toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Li, Y.; Quinn, B.K.; Gielis, J.; Li, Y.; Shi, P. url  doi
openurl 
  Title Evidence that supertriangles exist in nature from the vertical projections of Koelreuteria paniculata fruit Type A1 Journal article
  Year 2022 Publication Symmetry Abbreviated Journal Symmetry-Basel  
  Volume 14 Issue 1 Pages 23  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Many natural radial symmetrical shapes (e.g., sea stars) follow the Gielis equation (GE) or its twin equation (TGE). A supertriangle (three triangles arranged around a central polygon) represents such a shape, but no study has tested whether natural shapes can be represented as/are supertriangles or whether the GE or TGE can describe their shape. We collected 100 pieces of Koelreuteria paniculata fruit, which have a supertriangular shape, extracted the boundary coordinates for their vertical projections, and then fitted them with the GE and TGE. The adjusted root mean square errors (RMSEadj) of the two equations were always less than 0.08, and >70% were less than 0.05. For 57/100 fruit projections, the GE had a lower RMSEadj than the TGE, although overall differences in the goodness of fit were non-significant. However, the TGE produces more symmetrical shapes than the GE as the two parameters controlling the extent of symmetry in it are approximately equal. This work demonstrates that natural supertriangles exist, validates the use of the GE and TGE to model their shapes, and suggests that different complex radially symmetrical shapes can be generated by the same equation, implying that different types of biological symmetry may result from the same biophysical mechanisms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000746030100001 Publication Date 2021-12-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-8994 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.7  
  Call Number UA @ admin @ c:irua:186453 Serial 7158  
Permanent link to this record
 

 
Author Van Putte, N.; Meire, P.; Seuntjens, P.; Joris, I.; Verreydt, G.; Hambsch, L.; Temmerman, S. pdf  url
doi  openurl
  Title Solving hindered groundwater dynamics in restored tidal marshes by creek excavation and soil amendments : a model study Type A1 Journal article
  Year 2022 Publication Ecological engineering: the journal of ecotechnology Abbreviated Journal Ecol Eng  
  Volume 178 Issue Pages 106583-15  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL); Ecosphere  
  Abstract Groundwater fluxes in tidal marshes largely control key ecosystem functions and services, such as vegetation growth, soil carbon sequestration, and nutrient cycling. In tidal marshes restored on formerly embanked agricultural land, groundwater fluxes are often limited as compared to nearby natural marshes, as a result of historical agricultural soil compaction. To improve the functioning of restored tidal marshes, knowledge is needed on how much certain design options can optimize soil-groundwater interactions in future restoration projects. Based on measured data on soil properties and tidally induced groundwater dynamics, we calibrated and evaluated a 2D vertical model of a creek-marsh cross-section, accounting for both saturated and unsaturated groundwater flow and solute transport in a variably saturated groundwater flow model. We found that model simulations of common restoration practices such as soil amendments (increasing the depth of porous soil on top of the compact layer) and creek excavation (increasing the creek density) increase the soil aeration depth and time, the drainage depth and the solute flux, and decrease the residence time of solutes in the porewater. Our simulations indicate that increasing the depth to the compact layer from 20 cm to 40 cm, or increasing the creek density from 1 creek to 2 creeks along a 50 m marsh transect (while maintaining the total creek cross-sectional area), in both cases more than doubles the volume of water processed by the marsh soil. We discuss that this may stimulate nutrient cycling. As such, our study demonstrates that groundwater modelling can support the design of marsh restoration measures aiming to optimize groundwater fluxes and related ecosystem services.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000795478200005 Publication Date 2022-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8574 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.8 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.8  
  Call Number UA @ admin @ c:irua:186605 Serial 7210  
Permanent link to this record
 

 
Author Geerts, R.; Vandermoere, F.; Halet, D.; Joos, P.; Van Den Steen, K.; Van Meenen, E.; Blust, R.; Van Winckel, T.; Vlaeminck, S. file  openurl
  Title Drinking waste? An exploration of public support for wastewater reuse in Flanders Type P3 Proceeding
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords P3 Proceeding; Sociology; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Centre for Research on Environmental and Social Change  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (up) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:186706 Serial 7825  
Permanent link to this record
 

 
Author Ricci, P.E.; Gielis, J. doi  isbn
openurl 
  Title From Pythagoras to Fourier and from geometry to nature Type MA3 Book as author
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages 146 p.  
  Keywords MA3 Book as author; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2022-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-90-832323-0-0; 978-90-832323-1-7 Additional Links (up) UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:186730 Serial 7166  
Permanent link to this record
 

 
Author De Tommasi, E.; Rogato, A.; Caratelli, D.; Mescia, L.; Gielis, J. url  isbn
openurl 
  Title Following the photons route : mathematical models describing the interaction of diatoms with light Type H1 Book chapter
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages 1-53  
  Keywords H1 Book chapter; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The interaction of diatoms with sunlight is fundamental in order to deeply understand their role in terrestrial ecology and biogeochemistry, essentially due to their massive contribution to global primary production through photosynthesis and its e↵ect on carbon, oxygen and silicon cycles. Following the journey of light through natural waters, its propagation through the intricate frustule micro- and nano-structure and, finally, its fate inside the photosynthetic machinery of the living cell requires several mathematical and computational models in order to accurately describe all the involved phenomena taking place at di↵erent space scales and physical regimes. In this chapter, we review the main analytical models describing the underwater optical field, the essential numerical algorithms for the study of photonic properties of the diatom frustule seen as a natural metamaterial, as well as the principal models describing photon harvesting in diatom plastids and methods for complex EM propagation problems and wave propagation in dispersive materials with multiple relaxation times. These mathematical methods will be integrated in a unifying geometric perspective.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-119-74985-1 Additional Links (up) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:186731 Serial 7165  
Permanent link to this record
 

