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The drag of massless fermions in graphene double-layer structures is investigated over a wide range of
temperatures and interlayer separations. We show that the inhomogeneity of the dielectric background in such
graphene structures, for experimentally relevant parameters, results in a significant enhancement of the drag
resistivity. At intermediate temperatures the dynamical screening via plasmon-mediated drag enhances the drag
resistivity and results in an upturn in its behavior at large interlayer separations. In arange of interlayer separations,
corresponding to the crossover from strong to weak coupling of graphene layers, we find that the decrease of the
drag resistivity with interlayer spacing is approximately quadratic. This dependence weakens below this range
of interlayer spacing while for larger separations we find a cubic (quartic) dependence at intermediate (low)

temperatures.
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Introduction. The discovery of graphene,’? a monolayer

lattice of carbon atoms, opened up possibilities for exploring
new phenomena in fundamental physics®* and for creating a
new generation of electronic device applications.>® Based on
monolayer graphene, novel double-layer structures have been
recently realized experimentally’ where massless fermions
in two separate layers are coupled only through the many-body
Coulomb interaction. Some current efforts in graphene physics
focus on graphene double-layer structures (GDLSs)!%!'® with
the aim to find new electronic properties, which will emerge
from the interlayer many-body Coulomb interaction of mass-
less, chiral fermions with a unique Dirac-like spectrum.

Frictional drag'” between spatially separate electron layers
provides one of the most powerful tools for the study
of interaction effects. Recently, Coulomb drag in GDLSs
has attracted substantial theoretical'®?° and experimental’
attention. Despite much efforts, no general agreement has been
reached between experimental observations and theory, and
there is still no clear understanding of the dependence of the
drag on the interlayer spacing and on the carrier density while
the full treatment of the plasmon-mediated drag and of the
dielectric inhomogeneity effect for realistic samples is still
missing.

In this Rapid Communication we present our calcula-
tions of the drag resistivity in GDLSs in a wide rage of
temperatures 7 and of interlayer separations d using the
finite-T polarizability and the finite-T nonlinear susceptibility
for individual graphene layers. We focus on three main
questions. First, we investigate the effect of the dielectric
inhomogeneity of the GDLS surrounding environment on the
drag. Then, we calculate the contribution to the drag made by
double-layer optical and acoustical plasmon modes and study
the dependence of the drag rate on the interlayer spacing. We
show that Coulomb drag in GDLSs immersed in a three-layer
nonhomogeneous dielectric medium [see Fig. 1 (left)] is sig-
nificantly larger than that calculated for the respective averaged
homogenous background. This enhancement is observed for
temperatures up to the Fermi temperature 7 and it becomes
larger with an increase of the interlayer spacing. We find
that at intermediate temperatures the dynamical screening
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of the interlayer Coulomb interaction results in a plasmon
enhancement of the drag, which is strongly pronounced at
large interlayer separations. Our calculations for d = 30 nm
show an upturn in the drag resistivity at approximately 0.157 .
We calculate the drag rate both in the regime of strongly
(krpd < 1) and weakly (kpd > 1) coupled graphene layers
(kr is the Fermi wave vector). For interlayer separations such
that krpd ~ 1 the decrease of the drag resistivity with d is
approximately quadratic and it weakens with an increase of
d. In the weakly coupled regime we recover the strong d—*
dependence of the drag resistivity, calculated at 7 = 0.17F
within the static screening approximation. At 7 = 0.27F the
inclusion of the plasmon-mediated drag via the dynamical
screening weakens the drag dependence on the spacing and
results in a > behavior.

Theoretical concept. Frictional Coulomb drag in double-
layer electron systems manifests itself when an electrical
current with density J; driven along the active layer induces,
via momentum transfer due to interlayer Coulomb interaction,
anelectric field E; in the passive layer, which is an open circuit.
The transresistivity, defined as pp = —E,/Jj, is the direct
measure of drag, which is studied in experiment. In terms of
the diagonal intralayer conductivities o, and o, and the off-
diagonal interlayer drag conductivity op, the drag resistivity
pp can be obtained by inverting the conductivity tensor.
Assuming, according to the experimental situation, that op <K
012, wehave pp &~ —op/o10,. The drag conductivity between
two graphene monolayers can be calculated from the general
drag formula, derived within the Boltzmann equation,?® the
memory function,?” and the Kubo?®?? formalisms in the lowest
order of perturbation theory with small interlayer interaction.
In GDLSs the drag conductivity is represented as

