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Electron-phonon bound state in graphene
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The fine structure of the Dirac energy spectrum in graphene induced by electron-optical phonon coupling
is investigated in the portion of the spectrum near the phonon emission threshold. The derived new dispersion
equation in the immediate neighborhood below the threshold corresponds to an electron-phonon bound state.
We find that the singular vertex corrections beyond perturbation theory strongly increase the electron-phonon
binding energy scale. The predicted enhancement of the effective electron-phonon coupling can be measured
using angle-resolved spectroscopy.
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I. INTRODUCTION

Discovery of graphene1,2 with its unique conical gapless
bandstructure provides a new rich area for investigations
of many-body physics of chiral massless fermions.3 Active
theoretical efforts are directed to the study of the interaction
effects of Dirac carriers with elementary excitations of charge
density waves4,5 and lattice vibrations,6–8 which result in the
velocity renormalization of the bare Dirac spectrum9–13 and in
the formation of new quasiparticles such as plasmarons,14,15

polarons,16,17 and plasmon-phonon complexes.18 The spec-
tral and damping properties of these quasiparticles have
been studied by means of such powerful experimental tools
as Raman19,20 and angle-resolved photoemission21 spectro-
scopies. These high precision measurements indicate signifi-
cant modifications of the peculiar graphene bandstructure, in-
duced by electron-electron and electron-phonon interactions.

The aim of the present paper is to investigate how the
Dirac spectrum in graphene is modified near the threshold
of optical phonon emission. Previous studies of this problem
in bulk semiconductors22 have shown that even for weak
electron-phonon coupling, α, the branches of the true spectrum
can be classified into three main groups, according to the
effective average number of phonon states, N = 1 − Z, bound
to the electron and forming complex quasiparticles. Here
Z = (1 − ∂�(ε ,p)/∂ ε)−1|ε=ε(p) with �(ε ,p) the electron
mass operator and ε(p) the energy of the electron-phonon
complex with momentum p. The first group includes the usual
polaron states with N ∼ α2. The spectrum of these branches
differs from the bare one by a simple renormalization of the
energy of the order of α2. The second and third groups are
the hybrid and bound states of electrons and phonons. The
universal threshold nonanalyticities23 are responsible for the
existence of these electron-phonon complexes, respectively,
with N ∼ 1/2 and N ∼ 1. Note that for the formation of the
hybrid states, a resonance situation in the bare spectrum is
required.

The character of the threshold singularities depends on
the competition between the kinetic energy of the elec-
trons and phonons and their interaction energy, therefore,
is largely determined by the dimensionality of the system.
In graphene because of its two-dimensional nature the size-
extend of electrons and phonons is strongly reduced and
one can expect that the threshold nonanalyticities will result
in strong modifications of the bare Dirac spectrum. Such a

strong enhancement of the electron-phonon effective coupling
and the binding energies of complex quasiparticles has
been previously found in two-dimensional semiconductor
structures.24,25

Recent perturbative calculations9–11,16 of the electron mass
operator, �(ε), in graphene showed that in n-doped samples
the real part of the lowest-order term diverges logarithmically,
�0(ε) ∝ ln εF /εc − ε, at energies near the optical phonon
emission threshold, εc = ±ω0, while the imaginary part of
�0(ε), related to the single-particle density of states, makes
a discontinuous jump at the same threshold points. The +
(−) sign refers to the phonon emission process by Fermi
electrons (holes), εF is the Fermi energy, and ω0 ≈ 196 meV
is the longitudinal optical phonon energy. We will use h̄ = 1
units. In terms of the diagrammatic expansion applied to the
electron mass operator, the diagrams with the “dangerous
intersections”26,27 along one phonon and one electron lines are
responsible for the threshold singularity of �(ε). The simplest
diagrams for the electron mass operator with such intersections
are shown in Figs. 1(a)–1(c), where the singular function �0(ε)
corresponds to each “dangerous intersection.” As seen, the
number of “dangerous intersections” increases with the order
of the diagram thereby strengthening the singularity of the
higher order contributions to �(ε). Therefore, the higher-order
diagrams with such “dangerous intersections” cannot be ne-
glected, although the electron-phonon coupling is small and in
the neighborhood of the phonon emission threshold it requires
to sum the whole series of divergent diagrams with such “dan-
gerous intersections.” In the present paper we show that such
singular vertex corrections result in a mass operator, �(ε), with
a qualitatively different behavior from the lowest order term
�0(ε), which has been used in the previous treatments from
Refs. 9–11 and 16 to calculate the electron-phonon spectrum,
respectively, within the perturbative Brillouin-Wigner (BW)28