 
Author Neven, L.; Barich, H.; Ching, H.Y.V.; Khan, S.U.; Colomier, C.; Patel, H.H.; Gorun, S.M.; Verbruggen, S.; Van Doorslaer, S.; De Wael, K. pdf  url
doi  openurl
  Title Correlation between the fluorination degree of perfluorinated zinc phthalocyanines, their singlet oxygen generation ability, and their photoelectrochemical response for phenol sensing Type A1 Journal article
  Year 2022 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 94 Issue 13 Pages 5221-5230  
  Keywords A1 Journal article; Organic synthesis (ORSY); Sustainable Energy, Air and Water Technology (DuEL); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Electron-withdrawing perfluoroalkyl peripheral groups grafted on phthalocyanine (Pc) macrocycles improve their single-site isolation, solubility, and resistance to self-oxidation, all beneficial features for catalytic applications. A high degree of fluorination also enhances the reducibility of Pcs and could alter their singlet oxygen (1O2) photoproduction. The ethanol/toluene 20:80 vol % solvent mixture was found to dissolve perfluorinated FnPcZn complexes, n = 16, 52, and 64, and minimize the aggregation of the sterically unencumbered F16PcZn. The 1O2 production ability of FnPcZn complexes was examined using 9,10-dimethylanthracene (DMA) and 2,2,6,6-tetramethylpiperidine (TEMP) in combination with UV–vis and electron paramagnetic resonance (EPR) spectroscopy, respectively. While the photoreduction of F52PcZn and F64PcZn in the presence of redox-active TEMP lowered 1O2 production, DMA was a suitable 1O2 trap for ranking the complexes. The solution reactivity was complemented by solid-state studies via the construction of photoelectrochemical sensors based on TiO2-supported FnPcZn, FnPcZn|TiO2. Phenol photo-oxidation by 1O2, followed by its electrochemical reduction, defines a redox cycle, the 1O2 production having been found to depend on the value of n and structural features of the supported complexes. Consistent with solution studies, F52PcZn was found to be the most efficient 1O2 generator. The insights on reactivity testing and structural–activity relationships obtained may be useful for designing efficient and robust sensors and for other 1O2-related applications of FnPcZn.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000786254500002 Publication Date 2022-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.4  
  Call Number UA @ admin @ c:irua:187522 Serial 7141  
Permanent link to this record
 

 
Author Van Tendeloo, M. openurl 
  Title Resource-efficient nitrogen removal from sewage : kinetic, physical and chemical tools for mainstream partial nitritation/anammox Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages iv, 204 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Adequate removal of pollutants from sewage is important to protect the environment and public health. Today, sewage treatment plants are operational in many parts of the world, and although the used technologies are effective in removing pollutants from wastewater, they are energy- and resource-intensive. Reshaping sewage treatment into a two-stage system, with separated organic carbon and nitrogen removal, facilitates the transformation towards energy-positive sewage treatment. This thesis will focus on resource-efficient nitrogen removal from sewage via partial nitritation/anammox (PN/A), with reduced organic carbon and oxygen consumption compared to conventional techniques. PN/A relies on the teamwork between two microbial groups to convert ammonium into nitrogen gas. Several other groups of microbes however can proliferate in the sludge, competing for substrate with the key players, lowering the nitrogen removal efficiency and increasing the energy demand. To obtain the desired microbial community, control tools should be applied to selectively promote the desired microbes while suppressing the unwanted competitors. In this thesis, multiple control tools were studied to establish a workable framework for successful implementation of PN/A in the main stream of a sewage treatment plant. These tools can be divided into three categories: i) kinetic tools, regulating substrate availability (e.g., oxygen availability control and residual ammonium concentration), ii) physical tools, revolving around sludge retention and selection (e.g., sludge age control and sludge aggregation form), and iii) chemical tools, exposing the sludge to stress conditions for which the unwanted microbes are vulnerable (e.g., sludge treatments with a single stressor such as free ammonia). The first research chapter focussed on oxygen availability control and single-stressor sludge treatments. The following two chapters covered the development of a novel multi-stressor concept combining substrate starvation and exposure to sulphide and free ammonia. In the final research chapter, the previously obtained knowledge was combined into a demonstration study on pilot-scale. The combination of these control tools was found effective in achieving nitrogen removal via PN/A, both on lab- and pilot-scale. Consequently, the obtained results in this thesis can catalyse the implementation of mainstream PN/A by providing a toolbox with multiple control tools and clever reactor design, thus advancing the concept of energy neutrality and resource efficiency in sewage treatment plants.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (up) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:187665 Serial 7204  
Permanent link to this record
 

 
Author Quintero-Coronel, D.A.; Lenis-Rodas, Y.A.; Corredor, L.; Perreault, P.; Bula, A.; Gonzalez-Quiroga, A. pdf  url
doi  openurl
  Title Co-gasification of biomass and coal in a top-lit updraft fixed bed gasifier : syngas composition and its interchangeability with natural gas for combustion applications Type A1 Journal article
  Year 2022 Publication Fuel Abbreviated Journal Fuel  
  Volume 316 Issue Pages 123394-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The co-gasification of biomass and coal is a promising approach for efficiently integrating the unique advantages of different gasification feedstock with syngas production. Additionally, syngas from the co-gasification of locally available biomass and coal could supplement the natural gas used in household and industrial burners. The top-lit updraft gasifier features a moving ignition front that starts at the top and propagates downward through the solids bed, while air enters from the bottom and the gas product flows upwards. This study assesses the co-gasification performance of palm kernel shell and high-volatile bituminous coal in a top-lit updraft fixed bed gasifier using 70, 85, and 100 vol% biomass and equivalence ratios ranging from 0.26 to 0.34. The results indicate that the ignition front propagates faster and is more uniform as the biomass volume increases. Micro GC analysis revealed that the H2/CO ratio remained in the range of 0.57–0.59, 0.49–0.51, and 0.42–0.46 for experiments with 70, 85, and 100 vol% biomass, respectively. A gas interchangeability analysis showed that syngas-natural gas blends with up to 15 vol% of syngas could combust in atmospheric natural gas burners without modifications. Thus, the top-lit updraft gasifier shows excellent potential for the co-gasification of coal and biomass. Further research on this technology should explore steam as a gasification agent to enhance the syngas energy content and continuous solids feeding.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000783173000003 Publication Date 2022-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-2361 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.4  
  Call Number UA @ admin @ c:irua:187752 Serial 7136  
Permanent link to this record
 

