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Effect of nonhomogenous dielectric background on the plasmon modes in graphene double-layer

structures at finite temperatures
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We have calculated the plasmon modes in graphene double layer structures at finite temperatures, taking into
account the inhomogeneity of the dielectric background of the system. The effective dielectric function is obtained
from the solution of the Poisson equation of a three-layer dielectric medium with graphene sheets located at the
interfaces, separating the different materials. Due to the momentum dispersion of the effective dielectric function,
the intra- and interlayer bare Coulomb interactions in the graphene double layer system acquires an additional
momentum dependence—an effect that is of the order of the interlayer interaction itself. We show that the energies
of the in-phase and out-of-phase plasmon modes are determined largely by different values of the spatially
dependent effective dielectric function. The effect of the dielectric inhomogeneity increases with temperature,
and even at high temperatures the energy shift induced by the dielectric inhomogeneity and temperature itself
remains larger than the broadening of the plasmon energy dispersions due to the Landau damping. The obtained
new features of the plasmon dispersions can be observed in frictional drag measurements and in inelastic light

scattering and electron energy-loss spectroscopies.
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I. INTRODUCTION

Graphene is a monolayer of carbon atoms' with great
potential for a new generation of electronics.*> Charge carriers
in graphene are Dirac-like massless, chiral fermions that
provide a unique two dimensional system with new many-
body phenomena® that can critically influence the electronic
properties’"'* in graphene. An excellent tool for studying
many-body interaction in graphene structures are graphene
double-layer systems (GDLS), recently realized in several
experiments.'3~17

Bare electron-electron interaction in graphene is described
by the dimensionless fine-structure constant'®
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with its value depending on the dielectric properties of the
graphene surrounding environment via the effective dielectric
constant € (vr is the electron velocity in graphene). In GDLS
the two spatially separated graphene sheets are immersed in
a nonhomogeneous three-layered medium with background
dielectric constants €, €, and €3 of the contacting media, as
shown in Fig. 1. In general, these dielectric permittivities differ
substantially from each other in experiment. In an individual
graphene sheet on top of a substrate with relative dielectric
permittivity €4, an electron charge e behaves effectively as
a charge with a value of 2e/(1 + ¢4). This well known
result'® has been applied in the recent treatment of Coulomb
drag in GDLS,? assuming that the effective permittivity in
each graphene layer of the GDLS is given by the arithmetic
average of its surrounding media, i.e., €} = (€] + €;)/2 and
€3 = (€3 + €3)/2. In what follows, we argue that such an
approach in general is not applicable for the plasmon problem
in GDLS. It neglects the momentum dispersion of the effective
dielectric permittivity, € = €(g), an effect of the order of the
interlayer interaction. Its direct application would result in
the disappearance of the linear dispersion of out-of-phase
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plasmon modes because the bare intra- and interlayer Coulomb
interactions remain not equal in the long wavelength limit.
Furthermore, when an average spatially independent dielectric
permittivity is used?'">* to describe GDLS, we find that it
also provides an inadequate description of the plasmon energy
dispersions in GDLS. In the present paper we develop a
consistent description of the plasmon modes in GDLS by
making use of the exact solution of the Poisson equation for
the electrostatic problem in a three-layer dielectric medium
and by taking into account the momentum dispersion of the
effective background dielectric function €(g) due to the finite
thickness of the interlayer barrier.

We show that even in the long wavelength limit, when the
bare intra- and interlayer Coulomb interactions remain equal,
the dispersions of the in-phase and out-of-phase plasmon
modes are determined by the largely different values of the
spatially dependent effective dielectric permittivity. At finite
momenta also the momentum dependence of the effective
dielectric function €(g) results in significant changes of
the dispersion relation of both plasmon modes which can be
probed in experiment.
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FIG. 1. A graphene double-layer system immersed in a three-
layered dielectric medium. The solid lines with spacing d represent
the graphene sheets 1 and 2 at the interfaces, separating different
materials with the background dielectric permittivities €, €;, and €3.
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II. THEORETICAL CONCEPT

We obtain the collective modes of plasmon excitations?’

from the poles of the exact Coulomb Green function, V(q,w).
In double layer structures the bare Coulomb interaction 0(q)
is a tensor with respect to the layer indices and in general
represents three different interactions, the intralayer, v;;(q)
and vy (g), and the interlayer, vi2(q) = v21(g). The kernel
0(q) determines a standard matrix Dyson equation for the
exact Coulomb Green function