and the Rayleigh-Schrödinger (RS)29 theories. In order to
obtain the true spectrum of electron-phonon complexes in
graphene we develop here an approach beyond perturbation
theory, which leads to coupled integral equations for the exact
electron Green function and for the exact electron-phonon
vertex part, drawn in Fig. 2. By solving these equations within
the threshold approximation,22,27 we derive a new dispersion
relation for the complex quasiparticle energy [see Eq. (12)]
that in the immediate neighborhood below the threshold
describes an electron-phonon bound state in graphene with
new analytical dependencies on the electron-phonon coupling.
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FIG. 1. (Color online) The simplest diagrams for the electron self
energy: (a) the lowest order mass operator �0(ε), (b) and (c) are vertex
corrections to �0(ε) in next two orders. The vertical dash-dotted
lines show the “dangerous intersections” along one phonon and one
electron lines corresponding to the threshold singularities of the mass
operator. (d) The simplest diagram for the electron-phonon four vertex
part from Fig. 2.

The true spectrum does not asymptotically tend to the phonon
energy but always remains below it at a small but finite
distance. We find that at finite wave vectors the singular vertex
corrections to �0(ε) increase strongly the electron-phonon
binding energy scale in comparison with that obtained within
the previous perturbative approaches.

II. THEORETICAL CONCEPT

We search for new branches of electron-phonon complex
states from the poles of the exact single-electron Green
function, Gμ(ε), in the total energy parameter ε. Usually in
doped graphene samples the Fermi energy is usually much
larger than the lattice temperature T and even at room
temperatures most of the electrons are below εF . In the chiral
basis the zero temperature Green function of noninteracting
electrons

G0μ(ε, k) = 1
ε + εF − εμk + i0 sgn ε

(1)

corresponds to the thin solid lines in Figs. 1 and 2. The
electron bare energy in the vicinity of the Dirac points
in graphene has a linear dispersion, εμk = μvF |�k|, where
�k and vF are the momentum and the Fermi velocity of
the massless fermions, described by the Hamiltonian H0 =
−vF �σ · �k. The Pauli matrices �σ act in the pseudospace of
graphene sublattices and μ = ±1 labels the electron chirality.
At low T absorption of phonons by electrons is negligible
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FIG. 2. (Color online) (top) Dyson equation for the exact electron
Green function Gμ(ε) (thick solid lines). (bottom) The ladder-type
equation for the exact electron-phonon vertex part �μ̄μ(ε) (large bold
dots). The solid square represents the irreducible four vertex part
�(ε) with two electron and two phonon external lines. The simplest
diagram corresponding to �(ε) is drawn in Fig. 1(d).

and we replace all exact phonon Green functions (dashed
lines) by free phonon propagators, Ds(ω,q) = (ω − ωsq +
i0)−1 − (ω + ωsq − i0)−1, where ωsq and q are the energy
and momentum of the s phonon mode in graphene.

The small dots in Figs. 1 and 2 correspond to the bare
electron-phonon vertex functions

γ s
μμ′(k,k′; q) =

∫
drψ†

μ′k′(r)Vsq(r)ψμk(r), (2)

where the electron wave functions for the K point are
ψμk(r) = (μeiφk )T exp(ikr)/

√
A with A the normalizing area

and φk the polar angle of the vector k. The perturbation of
the graphene lattice potential created by a single sq phonon
mode is given by Vsq(r) = αvF Vs(q) exp(iqr)/

√
A with the

interaction matrices represented as30

Vs(q) =
(

0 i1+se−iφq

i1−seiφq 0

)
(3)

for the longitudinal (s = 1) and transverse (s = 0) phonons.
The dimensionless coupling constant α = β/b2

√
2ρωsq,

where ρ is the mass density of graphene, β ∼ 2 a dimension-
less tight-binding parameter, and b the bond length between
adjacent carbon atoms. This yields weak coupling with
α2 ∼ 0.02.11

Further, we focus only on the part of the spectrum near the
threshold of longitudinal optical phonon emission by electrons,
εc = +ω0. The singular behavior of the spectrum near the
threshold of phonon emission by Fermi holes, εc = −ω0,
as well as for the transverse optical phonons can be treated
independently in a similar way.