 
Author Kummamuru, N.B.; Verbruggen, S.W.; Lenaerts, S.; Perreault, P. pdf  url
doi  openurl
  Title Experimental investigation of methane hydrate formation in the presence of metallic packing Type A1 Journal article
  Year 2022 Publication Fuel Abbreviated Journal Fuel  
  Volume 323 Issue Pages 124269-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Clathrate hydrates gained significant attention as a viable option for large-scale storage of natural gas, primarily methane (CH4). Unlike employing the nanoconfinement for enhancing the nucleation sites and hydrate growth as in the porous materials, whose synthesis is often associated with high costs and poor batch reproducibility, a new approach for promoting CH4 hydrates using pure water (H2O) in an unstirred reactor packed with stainless steel beads (SSB) was proposed in this fundamental work, where the interstitial space between the beads was exploited for enhanced hydrate growth. SSB of two diameters, 5 mm and 2 mm, were used as. a packed bed to investigate their effects on CH4 hydrate formation at 273.65 K, 275.65 K, and 277.65 K with an initial pressure of 6 MPa. The thermal conductivity of SSB packing potentially aided hydrate growth by expelling the hydration heat, while, the results also revealed that driving force has a substantial impact on the rate of CH4 hydrate formation and gas uptake. The experiments conducted in both 5 mm and 2 mm SSB packed bed reactors showed a maximum gas uptake of 0.147 mol CH4/mol H2O at 273.65 K with water to hydrate conversion of 84.42% with no significant variation. The results established the promotion effect on the kinetics of CH4 hydrate formation in the unstirred reactor packed with 2 mm SSB due to the availability of more interstitial space offering multiple nucleation sites for CH4 hydrate by providing a larger specific surface area for H2O-CH4 reaction. Experiments with varying H2O content were also performed and the results showed that the water to hydrate conversion and rate of hydrate formation could be enhanced at a lower H2O content in a packed bed reactor. This study demonstrates that the use of costly or intricate porous materials can be made redundant, by exploiting the interstitial voids in packing of cheap and widely available SSB as a promising alternative material for enhancing the kinetics of artificial CH4 hydrate synthesis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000799165400007 Publication Date 2022-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-2361 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.4  
  Call Number UA @ admin @ c:irua:187830 Serial 7159  
Permanent link to this record
 

 
Author Broos, W.; Wittner, N.; Geerts, J.; Dries, J.; Vlaeminck, S.E.; Gunde-Cimerman, N.; Richel, A.; Cornet, I. url  doi
openurl 
  Title Evaluation of lignocellulosic wastewater valorization with the oleaginous yeasts R. kratochvilovae EXF7516 and C. oleaginosum ATCC 20509 Type A1 Journal article
  Year 2022 Publication Fermentation Abbreviated Journal  
  Volume 8 Issue 5 Pages 204-221  
  Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)  
  Abstract During the conversion of lignocellulose, phenolic wastewaters are generated. Therefore, researchers have investigated wastewater valorization processes in which these pollutants are converted to chemicals, i.e., lipids. However, wastewaters are lean feedstocks, so these valorization processes in research typically require the addition of large quantities of sugars and sterilization, which increase costs. This paper investigates a repeated batch fermentation strategy with Rhodotorula kratochvilovae EXF7516 and Cutaneotrichosporon oleaginosum ATCC 20509, without these requirements. The pollutant removal and its conversion to microbial oil were evaluated. Because of the presence of non-monomeric substrates, the ligninolytic enzyme activity was also investigated. The repeated batch fermentation strategy was successful, as more lipids accumulated every cycle, up to a total of 5.4 g/L (23% cell dry weight). In addition, the yeasts consumed up to 87% of monomeric substrates, i.e., sugars, aromatics, and organics acids, and up to 23% of non-monomeric substrates, i.e., partially degraded xylan, lignin, cellulose. Interestingly, lipid production was only observed during the harvest phase of each cycle, as the cells experienced stress, possibly due to oxygen limitation. This work presents the first results on the feasibility of valorizing non-sterilized lignocellulosic wastewater with R. kratochvilovae and C. oleaginosum using a cost-effective repeated batch strategy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000801796000001 Publication Date 2022-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2311-5637 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:187883 Serial 7157  
Permanent link to this record
 

 
Author Spanoghe, J. isbn  openurl
  Title Purple bacteria cultivation on light, carbon dioxide and hydrogen gas : exploring and tuning the potential for microbial food production Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages vi, 207 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The human population is projected to grow to 9.7 billion by 2050, resulting in an estimated increase in protein demand of 50%. From an environmental perspective, the current and future demand of protein cannot be sustainably met as the conventional food production chain is severely altering biogeochemical cycles of nitrogen and phosphorus, biodiversity and land-use, with flows towards the biosphere and oceans that are exceeding the planetary boundaries. Microbial protein (protein derived from microorganisms) has been suggested as an excellent sustainable protein source, a fortiori when produced in a land- and fossil free manner. The photoautohydrogenotrophic cultivation (i.e. with light, CO2 and H2) of purple bacteria links up perfectly with the upcoming green electrification of industry (green H2) and the need for carbon capture and utilization. However, this metabolism represented a gap in literature, and thus this thesis aimed to establish a basic knowledge platform on its kinetic, stoichiometric and nutritional performance. At first, three originally photoheterotrophically enriched purple bacteria were studied of which Rhodobacter capsulatus reached the highest protein productivity of 0.16 g protein/L/d, which aligned well with the commonly-known photoautotrophic microalgae. Moreover, a full dietary essential amino acid match was found for human food, while the fatty acid content was dominated by the health-stimulating vaccenic acid (82-86%). Lastly, the achieved protein yield in photoautohydrogenotrophic purple bacteria was 2.3 times higher compared to hydrogen oxidizing bacteria, indicating a resource-efficient use of H2. Next, a photoautohydrogenotrophic enrichment of wastewater treatment microbiomes was performed in search for specialist species. While the isolates of this enrichment showed improvements in their performance during acclimation, the kinetic and nutritional performance of Rhodobacter capsulatus still excelled. Subsequently, the influence of nutrient limitations (C or N) and nitrogen gas fixation was studied on the nutritional tuning potential. Both the limitations as well as the N2 fixation resulted in the shift of the essential amino acid profiles. Additionally, the limitations significantly decreased the pigment content, while an increase in the storage of poly-P was seen in case of carbon limitations. The next major challenge was the production intensification in a photobioreactor of which the design was linked to minimizing both H2 and light limitations. The chosen bubble-column photobioreactor already resulted in a doubled biomass productivity. Finally, the remaining technological and non-technological challenges ahead for the production of a high-value, cost-efficient, environment-friendly microbial protein that complies with legislative requirements and appeals to future consumers were discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-90-5728-741-1 Additional Links (up) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:188233 Serial 7198  
Permanent link to this record
 