V(g.0) = 9(q) + 0(q) - M(g,w) - V(q, o), 2)

where [1(g,w) is the irreducible polarization function of
the double layer electron system. It is seen from (2)
that the poles of the exact Coulomb Green functions
are given by the zeros of the scalar screening function
e(g,w) = det|1 — 0(q) - ﬁ(q,w)|. In GDLS even for the inter-
layer spacing of 2—-3 nm, the Dirac carriers in the graphene
sheets are coupled via interlayer Coulomb interaction and
the tunneling between the layers is insignificant. Hence we
can neglect the nondiagonal elements of the polarizability
f[(q,co). It is also sufficient to restrict ourselves to consider
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the polarizability within the random phase approximation
where I1}(¢,0) = [19(g,w) and Ty (q,w) = MY(q,w) and the
noninteracting polarization functions l'[(lJ ,(g,w) are given by
the bubble diagrams in the respective gfaphene sheets. This
approach is well justified for weakly interacting GDLS, and
its screening function can be represented as

e(q,0) = £1(q,®)e2(q,0) — v12(q)* (g, 0)1(q,w), (3)

where ¢)2(q,w) =1— v“,gz(q)l'[? ,(g,w) are the screening
functions in each graphene layer. bespite the external sim-
ilarities, the screening function of GDLS differs essentially
from that of the usual two-dimensional electron gas in semi-
conductor nanostructures. In addition to the new properties
of T1°(g,w) arising from the unique Dirac-like energy band
structure and the chiral nature of the massless carriers, we
show here that the heterogeneity of the dielectric background in
GDLS plays an important role in determining the many-body
Coulomb interaction effects.

Direct calculations of the electrostatic problem in the
dielectric environment consisting of three contacting media
with different dielectric constants €, €, and €3 give the
following formula for the Coulomb potential:
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where 7z and z are, respectively, the positions of the source and
test charges. The bare intralayer interactions in graphene layers
1 and 2, located at the two interfaces with z =0 and z = d,
are given by v11(q) = e9(0,0) and vy = ep(d,d) while the
bare interlayer interaction vix(g) = e(0,d).”>*" Hence, we
arrive at the following three effective dielectric functions in
the GDLS

| 2(€; cosh gd + €3 sinh gd) )
é1(q) €€, + e3)coshdg + (€163 + €3) sinhgd
1 2(e3 cosh gd + €; sinhgd) ©)
&2(q)  ele + e3)coshdg + (eje3 + €2) sinh gd
1 2
= )
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that determine the strength of the intra- and interlayer bare
Coulomb interactions in momentum space

27e?

vij(q,d) = ——.
i q€;;(qd)

®)
Here i,j = 1,2 are the graphene layer indices. It is seen
that in the long wavelength limit all three interactions are
determined by the same effective dielectric constant, given
by the arithmetic average of the top and bottom surrounding
media in GDLS, €3 = (¢ + €3)/2, and does not depend on
the dielectric constant €, of the middle medium.

€,(€) + €3) coshdqg + (6163 + e%) sinh gd

“

Further we exploit the above formulas for bare interaction
v;j(q) to find the plasmon spectrum in GDLS. Assuming for
simplicity that the density is balanced in the GDLS, we can
rewrite the screening function (3) as

£(q.0) = a[l1%(q,0) — Tt (g.HIM%(g.0) — T ()],  (9)

where a(q,d) = vi1(q,d)vaa(g,d) — vlzz(q,d) and the auxil-
iary functions

v+ un F \/(Uu —vp)? +4vi,
2a(q,d)

Here for brevity we omit the arguments of the bare interactions.
In the limit of vanishing ¢ we have

M*(q.d) =

(10)
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In unbalanced GDLS instead of the above formulas, one can
find

M (q.d) =

L e L]
2re? Jny + Jny 2mwe? 2d./min;
(12)

and the dielectric inhomogeneity has a similar effect also in
unbalanced systems. Here the partial dimensionless densities
are defined as n;, = N; /N with N;; the carrier densities
in each graphene layers and N = N; + N, stands for the total
density in GDLS.