1 I'i(g,0)2(g,w)
op = ———— dw |V, , e LA L
D= T6nxT A Xq:/ Vialg.@)l sinh? w/2T

1)
where A is the normalization area, and w and g are the
transferred energy and momentum from layer 1 to layer 2
at temperature 7. The dynamically screened Coulomb prop-
agator Vi»(q,w) describes the charge density fluctuations that

©2012 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.86.121405

S. M. BADALYAN AND F. M. PEETERS

2.0
~ 1.8
=
@ & 1.6
graphene 27— X
> 1.4
€ d >~
= =«
graphene-1- w 1.2

-
€] z--

1.0827
00 05 1.0 1.5 20 2.5 3.0
q lkr]

FIG. 1. (Color online) Left: A graphene double-layer system
immersed in a three-layer dielectric medium. The solid lines with
spacing d represent the active and passive graphene layers, 1 and
2, separating different materials with dielectric permittivities €,
€, and e3. Right: The solid curve corresponds to the ratio of the
double-layer screening functions 8f (q) to &5(g), which are calculated
within the static screening approximation, respectively, in GDLSs
with a homogeneous average dielectric permittivity €;3 and in GDLSs
with a nonhomogeneous dielectric background, corresponding to the
three-layered medium of the left figure. The dotted, dashed, and
dotted-dashed curves show, respectively, the intra- and interlayer
effective dielectric functions é;;(gd), €x(qd), and &5(gd) in units
of €3. The electron density in each graphene layer is n; =n, =
10" cm™2 and d = 5 nm that corresponds to krd ~ 0.89.

realize the electron-electron interaction between the graphene
layers. Within the random phase approximation V|,(q,®) can
be obtained from a standard 2 x 2 matrix Dyson equation as
vi2(q)
e(q,0)’

Via(g,0) = @

where the double-layer screening function is

e(q,®) = &1(q,w)e2(q,0) — v12(q)* (g, 0)1(q,0),  (3)

with the screening function and the Lindhard polarization
function®® of graphene monolayers given, respectively, by
e12(q,0) = 1 — v 2(q)T1Y ,(g,0) and T1{ ,(¢,w). In the ac-
tual calculations of the drag resistivity we make use of the exact
semianalytical formulas from Ref. 31 for the finite temperature
polarizability H?Q(q,a)) of graphene monolayers, including
both the interchirality and the intrachirality subband electronic
transitions. The temperature dependent chemical potential
u(T) is determined by the carrier density n from the equation
Lis( — exp[—f(1)/1]) — Lia( — exp[ji(r)/1]) = n/2t?, where
Li; (x) is the dilogarithm function t = u/Tr andt = T/ Tp.
In the static screening approximation we use the total Lindhard
polarization function I1°(¢g,0) = 2k /v in the static limit for
small momenta ¢ < 2kp. Here v is the velocity of the Dirac
fermions.

In double-layer structures the bare Coulomb interaction is
given by a 2 x 2 matrix, which, in general, represents three
different electron-electron interactions, the intralayer, v;;(q)
and vy(q), and the interlayer, vi2(q) = v21(q), given by

27 e?

qéij(gd)’
where i, j = 1,2 are the graphene layer indices. The effective
dielectric functions €;;(gd) take into account the inhomogene-
ity of the dielectric background of the GDLS, which plays an

important role in determining the bare Coulomb interactions.
In the dielectric environment consisting of three contacting

Uij(Qad) = 4
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media with different, frequency independent dielectric per-
mittivities &1, &, and &3, the effective dielectric functions of
GDLSs are obtained from the exact solution of the Poisson

equation for the Coulomb potential'* and are given by
1 . 2 (€3 cosh gd + €3 sinh gd) )
é11(qd) € (e; +€3)coshdg + (€163 + €3) sinhgd’
I 2 (e; coshgd + € sinhgd) ©)
En(gd) e (1 + €3)coshdqg + (6163 + e%) sinhgd’
1 2
= )