 
Author Li, Y.; Quinn, B.K.; Niinemets, Ü.; Schrader, J.; Gielis, J.; Liu, M.; Shi, P. url  doi
openurl 
  Title Ellipticalness index : a simple measure of the complexity of oval leaf shape Type A1 Journal article
  Year 2022 Publication Pakistan journal of botany : An official publication of pakistan botanical society Abbreviated Journal Pak J Bot  
  Volume 54 Issue 6 Pages 1-8  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Plants have diverse leaf shapes that have evolved to adapt to the environments they have experienced over their evolutionary history. Leaf shape and leaf size can greatly influence the growth rate, competitive ability, and productivity of plants. However, researchers have long struggled to decide how to properly quantify the complexity of leaf shape. Prior studies recommended the leaf roundness index (RI = 4πA/P2) or dissection index (DI = ), where P is leaf perimeter and A is leaf area. However, these two indices merely measure the extent of the deviation of leaf shape from a circle, which is usually invalid as leaves are seldom circular. In this study, we proposed a simple measure, named the ellipticalness index (EI), for quantifying the complexity of leaf shape based on the hypothesis that the shape of any oval leaf can be regarded as a variation from a standard ellipse. 2220 leaves from nine species of Magnoliaceae were sampled to check the validity of the EI. We also tested the validity of the Montgomery equation (ME), which assumes a proportional relationship between leaf area and the product of leaf length and width, because the EI actually comes from the proportionality coefficient of the ME. We also compared the ME with five other models of leaf area. The ME was found to be the best model for calculating leaf area based on consideration of the trade-off between model fit vs. complexity, which strongly supported the robustness of the EI for describing oval leaf shape. The new index can account for both leaf shape and size, and we conclude that it is a promising method for quantifying and comparing oval leaf shapes across species in future studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000814279700028 Publication Date 2022-05-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-3321 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.2  
  Call Number UA @ admin @ c:irua:188469 Serial 7153  
Permanent link to this record
 

 
Author Shi, P.; Gielis, J.; Niklas, K.J. pdf  url
doi  openurl
  Title Comparison of a universal (but complex) model for avian egg shape with a simpler model Type Editorial
  Year 2022 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann Ny Acad Sci  
  Volume 1514 Issue 1 Pages 34-42  
  Keywords Editorial; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Recently, a universal equation by Narushin, Romanov, and Griffin (hereafter, the NRGE) was proposed to describe the shape of avian eggs. While NRGE can simulate the shape of spherical, ellipsoidal, ovoidal, and pyriform eggs, its predictions were not tested against actual data. Here, we tested the validity of the NRGE by fitting actual data of egg shapes and compared this with the predictions of our simpler model for egg shape (hereafter, the SGE). The eggs of nine bird species were sampled for this purpose. NRGE was found to fit the empirical data of egg shape well, but it did not define the egg length axis (i.e., the rotational symmetric axis), which significantly affected the prediction accuracy. The egg length axis under the NRGE is defined as the maximum distance between two points on the scanned perimeter of the egg's shape. In contrast, the SGE fitted the empirical data better, and had a smaller root-mean-square error than the NRGE for each of the nine eggs. Based on its mathematical simplicity and goodness-of-fit, the SGE appears to be a reliable and useful model for describing egg shape.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000803394100001 Publication Date 2022-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0077-8923; 1749-6632 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.2  
  Call Number UA @ admin @ c:irua:188470 Serial 7139  
Permanent link to this record
 

 
Author Nicolau, F.; Gielis, J.; Simeone, A.L.; Simoes Lopes, D. pdf  url
doi  openurl
  Title Exploring and selecting supershapes in virtual reality with line, quad, and cube shaped widgets Type P1 Proceeding
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages 21-28  
  Keywords P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Supershapes are used in Parametric Design to model, literally, thou-sands of natural and man-made shapes with a single 6 parameter formula. However, users are left to probe such a rich yet dense collection of supershapes using a set of independent 1-D sliders. Some of the formula’s parameters are non-linear in nature, making them particularly difficult to grasp with conventional 1-D sliders alone. VR appears as a promising setting for Parametric Design with supershapes since it empowers users with more natural visual inspection and shape browsing techniques, with multiple solutions being displayed at once and the possibility to design more interesting forms of slider interaction. In this work, we propose VR shape widgets that allow users to probe and select supershapes from a multitude of solutions. Our designs take leverage on thumbnails, mini-maps, haptic feedback and spatial interaction, while supporting 1-D, 2-D and 3-D supershape parameter spaces. We conducted a user study (N = 18) and found that VR shape widgets are effective, more efficient, and natural than conventional VR 1-D sliders while also usable for users without prior knowledge on supershapes. We also found that the proposed VR widgets provide a quick overview of the main supershapes, and users can easily reach the desired solution without having to perform fine-grain handle manipulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000828657500003 Publication Date 2022-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-6654-9617-9 ISBN Additional Links (up) UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:188471 Serial 7161  
Permanent link to this record
 