195444-2



EFFECT OF NONHOMOGENOUS DIELECTRIC BACKGROUND ...

PHYSICAL REVIEW B 85, 195444 (2012)

2.5 — 2.5 25
5 ey s
2 20 S 20p S 20p
3 3 3
§ 15 g 15 g 15
S S S
& g a
2 1.0 &g 10 & 1.0
bS] bS] 35
=1 = [=}
g 05 2 0.5 g 0.5
wv) 7] wn
= = &
=~ 0.0 0.0 & ool
0.0 0.5 1.0 L5 0.0 0.5 1.0 15 0.0

q[kr]

qlkr]

FIG. 2. (Color online) The effect of nonhomogenous dielectric background on the plasmon dispersions in GDLS at low temperatures
T = 0.1T¢. The upper (lower) curves represent the optical (acoustical) plasmon branches with the square-root (linear) dispersions. The
solid curves are calculated for the plasmon modes in GDLS with nonhomogenous dielectric background, consisting of three layers of SiO,
(esio, = 3.8), ALO;3 (€41,0, = 6), and air. The dashed curves correspond to the plasmons in GDLS with homogenous dielectric background
with an average permittivity € = 2.4. In the left, mid, and right figures we plot, respectively, the plasmon energy dispersions for three values
of the interlayer spacing d = 5 nm, 10 nm, and 30 nm. The doping level corresponds to the carrier densities n, = n, = 10'2 cm~2. The thick
dot-dashed lines show the boundaries of inter- and intrachirality particle-hole continua where plasmons are Landau damped. The shaded areas
represent the broadening of the energy dispersions of respective plasmon modes.

Making use of the expression (8) from Ref. 28 for the zero
temperature exact Lindhard polarization function in graphene,
we find from the zeros of the screening function in Eq. (9)
the optical and acoustical plasmon modes in GDLS with the
following square-root and linear energy dispersions

w.(q) = gezv—Fqu o (q)—Mv q
* €13 T 1 +2grrd -

Here g accounts for the spin and valley degeneracy in graphene
and grp = ge2k% /(€2¢F) is the Thomas-Fermi screening
wave vector in graphene with the Fermi wave vector kg
defined by the single layer density and the Fermi energy
er = vpkp. These plasmon dispersions, derived for GDLS
in Ref. 29, have the same form as for semiconductor two-
dimensional systems.30 It is seen, however, that in contrast
to the previous treatments, adopting a model of homogenous
background dielectric environment for the GDLS,?'">* the
plasmon energies (13) of the optical and acoustical modes in
GDLS are determined by the different background dielectric
permittivities, which is a direct consequence of the behavior of
the auxiliary functions from (11) in the long wavelength limit.

13)

III. RESULTS AND DISCUSSIONS

It follows from the above formulas that the energy of the
in-phase optical plasmons is given by the arithmetic average
€13 of the dielectric constants of top and bottom dielectric
media in the GDLS and is independent of the middle layer
permittivity €,, while the energy of the out-of-phase acoustical
plasmon modes is independent of €;,e3 and depends only
on the dielectric constant €;. In recent experimental samples
of GDLS!>"!7 the top graphene sheet is surrounded by air
while the interlayer barrier has a relatively large dielectric
permittivity. In samples where the bottom graphene layer
in GDLS lies on a boron nitride substrate, used in the
experimental setup in Ref. 17, ¢, = €, = egn & 5 and we

have €3 =~ 3, which is by a factor 1.7 smaller than €, = 5. In
samples on a SiO, substrate with moderate dielectric effects,
studied in Refs. 15 and 16, €; = €gi0, ~ 3.8 and €, = €a},0, &
6 and we have €3 ~ 2.4, which is smaller than ¢; = 6 by a
factor of about 2.5. Thus, the inhomogeneity of the background
dielectric environment in GDLS can significantly alter the
dispersions of plasmon modes in the long wavelength limit by
reducing essentially the energy of the out-of-phase plasmon
branch (see numerical calculations below). In particular, this
can lead to strong modifications of the temperature dependence
of the plasmon-mediated Coulomb drag in GDLS.?0-31-33

The momentum dispersion that the effective dielectric
functions €;;(q) exhibit in Egs. (5)—(7) modifies substantially
the double-layer plasmon dispersions also at finite values of g.
In Figs. 2 and 3 we calculate the plasmon dispersions at two
different temperatures 7 = 0.17r and T = Tr in the range
of momenta, 0 < g < 2kp, from the zeros of the screening
function (3) by making use of the exact semianalytical
formulas from Ref. 34 for the finite temperature polarization
function H?(q,a)| T) of graphene. Here Tr = vpkp is the Fermi
temperature.