En(gd) o (€1 + €3)coshdg + (6163 + e%) sinhgd

It is seen in Fig. 1 (right) that the dielectric inhomogeneity
modifies substantially the behavior of the bare Coulomb inter-
actions and, what is especially important, the behavior of the
screening function in momentum space. In the long wavelength
limit all three interactions are determined by the same effective
dielectric constant, given by the arithmetic average of the top
and bottom surrounding media, €;3 = (€] + €3)/2, and does
not depend on the dielectric constant €; of the interlayer spacer.
In contrast, the double-layer screening function is represented
as a product of two terms, £(q,w) = £4(q,w)e_(q,®), where
&+(q,w) and e_(g,w) determine the in-phase and out-of-phase
charge density excitations and in the long wavelength limit
depend, respectively, on different dielectric constants €;3 and
€. Therefore, the static screening of GDLSs, &,(q¢) = ¢(g,0) in
this limit, differs essentially from the screening function ”(g),
calculated for GDLSs, immersed in a homogeneous dielectric
medium with an average permittivity €3 [Fig. 1 (right)]. As
we will see below this effect results in an overall significant
enhancement of the drag resistivity.

Furthermore, the other important quantity in Eq. (1) is
the quadratic response function of the charge density to an
external potential I';(g,w). Due to the linear dispersion of
Dirac fermions, I';(g,w) is no longer proportional to the
imaginary part of the individual layer polarizability as is the
case in the weak scattering limit for the usual two-dimensional
electron gas with parabolic dispersion. Here in the actual
calculations of the drag resistivity we use the finite temperature
nonlinear susceptibility for individual graphene layers from
Ref. 23, where the carrier transport time t;; is approximated by
a constant. This approximation is well justified at low temper-
ature, T < Tr.?>?* The energy dependence of the scattering
time can be important in the vicinity of the Dirac point when
w(T) <« T.2 Here we limit ourselves to the important range
of not very high temperatures, T < Tp. Therefore, the use
of the constant scattering time approximation near the upper
limit of temperatures T = TF should be still justified. Here
we assume also that the intralayer conductivities are restricted
by impurity scattering and use o}, = ezt[rsl,z rn(t)/m, where
n(t) = tffooo dz|z|/ cosh2(z + wu(t)/2t) for the temperature
dependent intralayer conductivities.

Results and discussion. Based on the formalism described
above we present here our numerical calculations of the drag
resistivity, carried out in a wide range of interlayer separations
and temperatures up to the Fermi temperature 7. In Fig. 2 we
study the effect of the dielectric background inhomogeneity
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FIG. 2. (Color online) The effect of the dielectric background
inhomogeneity on the Coulomb drag in GDLSs. The top pair of
symbols shows the log-log plot of the drag resistivity as a function
of scaled temperature in GDLSs with d = 5 nm interlayer spacing,
immersed in a nonhomogeneous (the upper set) and homogeneous
(the lower set) dielectric background with the parameters of the GDLS
of Fig. 1. The two other pairs of data sets in the middle and bottom of
the figure correspond, respectively, to d = 15 and 30 nm interlayer
spacing. All curves have been calculated within the static screening
approximation.

on the drag of massless fermions by comparing the drag
resistivity calculated for GDLSs immersed in a nonhomoge-
neous dielectric background with that calculated for GDLSs
in a homogeneous background. The presented results for three
different values of the interlayer spacing, d =5, 15, and
30 nm, show that the effect of the dielectric inhomogeneity
is important in GDLSs with realistic dielectric parameters,
corresponding to the experimental samples of Ref. 7. This
effect comes from the momentum dispersion of the effec-
tive dielectric functions for the three-layer nonhomogeneous
dielectric medium (see Ref. 13). It changes the respective
bare Coulomb interactions (4) and reduces the screening
function (3) in a nonhomogeneous dielectric background
(cf. Fig. 1) that in its turn enhances the effective interlayer
Coulomb interaction given by Eq. (2). We find that for d =
5 nm the drag resistivity in GDLSs with a nonhomogeneous
dielectric background is larger by a factor of 3 than that in a
corresponding homogeneous dielectric medium. This increase
is enhanced with interlayer spacing and for d = 30 nm the
difference is a factor of 4.7. As seen in Fig. 2, the overall
qualitative temperature dependence of the drag resistivity is
not affected when we include the effect of the dielectric
inhomogeneity or when we vary the interlayer spacing. At low
temperatures the drag resistivity increases quadratically with T
due to the thermal broadening of the Fermi surface and at tem-
peratures approximately 7 = 0.357F it shows a maximum. At
higher temperatures the chemical potential ;(7") decreases and
becomes smaller than 7, the electron gases in the two graphene
layers behave as a Boltzmann gas, and the drag resistivity
decreases approximately as the fourth power of temperature.
One can see in Fig. 3 that the dynamical screening changes
the temperature dependence of the drag resistivity, especially at
intermediate and higher temperatures. For d = 5 nm the static
screening approximation provides an adequate description
of drag at low temperatures up to 0.27F. At intermediate
temperatures the double-layer optical and acoustical plasmon
modes become thermally excited and the drag resistivity
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FIG. 3. (Color online) Plasmon enhancement of Coulomb drag
of massless fermions in GDLSs. The top and bottom bold curves
are log-log plots of the drag resistivity vs scaled temperature for
d =5 and d = 30 nm interlayer spacing, respectively. The solid
curves correspond to calculations using the finite temperature exact
polarization and nonlinear response functions while the dashed
curves are calculated within the static screening approximation.
The parameters are the same as in Fig. 1 for GDLSs with a
nonhomogeneous dielectric background. The thin curves correspond
to the calculations for d =5 nm in GDLSs with a homogeneous
dielectric background.

increases a little by the plasmon-mediated drag, in comparison
with that obtained in the static approximation. At even
higher temperatures, 7 ~ T, the dynamical screening has the
opposite effect, it increases with 7' due to the temperature
dependence of the dynamical polarizability, and therefore
the decrease of the transresistivity with 7 near Ty becomes
stronger (cf. the solid and dashed curves). For the larger inter-
layer spacing of d = 30 nm the static screening approximation
slightly overestimates the drag rate at low temperatures. One
can see, however, that the dynamical screening causes an
upturn in the drag resistivity at approximately 7, = 0.157.
With an increase of the interlayer spacing the drag mediated
by the electron-hole fluctuations decreases with d much faster
than the plasmon-mediated drag (cf. the solid and dashed
curves in Fig. 4). Therefore the plasmon enhancement is
much more pronounced for d = 30 nm than for d =5 nm.
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FIG. 4. (Color online) The log-log plot of the drag resistivity as
a function of the interlayer spacing d for T = 0.2TF (the solid and
dashed curves) and for T = 0.17 (the dotted-dashed and dotted
curves). The solid curve corresponds to calculations using the finite
temperature exact polarization and nonlinear response functions, and
the other curves are based on the static screening approximation. The
dotted curve is calculated for GDLSs with a homogeneous dielectric
background, and the other curves for GDLSs with a nonhomogeneous
dielectric background. The parameters are the same as in Fig. 1.
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Note that the upturn temperature 7. in GDLSs is smaller
than that obtained for the usual two-dimensional electron
gases.??

In Fig. 4 we study the interlayer spacing dependence
of the drag resistivity at T = 0.1Tp and T = 0.2TF. This
dependence is mainly determined by the parameter krd, which
is a measure of the interlayer coupling. For small values of
krd < 1 (for the density n considered here we have kpd ~ 1
for d ~ 6) the typical momenta ¢ in drag scattering events
are of the order of g7 = T'/v and do not depend on d. In this
case we find that the drag resistivity decreases as pp oc d~?
with § < 2. For larger separations with kpd >> 1 the drag
mediated by the electron-hole fluctuations is dominated by
the momenta ¢ < d~! and we find that the drag resistivity
calculated within the static screening approximation behaves
approximately as d—4.2633 At large separations the effect
of the dielectric inhomogeneity on the interlayer spacing
dependence of the drag is weak (cf. the dotted and dotted-
dashed curves in Fig. 4 have almost the same dependence
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on d). However, the dynamical screening due to the double-
layer plasmons weakens the interlayer spacing dependence of
the drag resistivity and we find that it behaves (the solid curve)
approximately as d 3.

In conclusion, we investigated the drag of massless
fermions in GDLSs in a wide range of temperatures and
interlayer separations. Our theory includes the effect of
the dielectric background inhomogeneity, which for realistic
parameters results in a significant increase of the drag rate.
At intermediate temperatures the thermally excited double-
layer plasmons cause an upturn in the drag resistivity. We
find that the drag resistivity decreases with the interlayer
spacing approximately quadratically for interlayer separations
corresponding to the transition region from strong to weak
interlayer coupling. This dependence increases (decreases)
with an increase (decrease) of the spacing.
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