 
Author Spiller, M.; Moretti, M.; De Paepe, J.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Environmental and economic sustainability of the nitrogen recovery paradigm : evidence from a structured literature review Type A1 Journal article
  Year 2022 Publication Resources, conservation and recycling Abbreviated Journal Resour Conserv Recy  
  Volume 184 Issue Pages 106406-106413  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Our economy drives on reactive nitrogen (Nr); while Nr emissions to the environment surpass the planetary boundary. Increasingly, it is advocated to recover Nr contained in waste streams and to reuse it ‘directly’ in the agri-food chain. Alternatively, Nr in waste streams may be removed as N2 and refixed via the Haber-Bosch process in an ‘indirect’ reuse loop. As a systematic sustainability analysis of ‘direct’ Nr reuse and its comparison to the ‘indirect’ reuse loop is lacking, this structured review aimed to analyze literature determining the environmental and economic sustainability of Nr recovery technologies. Bibliometric records were queried from 2000 to 2020 using Boolean search strings, and manual text coding. In total, 63 studies were selected for the review. Results suggest that ‘direct’ Nr reuse using Nr recovery technologies is the preferred paradigm as the majority of studies concluded that it is sustainable or that it can be sustainable depending on technological assumptions and other scenario variables. Only 17 studies compared the ‘direct’ with the ‘indirect’ Nr reuse route, therefore a system perspective in Nr recovery sustainability assessments should be more widely adopted. Furthermore, Nr reuse should also be analyzed in the context of a ‘new Nr economy’ that relies on decentralized Nr production from renewable energy. It is also recommended that on-par technology readiness level comparisons should be carried out, making use of technology development and technology learning methodologies. Finally, by-products of Nr recovery are important to be accounted for as they are reducing the environmental burdens through avoided impacts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000804938100001 Publication Date 2022-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 13.2  
  Call Number UA @ admin @ c:irua:188873 Serial 7156  
Permanent link to this record
 

 
Author Spacova, I.; Ahannach, S.; Breynaert, A.; Erreygers, I.; Wittouck, S.; Bron, P.A.; Van Beeck, W.; Eilers, T.; Alloul, A.; Blansaer, N.; Vlaeminck, S.E.; Hermans, N.; Lebeer, S. url  doi
openurl 
  Title Spontaneous riboflavin-overproducing Limosilactobacillus reuteri for biofortification of fermented foods Type A1 Journal article
  Year 2022 Publication Frontiers in Nutrition Abbreviated Journal  
  Volume 9 Issue Pages 916607-916619  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Riboflavin-producing lactic acid bacteria represent a promising and cost-effective strategy for food biofortification, but production levels are typically insufficient to support daily human requirements. In this study, we describe the novel human isolate Limosilactobacillus reuteri AMBV339 as a strong food biofortification candidate. This strain shows a high natural riboflavin (vitamin B2) overproduction of 18.36 mu g/ml, biomass production up to 6 x 10(10) colony-forming units/ml (in the typical range of model lactobacilli), and pH-lowering capacities to a pH as low as 4.03 in common plant-based (coconut, soy, and oat) and cow milk beverages when cultured up to 72 h at 37 degrees C. These properties were especially pronounced in coconut beverage and butter milk fermentations, and were sustained in co-culture with the model starter Streptococcus thermophilus. Furthermore, L. reuteri AMBV339 grown in laboratory media or in a coconut beverage survived in gastric juice and in a simulated gastrointestinal dialysis model with colon phase (GIDM-colon system) inoculated with fecal material from a healthy volunteer. Passive transport of L. reuteri AMBV339-produced riboflavin occurred in the small intestinal and colon stage of the GIDM system, and active transport via intestinal epithelial Caco-2 monolayers was also demonstrated. L. reuteri AMBV339 did not cause fecal microbiome perturbations in the GIDM-colon system and inhibited enteric bacterial pathogens in vitro. Taken together, our data suggests that L. reuteri AMBV339 represents a promising candidate to provide riboflavin fortification of plant-based and dairy foods, and has a high application potential in the human gastrointestinal tract.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000814856600001 Publication Date 2022-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-861x ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5  
  Call Number UA @ admin @ c:irua:189011 Serial 7211  
Permanent link to this record
 

 
Author Chen, J.; Ying, J.; Xiao, Y.; Dong, Y.; Ozoemena, K., I; Lenaerts, S.; Yang, X. pdf  doi
openurl 
  Title Stoichiometry design in hierarchical CoNiFe phosphide for highly efficient water oxidation Type A1 Journal article
  Year 2022 Publication Science China : materials Abbreviated Journal Sci China Mater  
  Volume 65 Issue 10 Pages 2685-2693  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Rational composition design of trimetallic phosphide catalysts is of significant importance for enhanced surface reaction and efficient catalytic performance. Herein, hierarchical CoxNiyFezP with precise control of stoichiometric metallic elements (x:y:z = (1-10):(1-10):1) has been synthesized, and Co1.3Ni0.5Fe0.2P, as the most optimal composition, exhibits remarkable catalytic activity (eta = 320 mV at 10 mA cm(-2)) and long-term stability (ignorable decrease after 10 h continuous test at the current density of 10 mA cm(-2)) toward oxygen evolution reaction (OER). It is found that the surface P in Co1.3Ni0.5Fe0.2P was replaced by 0 under the OER process. The density function theory calculations before and after long-term stability tests suggest the clear increasing of the density of states near the Fermi level of Co1.3Ni0.5Fe0.2P/ Co1.3Ni0.5Fe0.2O, which could enhance the OH- adsorption of our electrocatalysts and the corresponding OER performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000805530000001 Publication Date 2022-05-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-8226; 2199-4501 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.1 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 8.1  
  Call Number UA @ admin @ c:irua:189074 Serial 7212  
Permanent link to this record
 

 
Author Borah, R. url  openurl
  Title Photoactive nanostructures : from single plasmonic nanoparticles to self-assembled films Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages xxxiv, 220 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Photoactive nanoparticles and their light-driven applications have gained tremendous scientific attention towards remediation of the global environmental problems, meeting alternative energy demands, and other new technological discoveries. The research work presented in this dissertation includes a fundamental investigation of such nanoparticles to gain deeper insights that will ultimately benefit their application. In particular, the study of plasmonic metal nanoparticles and metal oxide nanoparticles for light driven applications is the major theme of this work. The investigation begins with isolated plasmonic Au and Ag nanoparticles, followed by a natural extension to nanoparticle clusters, and then further to nanoparticle films. Next, the application of such plasmonic nanoparticle films for gaseous phase sensing of volatile organic compounds is explored. Finally, the film formation of metal-oxide nanoparticles by self-assembly is investigated for the fabrication of photoactive functional interfaces. The fundamental theoretical investigation of the isolated plasmonic nanoparticles encompasses alloy and core-shell nanostructures of Au-Ag bimetallic compositions. First, the optical properties of bimetallic alloy and core-shell nanoparticles are compared for different structures such as nanospheres, nanotriangles and nanorods. Based on the optical properties, the photothermal properties of these nanostructures are also evaluated for relevant light-driven applications. Further, to bridge the gap between the theoretical and experimental optical properties of colloidal plasmonic nanoparticles, the effect of different statistical parameters pertaining to the particle size distribution is studied. Going from isolated nanoparticles to nanoparticle clusters, the changes in the optical properties of plasmonic nanoparticles when they form finite clusters is investigated. A strong effect of clustering on the absorption intensities of the nanoparticles and hence, on the photothermal properties is found. Next, for the study of plasmonic nanoparticle infinite arrays, Au and Ag nanoparticles films are experimentally obtained by the self-assembly at the air-ethylene glycol interface. Upon further validation of the computational models with the experimental optical properties of these films, the near-field and far-field optical response of the plasmonic nanoparticle arrays is investigated. An application of the self-assembled Au nanoparticle film is then demonstrated in the sensing of volatile organic compounds (VOCs). Finally, the focus is shifted from plasmonic nanoparticles to metal oxide nanoparticles for their self-assembly at the air-water interface to obtain self-assembled films. For this, the hydrophobic functionalization of four metal oxides nanoparticles namely, TiO2, ZnO, WO3 and CuO is investigated. The insights from this work is useful for the design and fabrication of functional nanoparticles and interfaces for light driven applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (up) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189155 Serial 7188  
Permanent link to this record
 

 
Author Lang, X.; Ouyang, Y.; Vandewalle, L.A.; Goshayeshi, B.; Chen, S.; Madanikashani, S.; Perreault, P.; Van Geem, K.M.; van Geem, K.M. pdf  url
doi  openurl
  Title Gas-solid hydrodynamics in a stator-rotor vortex chamber reactor Type A1 Journal article
  Year 2022 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 446 Issue 5 Pages 137323-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The gas-solid vortex reactor (GSVR) has enormous process intensification potential. However the huge gas consumption can be a serious disadvantage for the GSVR in some applications such as fast pyrolysis. In this work, we demonstrate a recent novel design, where a stator-rotor vortex chamber (STARVOC) is driven by the fluid's kinetic energy, to decouple the solids bed rotation and gas. Gas-solid fluidization by using air and monosized aluminum balls was performed to investigate the hydrodynamics. A constructed fluidization flow regime map for a fixed solids loading of 100 g shows that the bed can only be fluidized for a rotation speed between 200 and 400 RPM. Below 200 RPM, particles settle down on the bottom plate and cannot form a stable bed due to inertia and friction. Above 400 RPM, the bed cannot be fluidized with superficial velocities up to 1.8 m/s (air flow rate of 90 Nm(3)/h). The bed thickness shows some non-uniformities, being smaller at the top of the bed than at the bottom counterpart. However by increasing the air flow rate or rotation speed the axial nonuniformity can be resolved. The bed pressure drop first increases with increasing gas flow rate and then levels off, showing similar characteristics as conventional fluidized beds. Theoretical pressure drops calculated from mathematical models such as Kao et al. model agree well with experimental measurements. Particle velocity discrepancies between the top and bottom particles reveal that the impact of gravity cannot be completely neglected. Design guidelines and possible applications for further development of STARVOC concept are proposed based on fundamental data provided in this work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000833418100006 Publication Date 2022-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 15.1  
  Call Number UA @ admin @ c:irua:189283 Serial 7167  
Permanent link to this record
 

 
Author Van Hoecke, L.; Boeye, D.; Gonzalez‐Quiroga, A.; Patience, G.S.; Perreault, P. pdf  url
doi  openurl
  Title Experimental methods in chemical engineering : computational fluid dynamics/finite volume method–CFD/FVM Type A1 Journal article
  Year 2022 Publication The Canadian journal of chemical engineering Abbreviated Journal Can J Chem Eng  
  Volume Issue Pages 1-17  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Computational fluid dynamics (CFD) applies numerical methods to solve transport phenomena problems. These include, for example, problems related to fluid flow comprising the Navier--Stokes transport equations for either compressible or incompressible fluids together with turbulence models and continuity equations for single and multi-component (reacting and inert) systems. The design space is first segmented into discrete volume elements (meshing). The finite volume method, the subject of this article, discretizes the equations in time and space to produce a set of non-linear algebraic expressions that are assigned to each volume element-cell. The system of equations is solved iteratively with algorithms like the semi-implicit method for pressure-linked equations (SIMPLE) and the pressure implicit splitting of operators (PISO). CFD is especially useful for testing multiple design elements because it is often faster and cheaper than experiments. The downside is that this numerical method is based on models that require validation to check their accuracy. According to a bibliometric analysis, the broad research domains in chemical engineering include: (1) dynamics and CFD-DEM (2) fluid flow, heat transfer and turbulence, (3) mass transfer and combustion, (4) ventilation and environment, and (5) design and optimization. Here, we review the basic theoretical concepts of CFD and illustrate how to set up a problem in the open-source software OpenFOAM to isomerize n-butane to i-butane in a notched reactor under turbulent conditions. We simulated the problem with 1000, 4000, and 16000 cells. According to the Richardson extrapolation, the simulation underestimates the adiabatic temperature rise by 7% with 16000 cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000859840100001 Publication Date 2022-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-4034; 1939-019x ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.1  
  Call Number UA @ admin @ c:irua:189284 Serial 7160  
Permanent link to this record
 

 
Author Borah, R.; Smets, J.; Ninakanti, R.; Tietze, M.L.; Ameloot, R.; Chigrin, D.N.; Bals, S.; Lenaerts, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Self-assembled ligand-capped plasmonic Au nanoparticle films in the Kretschmann configuration for sensing of volatile organic compounds Type A1 Journal article
  Year 2022 Publication ACS applied nano materials Abbreviated Journal  
  Volume 5 Issue 8 Pages acsanm.2c02524-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Films of close-packed Au nanoparticles are coupled electrodynamically through their collective plasmon resonances. This collective optical response results in enhanced light–matter interactions, which can be exploited in various applications. Here, we demonstrate their application in sensing volatile organic compounds, using methanol as a test case. Ordered films over several cm2 were obtained by interfacial self-assembly of colloidal Au nanoparticles (∼10 nm diameter) through controlled evaporation of the solvent. Even though isolated nanoparticles of this size are inherently nonscattering, when arranged in a close-packed film the plasmonic coupling results in a strong reflectance and absorbance. The in situ tracking of vapor phase methanol concentration through UV–vis transmission measurements of the nanoparticle film is first demonstrated. Next, in situ ellipsometry of the self-assembled films in the Kretschmann (also known as ATR) configuration is shown to yield enhanced sensitivity, especially with phase difference measurements, Δ. Our study shows the excellent agreement between theoretical models of the spectral response of self-assembled films with experimental in situ sensing experiments. At the same time, the theoretical framework provides the basis for the interpretation of the various observed experimental trends. Combining periodic nanoparticle films with ellipsometry in the Kretschmann configuration is a promising strategy toward highly sensitive and selective plasmonic thin-film devices based on colloidal fabrication methods for volatile organic compound (VOC) sensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000834348300001 Publication Date 2022-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0970 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.9 Times cited 11 Open Access OpenAccess  
  Notes R.B. acknowledges financial support from the University of Antwerp Special Research Fund (BOF) for a DOCPRO4 doctoral scholarship. J.S. acknowledges financial support from the Research Foundation Flanders (FWO) by a Ph.D. fellowship (11H8121N) . M.L.T. acknowledges financial support from the Research Foundation Flanders (FWO) by a senior postdoctoral fellowship (12ZK720N) . Approved Most recent IF: 5.9  
  Call Number UA @ admin @ c:irua:189295 Serial 7095  
Permanent link to this record
 

 
Author Shi, P.; Gielis, J.; Quinn, B.K.; Niklas, K.J.; Ratkowsky, D.A.; Schrader, J.; Ruan, H.; Wang, L.; Niinemets, Ü.; Niinennets, U. url  doi
openurl 
  Title ‘biogeom’ : an R package for simulating and fitting natural shapes Type A1 Journal article
  Year 2022 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann Ny Acad Sci  
  Volume 1516 Issue 1 Pages 123-134  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Many natural objects exhibit radial or axial symmetry in a single plane. However, a universal tool for simulating and fitting the shapes of such objects is lacking. Herein, we present an R package called 'biogeom' that simulates and fits many shapes found in nature. The package incorporates novel universal parametric equations that generate the profiles of bird eggs, flowers, linear and lanceolate leaves, seeds, starfish, and tree-rings, and three growth-rate equations that generate the profiles of ovate leaves and the ontogenetic growth curves of animals and plants. 'biogeom' includes several empirical datasets comprising the boundary coordinates of bird eggs, fruits, lanceolate and ovate leaves, tree rings, seeds, and sea stars. The package can also be applied to other kinds of natural shapes similar to those in the datasets. In addition, the package includes sigmoid curves derived from the three growth-rate equations, which can be used to model animal and plant growth trajectories and predict the times associated with maximum growth rate. 'biogeom' can quantify the intra- or interspecific similarity of natural outlines, and it provides quantitative information of shape and ontogenetic modification of shape with important ecological and evolutionary implications for the growth and form of the living world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000829772300001 Publication Date 2022-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0077-8923; 1749-6632 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.2  
  Call Number UA @ admin @ c:irua:189314 Serial 7131  
Permanent link to this record
 

 
Author Wang, L.; Miao, Q.; Niinemets, Ü.; Gielis, J.; Shi, P. url  doi
openurl 
  Title Quantifying the variation in the geometries of the outer rims of corolla tubes of Vinca major L Type A1 Journal article
  Year 2022 Publication Plants Abbreviated Journal  
  Volume 11 Issue 15 Pages 1987-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Many geometries of plant organs can be described by the Gielis equation, a polar coordinate equation extended from the superellipse equation, . Here, r is the polar radius corresponding to the polar angle φ; m is a positive integer that determines the number of angles of the Gielis curve when φ ∈ [0 to 2π); and the rest of the symbols are parameters to be estimated. The pentagonal radial symmetry of calyxes and corolla tubes in top view is a common feature in the flowers of many eudicots. However, prior studies have not tested whether the Gielis equation can depict the shapes of corolla tubes. We sampled randomly 366 flowers of Vinca major L., among which 360 had five petals and pentagonal corolla tubes, and six had four petals and quadrangular corolla tubes. We extracted the planar coordinates of the outer rims of corolla tubes (in top view) (ORCTs), and then fitted the data with two simplified versions of the Gielis equation with k = 1 and m = 5: (Model 1), and (Model 2). The adjusted root mean square error (RMSEadj) was used to evaluate the goodness of fit of each model. In addition, to test whether ORCTs are radially symmetrical, we correlated the estimates of n2 and n3 in Model 1 on a log-log scale. The results validated the two simplified Gielis equations. The RMSEadj values for all corolla tubes were smaller than 0.05 for both models. The numerical values of n2 and n3 were demonstrated to be statistically equal based on the regression analysis, which suggested that the ORCTs of V. major are radially symmetrical. It suggests that Model 1 can be replaced by the simpler Model 2 for fitting the ORCT in this species. This work indicates that the pentagonal or quadrangular corolla tubes (in top view) can both be modeled by the Gielis equation and demonstrates that the pentagonal or quadrangular corolla tubes of plants tend to form radial symmetrical geometries during their development and growth.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000839115100001 Publication Date 2022-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2223-7747 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189315 Serial 7200  
Permanent link to this record
 

 
Author Gielis, J.; Grigolia, R. url  openurl
  Title Lamé curves and Rvachev's R-functions Type A3 Journal article
  Year 2022 Publication Sn – 1512-0066 Abbreviated Journal  
  Volume 37 Issue Pages 1-4  
  Keywords A3 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Gielis transformations are a generalization of Lame curves. To combine domains, we can make use of the natural alliance between Lame's work and Rvachev's R-functions. A logical next step is the extension to n-valued logic dening dierent partitions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (up) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189316 Serial 7178  
Permanent link to this record
 

 
Author Gielis, J.; Shi, P.; Caratelli, D. openurl 
  Title Universal equations : a fresh perspective Type A1 Journal article
  Year 2022 Publication Growth and Form Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A uniform description of natural shapes and phenomena is an important goal in science. Such description should check some basic principles, related to 1) the complexity of the model, 2) how well its fits real objects, phenomena and data, and 3) ia direct connection with optimization principles and the calculus of variations. In this article, we present nine principles, three for each group, and we compare some models with a claim to universality. It is also shown that Gielis Transformations and power laws have a common origin in conic sections  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (up) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189317 Serial 7224  
Permanent link to this record
 

 
Author Ngo, K.N.; Tampon, P.; Van Winckel, T.; Massoudieh, A.; Sturm, B.; Bott, C.; Wett, B.; Murthy, S.; Vlaeminck, S.E.; DeBarbadillo, C.; De Clippeleir, H. pdf  url
doi  openurl
  Title Introducing bioflocculation boundaries in process control to enhance effluent quality of high‐rate contact‐stabilization systems Type A1 Journal article
  Year 2022 Publication Water environment research Abbreviated Journal Water Environ Res  
  Volume 94 Issue 8 Pages e10772-17  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract High-rate activated sludge (HRAS) systems suffer from high variability of effluent quality, clarifier performance, and carbon capture. This study proposed a novel control approach using bioflocculation boundaries for wasting control strategy to enhance effluent quality and stability while still meeting carbon capture goals. The bioflocculation boundaries were developed based on the oxygen uptake rate (OUR) ratio between contactor and stabilizer (feast/famine) in a high-rate contact stabilization (CS) system and this OUR ratio was used to manipulate the wasting setpoint. Increased oxidation of carbon or decreased wasting was applied when OUR ratio was <0.52 or >0.95 to overcome bioflocculation limitation and maintain effluent quality. When no bioflocculation limitations (OUR ratio within 0.52–0.95) were detected, carbon capture was maximized. The proposed control concept was shown for a fully automated OUR-based control system as well as for a simplified version based on direct waste flow control. For both cases, significant improvements in effluent suspended solids level and stability (<50-mg TSS/L), solids capture over the clarifier (>90%), and COD capture (median of 32%) were achieved. This study shows how one can overcome the process instability of current HRAS systems and provide a path to achieve more reliable outcomes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000840360100001 Publication Date 2022-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1061-4303; 1554-7531 ISBN Additional Links (up) UA library record; WoS full record  
  Impact Factor 3.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.1  
  Call Number UA @ admin @ c:irua:189409 Serial 7174  
Permanent link to this record
 

 
Author Ysebaert, T.; Samson, R.; Denys, S. pdf  url
doi  openurl
  Title Parameterisation of the drag effect of climbers depending on wind speed and LAD Type A1 Journal article
  Year 2022 Publication Sustainable Cities and Society Abbreviated Journal Sustain Cities Soc  
  Volume 84 Issue Pages 103979-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The implementation of green walls is increasingly seen as a strategy to tackle urban air pollution and to make cities more climate resilient. The correct description of the vegetation-wind interaction is key in describing the effect of vegetation in computational fluid dynamics (CFD) models. The accuracy of the modelled wind flow is highly linked to the uncertainty about the drag coefficient (C-d). In addition, at low wind speeds viscous drag (K) is not negligible and it should be regarded in CFD models. This research aims to address the uncertainty related to C-d and K by including the effect of climbers on both the momentum and turbulence equations in the Wilcox revised k-omega model. The change of K with increasing Reynolds number showed an increase from 5.10(-8 )m(2) up to the dynamic viscosity of air (asymptotic to 10(-5) m(2)) following a logistic function. Beyond the transition region from viscous to form drag, C-d, in the range of 0.1-1.1, declined with increasing Reynolds number following a power law function. Furthermore, the plant morphological parameters determining permeability and drag coefficient were identified. This study showed that the knowledge of viscous and shape resistance is necessary to obtain accurate statistics for air flow through vegetation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000831685500001 Publication Date 2022-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2210-6707 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.7  
  Call Number UA @ admin @ c:irua:189465 Serial 7187  
Permanent link to this record
 

 
Author Maes, R.R.; Potters, G.; Fransen, E.; Van Schaeren, R.; Lenaerts, S. url  doi
openurl 
  Title Influence of adding low concentration of oxygenates in mineral diesel oil and biodiesel on the concentration of NO, NO₂ and particulate matter in the exhaust gas of a one-cylinder diesel generator Type A1 Journal article
  Year 2022 Publication International journal of environmental research and public health Abbreviated Journal  
  Volume 19 Issue 13 Pages 7637-18  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Air quality currently poses a major risk to human health worldwide. Transportation is one of the principal contributors to air pollution due to the quality of exhaust gases. For example, the widely used diesel fuel is a significant source of nitrogen oxides (NOx) and particulate matter (PM). To reduce the content NOx and PM, different oxygenated compounds were mixed into a mineral diesel available at the pump, and their effect on the composition of exhaust gas emissions was measured using a one-cylinder diesel generator. In this setup, adding methanol gave the best relative results. The addition of 2000 ppm of methanol decreased the content of NO by 56%, 2000 ppm of isopropanol decreased NO2 by 50%, and 2000 ppm ethanol decreased PM by 63%. An interesting question is whether it is possible to reduce the impact of hazardous components in the exhaust gas even more by adding oxygenates to biodiesels. In this article, alcohol is added to biodiesel in order to establish the impact on PM and NOx concentrations in the exhaust gases. Adding methanol, ethanol, and isopropanol at concentrations of 2000 ppm and 4000 ppm did not improve NOx emissions. The best results were using pure RME for a low NO content, pure diesel for a low NO2 content, and for PM there were no statistically significant differences.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000825645900001 Publication Date 2022-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1661-7827; 1660-4601 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189476 Serial 7172  
Permanent link to this record
 

 
Author Alloul, A.; Van Kampen, W.; Cerruti, M.; Wittouck, S.; