄

(−β + iα)

× (
√

n + 1δn′,n+1 − √
nδn′,n−1), (31)

and

〈n′|Hw
21|n〉 = kxδn,n′ (β − iα) +

√
m∗

2h̄

(β + iα)

× (
√

n + 1δn′,n+1 − √
nδn′,n−1). (32)

To approach the lowest sub-band approximation one sets
n′ = n = 0. This yields a 2 × 2 Hamiltonian matrix whose
eigenenergies are given by

E0(kx) = h̄2k2
x

2m∗

(
1 − ω2

c


2

)
+ 1

2
h̄


±
√

1

4
g2B2μ2

B + k2
x(α2 + β2). (33)

Note that for a strictly 1D quantum wire it is enough to consider
the limit ωw → ∞ and remove the terms diverging in Eq. (33).

Now let us consider the effects of the first excited sub-band
in addition to the lowest one. In this case we attain a 4 × 4
Hamiltonian matrix similar to a one presented in Eq. (20). By
diagonalizing the 4 × 4 Hamiltonian matrix one obtains the
eigenenergies as

E(kx)

= h̄2kx
2

2m∗

(
1 − ω2

c


2

)
+ h̄


± 1

2

√
h̄2
2 + g2B2μ2

B + 4

(
m∗

2h̄

+ k2
x

)
(α2 + β2) ± 4γ,

(34)

where

γ=
√

k2
xh̄

2
2(α2 + β2) + 8

h̄
m∗
k2

xα
2β2 + (h̄
gBμB)2

4
.

Based on the fact that under a unitary transformation
the energy eigenvalues remain unchanged, we introduce the
unitary operator

u =
(

0
√

i√−i 0

)
, (35)

so that u†σxu = −σy , u†σyu = −σx , and u†σzu = σz. Using
these relations we find from Eq. (28) that u†H0(α,β)u =
H0(β,α) or, in other words, E(α,β) = E(β,α). This means
that by exchanging the SO couplings strengths the energy
remains unchanged, which is obvious in Eqs. (33) and (34).

III. RESULTS AND DISCUSSION

For our calculations we consider the parameters corre-
sponding to etched InGaAs/GaAs materials30: m∗ = 0.063 me

and—unless stated otherwise—β = 10.8 meV nm. This value
is obtained from the bulk Dresselhaus constant (βb) as β =
π
d

2βb, where d = 5 nm is the height of the structure in the
growth direction and βb = 27.5 eV Å3 for GaAs.31 We set
g = −2.15 when the Zeeman effect is present.

Figure 1 shows the energy spectrum as a function of the
B for a quantum ring with r0 = 50 nm and h̄ωr = 30 meV.
The panels are for various values of the Rashba constant α

and g. The spectrum without SO coupling was plotted in
Fig. 1(a) by the blue dashed lines. The rest of the plots show the
results in the presence of SO coupling: the red dotted curves
correspond to the energies obtained in the lowest-radial-state
approximation and the solid curves indicate those for which
the first-excited radial state is also taken into account. The
results of the lowest-radial-state approximation are shifted up
by the constant energy h̄2(a1 + 0.25/r2

0 )/2m∗ = 15.06 meV
in order that the results became comparable to the other
plots.

At the lower half of each plot, the lines referred to the
right axis indicate the average value of the total ground-state
angular momentum. The discontinuous drops in the value
of 〈Jz〉 correspond to the ground-state angular momentum
transitions. In Fig. 1(a) the value of 〈Jz〉 is illustrated in
terms of infinitesimal deviations ±δβ because the energies are
twofold spin degenerate. Notice that the stepwise variations
of Jz occur twice more often than those of nondegenerate
states shown in Fig. 1(b); half of them which take place
simultaneously with the ground-state level crossings are due
to total angular momentum transitions (both the spin and
the angular momentum change) and the other half are due
to only spin transitions.