In the energy region of our interest, ε ≈ εc, we can make
several simplifications within the threshold approximation as
described below. In equations corresponding to the diagrams
of Fig. 2, we take the electron Green functions as retarded and
after the integration over the phonon energetic parameter ω

replace it by ω0 in all internal electron lines. In proximity of the
threshold in the conductance band, the leading contributions
to the summation over the chirality of the internal electron
lines make the singular terms with μ̄ = +1 and μ′ = +1.
The energetic parameter of the exact Green functions in
the “dangerous intersections” in the second terms in the
right-hand side of the equations in Fig. 2, ε −ω0, lies far
from the threshold εc, where perturbation theory is applicable.
Therefore, the internal exact Green functions can be replaced
by the bare function G0+(ε −ω0,k). Furthermore, in all
integrations over the absolute values of the electron momenta
corresponding to the “dangerous intersections” in Fig. 2, only
the small regions near the Fermi wave vector, |k| ≈ kF and
|k′| ≈ kF , give the main contribution to the integrals in these
equations. Therefore, in this approximation one can take the
quantities γ , �, and � out of the integrations over k and k′.
This allows us write the Dyson equation corresponding to
Fig. 2 as

G−1
μ (ε ,p) = G−1

0μ (ε ,p) − �+(ε)
∫ 2π

0
dφk

× γμ+(p,k; k − p)�+μ(ε |k,p; p − k)||k|=kF
(4)
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and represent the equation for the nonanalytical vertex part in
the following way

�+μ(ε |k,p; p − k) = γ+μ(k,p; p − k) + �+(ε)
∫ 2π

0
dφk′�++

× (ε |k,p − k; k′,k′ − p)

×�+μ(ε |k′,p; p − k′)||k|=|k′|=kF
. (5)

Here we introduce the following singular function

�+(ε) =
∑
ν,k

G0ν(ε −ω0,k)

= A
2π

∫
(1 − θ (ε+k − εF ))kdk

ε + εF −ω0 − vF k + i0
, (6)

where the unit step θ (x) function is what remains from the
Fermi functions at T = 0. The divergence of the integral at
large values of k is related to the linearity of the graphene
energy band. Near the phonon emission threshold, ε ≈ εc,
the cutoff of the integral at large momenta contributes to the
regular part of the integral. We are interested in its singular
part, which comes from the low limit of the integral, i.e., from
the momentum range close to kF , and gives

�+(ε) ∝ − A
2π

kF

vF

ln
εF

ω0 − ε
. (7)

Note that the function �+(ε) has the same singular behavior at
ε = ω0 as the lowest-order mass operator �0(ε). Because the
energetic parameter of the electron internal Green function
G0μ′′ (ε − 2ω0) in the four vertex part �++(ε) is far from
the threshold εc (the four vertex part has no “dangerous
intersection” along one electron and one phonon lines), �++(ε)
can be expanded with respect to α and be replaced by the
simplest diagram shown in Fig. 1(d). We restrict ourselves to
highly doped samples where the Fermi energy is larger than the
phonon energy. In this regime the important contribution to the
four vertex part �++(ε) comes from scattered virtual phonons
with approximately equal antiparallel momenta q = p − k and
q′ = p − k′ and we replace εp−q′−q by εF in the electron Green
function and retain only the term with chirality μ′′ = +1 in
the sum corresponding to the internal electron line. For such
dominant scattering events the vertex parts γ in �++(ε) depend
only on q or q′ and the four vertex part becomes decoupled as

�++(ω0|q; q′) ≈ G0+(−ω0,kF )γ++(q)γ++(−q′). (8)

Taking μ = +1 in all electron external lines and introducing
a new amplitude

�̂(ε ,p) =
∫ 2π

0
dφqγ++(−q)�++(ε |p − q,p; q) (9)

as well as the form factor

ϒ(p) =
∫ 2π

0
dφq|γ++(q)|2 ≈ 2πα2 v2

F

A , (10)

and with the help of Eqs. (5) and (8)–(10), we get

�̂(ε ,p) = ϒ(p)

1 − �+(ε)G0+(−ω0,kF )ϒ(p)
. (11)

Combining Eqs. (4), (9), and (11) and making use of the
explicit expressions for the respective functions in these

equations, we derive the following dispersion relation

ε − vF (p − pF ) = −ω0

g ln εF

ω0−ε

1 − g ln εF

ω0−ε

. (12)

Here we introduce a renormalized electron-phonon coupling
g = α2 εF /ω0. Equation (12) includes the singular vertex
corrections beyond perturbation theory and results in new
properties of the electron-phonon quasiparticle in graphene.
The perturbative BW approach is recovered if the dominator
in the right-hand side of Eq. (12) is set equal to 1. Within
the RS theory the exact energy in the right-hand side of
Eq. (12) additionally should be replaced by ε = vF (p − pF ).
The corresponding single-particle density of states is given
by g(ε) = 4p/(2π∂ε/∂p)|ε=ε(p), where ε(p) is the solution of
Eq. (12).

III. RESULTS AND DISCUSSION

In Fig. 3 we plot the spectrum characteristics of the electron-
phonon quasiparticle, calculated from Eq. (12). We consider
only the energy range 0 < ε < ω0. Above the threshold, ε >

ω0, there exists a continuum of decaying states and no true
elementary excitations. For ε < 0, the threshold εc = −ω0,
which refers to the Fermi holes, has a similar effect on the
spectrum. As seen in Fig. 3 (left-hand side), at small values
of p − pF < q0 (q0 = ω0/vF ) the effect of vertex corrections
is weak and the spectrum obtained from perturbative RS and
BW theories provides an adequate description. In this limit
the average number of phonon states N ∼ g and the density
of states is linear with ε. At ε = 0 the shift of g(ε) from
gF , the density of states of the bare Dirac fermions at the
Fermi level, is proportional to the coupling g [Fig. 3 (middle)].
With an increase of the momentum p, the RS approach fails
completely while the spectrum, obtained within the two other
approaches for p − pF ∼ q0, describes the electron-phonon
hybrid states with N ∼ 1/2. It is seen in the inset in Fig. 3
(left-hand side) that the vertex corrections increase the binding
energy, εb = ω0 − ε, but the effect is still relatively modest.

For even larger momenta p − pF > q0, the spectrum
obtained within BW perturbation theory converge asymptot-
ically to the phonon energy when p → ∞ hence does not
support an electron-phonon bound state. In contrast, the vertex
corrections become especially important in this region and
open a small gap under the threshold. The true spectrum
obtained from Eq. (12) always remains below the phonon
energy and corresponds to the electron-phonon bound state
with N ∼ 1. The velocity of the bound state tends to zero
while the density of states increases strongly with p. The
binding energy of the bound state remains finite for p → ∞
and exhibits a stark exponential dependence on the coupling
constant, ε∞

b = εF exp(−1/g). Taking n = 1014 cm−2 we have
ε∞
b ≈ 3 K, which is by an order of magnitude larger than the

mobility-induced level broadening in present clean samples of
graphene.31 Therefore, the induced gap will be detectable in
very clean samples of graphene. At finite momenta p − pF >

q0, we find, however, that the singular vertex corrections
increase strongly the binding energy εb in comparison with
that obtained within the perturbative BW approach [see Fig. 3
(left-hand side)]. For p − pF = 1.5q0 and for the doping level
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FIG. 3. (Right-hand side) The energy spectrum of the electron-optical phonon quasiparticle for the electron density n = 5.6 × 1013 cm−2.
The horizontal solid line is the phonon emission threshold. (Middle) The corresponding density of states g(ε) of the quasiparticle in units of
gF = 2kF /πvF . (Left-hand side) The electron-phonon binding energy versus the bare coupling g for p − pF = 1.5q0. Inset shows the binding
energy of the hybrid states at the resonance p − pF = q0. In all figures the dashed lines represent the bare Dirac fermions, the dotted and
dot-dashed curves are calculated, respectively, within the Rayleigh-Schrödinger and Wigner-Brillouin perturbative approaches. The solid curve
is obtained within the present theory, taking into account the singular vertex corrections beyond perturbation theory.

n = 5.6 × 1013 cm−2 (corresponding to g ≈ 0.09), we find
for the binding energy εb ≈ 14.5 meV. It is about a factor of
5 larger than the corresponding BW perturbative value and
this difference increases strongly with g [Fig. 3 (left-hand
side)]. This enhancement results in a significant deviation
from the linear Dirac spectrum that should manifest itself
in angle-resolved measurements as stark δ-function peaks at
frequencies ω0 − εb and wave vectors larger than q0. Recently
such an enhancement of electron-phonon coupling has been
observed in the measurements of Ref. 32 on potassium-doped
graphene on Ir(111).

In conclusion, we have calculated the fine structure of
the Dirac spectrum in graphene in the proximity of the

phonon emission threshold. The renormalized spectrum in the
immediate neighborhood below the threshold corresponds to
the electron-phonon bound state. Our calculations result in a
strong enhancement of the electron-phonon binding energy
due to the singular vertex corrections, which can be probed in
experiment.
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