In Figs. 2 and 3 we study the combined effect of finite
temperatures and the inhomogeneous dielectric background on
the energy dispersions and damping of double-layer plasmon
modes. As seen in Fig. 2 the account for the inhomogeneity
of the dielectric background in GDLS suppresses strongly
the out-of-phase acoustical plasmon mode. The largest en-
ergy difference in comparison with the homogenous case is
achieved nearly at the boundary of the interchirality particle-
hole continuum for ¢ ~ kr. The effect of inhomogeneity of
the dielectric background on the energy of in-phase plasmon
modes starts to be significant at finite values of g ~ 0.2kp. It
increases with ¢ so that the dispersion curve remains approx-
imately parallel to the boundary of the intrachirality subband
particle-hole continuum at momenta g ~ 2kg. In contrast, the
energy deviation of the out-of-phase plasmon modes due to
the dielectric inhomogeneity shows nonmonotonic behavior
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FIG. 3. (Color online) (left) Temperature effect on the in-phase and out-of-phase plasmon modes in GDLS with nonhomogenous dielectric
background. The dashed and solid lines correspond to 7 = 0.17F and T = Tr. (mid) and (right) The effect of nonhomogenous dielectric
background on the plasmon dispersions in GDLS at high temperature T = Tr. The solid (dashed) curves are calculated for the plasmon
modes in GDLS with nonhomogenous (homogenous) dielectric background. The plasmon dispersions are shown (mid) in the exactly balanced,
n; =n, = 102 cm~2, and (right) in the completely unbalanced, n, = 0, GDLS. In all figures d = 10 nm and other parameters correspond to
Fig. 2. The shaded areas in the (mid) and (right) plots represent the broadening of the energy dispersions of respective plasmon modes.

and for large values of ¢ ~ kp starts to decrease with ¢q. It
is seen also that the dispersion curves of the in-phase and
out-of-phase plasmon modes exhibit an usual behavior and
with an increase of the interlayer spacing two modes become
degenerate outside the particle-hole continua.

The shaded areas in Figs. 2 and 3 represent the broadening
of the respective plasmon dispersions in the complex w plane.
Instead of the absolute value of SHO(q,a)), the broadening
'L (g) is the real measure of the plasmon Landau damping. In

double-layer systems it is given by’
F:t(q) = F(CI 7w)|w:wi(q)» (14’)
where the function
SM%gq, )
I'(g,w) (15)

= ARI(q,w)/dw

describes the property of the electron-hole continuum to
cause plasmon damping. For any temperature I"(g,w) vanishes
at the w = vpq boundary of the intrasubband electron-
hole continuum [cf. Fig. 4(left)]. Within the intersubband
electron-hole continuum I'(g,w) increases strongly with w
[cf. Fig. 4(right)]. Therefore, far from the boundaries of the
intra- and intersubband particle-hole continua, the plasmon
modes at low temperatures are strongly Landau damped and
the dispersion curves do not represent well defined elementary
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FIG. 4. (Color online) The function I'(q,w) versus the bosonic
momentum ¢ for a given w = 1.75¢x (left) and versus the bosonic
frequency w for a given ¢ = 0.5k (right). The dashed and solid lines
correspondto 7' = 0.17Tp and T = Tp.

excitations. With an increase of 7 the particle-hole continua
“degrade” and the damping of plasmon modes with smaller
values of ¢ increases. It is seen that at high temperatures 7 =
Tr the broadening of the plasmon dispersions for g < kr is
smaller than the shift of the energy dispersions, induced by the
combined action of the dielectric background inhomogeneity
and temperature. This is true both for the optical and acoustical
plasmon modes. In this small g and small w region ST1%(w,q)
is small, and because its contribution to the real part of
the screening function in Eq. (3) is quadratic, the plasmon
dispersion relations obtained from the zeros of the factors of
the screening function in Eq. (9) give the same result against
the background of the broadening of plasmon dispersions,
linearly varying with IT1%(¢,w).

As seen in Fig. 3(left) the plasmon energy of optical
and acoustical modes increases significantly with 7. The
comparison of Figs. 2(mid) and 3(mid) shows that the effect
of the dielectric background inhomogeneity becomes stronger
with 7. It is seen from Figs. 3(mid) and 3(right) that at finite
temperatures 7 = Ty the plasmon modes behave almost in the
same way in two extreme regimes of the completely balanced,
ny = ny, and the completely unbalanced, n, = 0, GDLS. This
is in stark contrast to the behavior that plasmons exhibit at
T = 0.! Atthe same time Fig. 3(right) shows that the effect of
dielectric background inhomogeneity in the unbalanced GDLS
is similarly strong as in the balanced GDLS.

IV. SUMMARY

We study the effect of the dielectric background inhomo-
geneity on the plasmon modes in GDLS at finite temperatures.
Itis found that using a spatially averaged dielectric permittivity
to describe dielectric properties of GDLS provides an inade-
quate description of the plasmon energy dispersions. We obtain
the effective dielectric functions of GDLS from the exact
solution of the Poisson equation for a three-layer dielectric
medium with the graphene sheets located at the interfaces,
separating different materials. It is shown that the momentum
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dispersion of the effective dielectric function results in an
additional momentum dependence of the intra- and interlayer
bare Coulomb interactions in GDLS—an effect of the order of
interlayer interaction itself. As a result the obtained dispersions
of the in-phase and out-of-phase plasmon modes are largely
determined by the different values of the spatially dependent
effective dielectric permittivity.

Here we use the temperature dependent exact Lindhard
polarization function, which allows us to find the plasmon
dispersions at finite temperatures. Our calculations show that
the dielectric background inhomogeneity shifts the energy of
plasmon modes towards lower energies thereby reducing the
damping of plasmons. The effect of dielectric inhomogeneity
increases with temperature and even at high temperatures,
T ~ Tp, the energy shift induced by the dielectric inhomo-
geneity and temperature itself remains larger than the broad-
ening of the plasmon energy dispersions due to the Landau
damping at finite temperatures. This combined effect of finite
temperatures and the dielectric background inhomogeneity has
been discussed thoroughly in our paper by comparing care-
fully the dispersion relations, calculated for graphene double
layers embedded in a three-layer nonhomogeneous dielectric
medium with that obtained for the homogeneous one. We find
a strong effect of temperatures on the acoustical plasmon
mode in a completely unbalanced system—the acoustical
mode becomes separated from the top of the electron-hole
continuum and this favors possibility to observe it. Our
numerical calculations have been carried out for realistic
experimental samples on a Si substrate with three different
dielectric constants for the background nonhomogeneous
medium for interlayer spacing d = 5,10, and 30 nm. The
effect of dielectric inhomogeneity is found to be the largest
for samples with d = 10 nm at finite momenta g < kp.
The predicted new features of the double-layer plasmon

PHYSICAL REVIEW B 85, 195444 (2012)

dispersions can be observed in high temperature measurements
of frictional drag in GDLS and in such plasmon experi-
ments as plasmon-enhanced photoluminescence,® electron
energy-loss spectroscopies,’®3” inelastic light scattering’’-3®
measurements.

The main results of this manuscript were reported at a
meeting.* Recently, we became aware of two other works
(Refs. 29 and 40) on the double-layer plasmon modes in
graphene structures. In the present paper we give particular
emphasis to the effect of inhomogeneity of the dielectric
background on the plasmon dispersions in realistic GDLS
and use a different formalism from that used in Refs. 29
and 40, which allows us to treat additionally the effect of finite
temperatures on the energy dispersions of the plasmon modes.
The main focus of Ref. 29 has been the subtle point related to
the use of the exact Lindhard polarization function in obtaining
the plasmon velocity in the long wavelength limit. The authors
derived first the analytical formula for the acoustical plasmon
velocity. The effect of dielectric inhomogeneity, which is due
to the renormalization of the bare Coulomb interactions, in
Ref. 29 has been discussed mainly in connection with the
effect of the locked acoustical mode on top of the particle-hole
continuum in topological insulators. The authors of Ref. 40
have reported the main formulas for the three-layer dielectric
medium with the main focus on the study of the near
field amplification in GDLS with a homogenous dielectric
background.
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