The case of equal coupling constants α = β and g = 0
is very special in quantum rings. In this case the entire
energy spectrum in the absence of SO coupling is expected
to be shifted by �SO = −2α2m∗/h̄2 down in order to
reproduce the energy spectrum with SO interactions.23,32 The
value of �SO in Fig. 1(a) is just equal to −2α2m∗/h̄2 =
−0.192 meV for the case with included first excited radial
state. Moreover, for α = β and g = 0 the Hamiltonian com-
mutes with the operator of the [110] spin component.23,32

The Hamiltonian eigenfunctions ψ± corresponding to the
±h̄/2 spin eigenvalues in the [110] direction are related
to the eigefunctions ϕ obtained in the absence of SO
coupling as

ψ±(x,y) = 1√
2

(
1

±e−iπ/4

)
ϕ(x,y)e∓ i

√
2αm∗
h̄2 (x+y)

. (36)

Since |ϕ|2 is circularly symmetric, therefore the charge
densities for the eigenstates ψ± are also circularly symmetric.
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FIG. 1. (Color online) Upper curves show the energy spectrum versus the magnetic field for α = β, g = 0 (a) and for α = β/2 = 5.4 meV
nm, g = −2.15 (b). The red dotted curves indicate the results of the lowest-radial-state approximation (n = 0) that are shifted up by 15.06 meV.
The solid curves are obtained using the new derived Hamiltonian in which the first-excited radial state is included as well as the ground-radial
state (n = 0,1). The dashed blue curves in panel (a) indicate the energy spectrum without SO interactions. The lower lines, which are referred
to the right axis, display the average value measured over the z component of the ground-state total angular momentum. In panel (a), the
value 〈Jz〉 is shown for two infinitesimal changes in the value of α as much as ±δβ = ±10−10β because the energy spectrum is twofold spin
degenerate.

The charge density as obtained with considering both n = 0
and n = 1 radial states is shown in Fig. 2(b) (left panel). It is
seen that the charge density is circularly symmetric. In fact, the
calculated density is circular with a precision of four significant
digits.

On the other hand, when one restricts the basis to the
lowest radial state, one obtains (i) avoided crossings in the
energy spectrum [see the red dotted curve in Fig. 1(a)],
and (ii) the deviation of the charge density from circular
symmetry—see Fig. 2(a) (left panel), which are artifacts of
the applied approximation.

When the Zeeman effect is present [Fig. 1(b)], the energy
spectrum of the lowest-radial state approximation are qualita-
tively similar to the exact one with similar avoided crossings.

Nevertheless, Fig. 2 shows that also for the case of α = β/2,
g = −2.15, and B = 0.75 T, the charge density obtained in the
lowest radial approximation state differs qualitatively from
the exact one: in the lowest-radial-state approximation the
maximal charge density are oriented along the antidiagonal
(x = −y) which is in contrast to the result obtained for the
basis with n = 0,1.

The restriction of the basis to the lowest radial state when
ωr tends to ∞ seems natural, which calls for a comment on the
origin of the qualitative error introduced by this step. Let us
focus on the ωr → ∞ and B = 0 case. The energy difference
of the diagonal matrix elements corresponding to the n = 0 and
n = 1 radial state increases linearly with ωr [see Eq. (16)]. The
off-diagonal elements mixing the n = 1 and n = 0 states with
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FIG. 2. (Color online) Charge density distributions obtained with the use of the lowest-radial-state approximation (a) and when the
first-excited radial state is also included (b).
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FIG. 3. (Color online) Energy spectrum versus the magnetic field
in the presence of a single type of spin-orbit interaction for pure
Rashba coupling with α = 5.4 meV nm and g = −2.15 (a) and for
pure Dresselhaus coupling with g = 0 (b). The dotted curves show the
energy spectrum obtained using the lowest-radial-state approximation
and the solid curves show those in which the first excited state is
also included. The numbers denote the values of the orbital angular
momentum for the solid curves in h̄ units.

adjacent values of l number, increase as
√

ωr [see Eqs. (18)
and (19)]. Although it could seem that the off-diagonal terms
might be neglected as compared to the diagonal ones, this
is not the case. In order to demonstrate this we consider the
matrix

M =
(

0
√

ωr√
ωr ωr

)
, (37)

with eigenvalues ωr

2 ± 1
2

√
ω2

r + 4ωr . The lowest eigenvalue
in the ωr→∞ limit tends to −1 and not 0. The square-root
increase of the off-diagonal elements compensates for the
linear increase in the M22 element. In the studied case,
the n = 0 approximation differs qualitatively from the exact
results for the energy spectrum and the charge density, also
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FIG. 4. (Color online) Two lowest eigenenergies of a quantum
wire versus Rashba SO constant for g = −2.5, h̄ωw = 43 meV,
B = 0.5 T and (a) kx = 0, (b) h̄2k2

x/2m∗ = 0.1 meV, and (c)
h̄2k2

x/2m∗ = 10 meV. The circles indicate the energies obtained by
the exact numerical diagonalization. The dashed curves indicate the
energies produced by the lowest sub-band approximation and the
solid curves are for accounting the first excited sub-band in addition
to the lowest one.

in the ωr → ∞ limit. The linear increase of ωr in the n = 1
energy level is compensated by the

√
ωr increase in the SO

coupling elements. This clearly shows that one cannot indicate
any value of ωr large enough to justify the lowest-radial-state
approximation.

The energy spectra of a quantum ring as obtained with both
bases is given in Fig. 3 when only a single type of SO coupling
is present. Each energy level in the spectrum corresponds to
a definite orbital angular momentum (l). At B = 0, for the
presence of pure Rashba coupling we have E(−|l|) = E(|l| −
1) while for pure Dresselhaus coupling we have E(−|l|) =
E(|l| + 1). The figure reveals that the neglect of the n = 1 state
in the basis affects the energy levels, but with no qualitative
consequences for the character of the spectrum.

Figure 4 displays two lowest eigenenergies of a quantum
wire versus Rashba coupling constant for different wave
numbers kx . The magnetic field is B = 0.5 T and the con-
finement strength is h̄ωw = 43 meV corresponding to the wire
width W = √

8h̄/m∗ωw ≈ 15 nm. The dashed curves indicate
the energies obtained by the lowest sub-band approximation
and the solid curves show those for which the first excited
sub-band is taken into account besides the lowest one. The
circles correspond to the exact eigenenergies calculated by the
numerical diagonalization of H0 in Eq. (28). The restriction
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of the basis to the lowest sub-band produces qualitatively
incorrect results when the wave number kx is too small or,
more generally, when h̄2kx/2m∗ �

√
α2 + β2. For kx = 0 the

eigenenergies of the lowest sub-band approximation remain
constant as the Rashba coupling strength is increased while
the accounting of the second sub-band leads the eigenenergies
to decrease [see Fig. 4(a)]. Similar deviation from the exact
results are observed in Fig. 4(b) for h̄2k2

x/2m∗ = 0.1 meV.
For the larger values of kx the results of the lowest sub-
band approximation are in consistent with those obtained by
considering both n = 0 and n = 1 sub-bands [see Fig. 4(c)].

IV. SUMMARY AND CONCLUSIONS

We have considered an electron in a circular quantum ring
with both the Rashba and Dresselhaus coupling constants. We
assumed a parabolic profile for the confinement potential and
derived an analytical matrix form of the effective Hamiltonian
using radial eigenstates in the quasi-one-dimensional limit
of large radius and large confinement energy. We have
demonstrated that, in the presence of both SO couplings,
it is sufficient to include up to the first excited radial state
in order to correctly describe the qualitative features of
the energy spectra and charge densities. We have explained
why the basis limited to the lowest radial state remains an
invalid approximation also in the strictly one-dimensional
limit. On the other hand, our model supports the applicabil-
ity of the lowest-radial-state approximation for the special
case when only a single type of SO coupling is present,
and it reproduces the classical formula29 for the energy
spectrum.
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APPENDIX: SUPPLEMENTARY NOTES FOR DERIVATION
OF EQS. (14)–(19)

Recalling that the Gaussian function e−a3(r−a4)2/2 is practi-
cally zero for r � rc, we obtain∫ ∞

0
e−a3(r−a4)2

dr �
∫ a4

rc

e−a3(r−a4)2
dr +

∫ ∞

a4

e−a3(r−a4)2
dr

= 2
∫ ∞

a4

e−a3(r−a4)2
dr =

√
π

a3
,

(A1)

and similarly∫ ∞

0
(r − a4)2 e−a3(r−a4)2

dr

� 2
∫ ∞

a4

(r − a4)2 e−a3(r−a4)2
dr =

√
π

4a3
3

. (A2)

Note that if r0 is not too small and the confinement potential is
sufficiently sharp, the term 1/r is a very slow-varying function
with respect to the Gaussian weight function e−a3(r−a4)2

while
r > rc. Therefore, we have∫ ∞

rc

1

r
e−a3(r−a4)2

dr

� 1

a4

∫ ∞

rc

e−a3(r−a4)2
dr = 1

a4

√
π

a3
. (A3)

Continuing along the same lines of reasoning, we obtain∫ ∞

0
rR∗

n′Rndr = a4δn′,n + 1√
2a3

δn′,n±1, (A4)∫ ∞

0

1

r
R∗

n′Rndr = 1

a4
δn′,n, (A5)∫ ∞

0
R∗

n′
∂

∂r
Rndr =

√
a3

2
(δn′,n−1 − δn′,n+1), (A6)

where n′ and n can take the values 0 or 1.
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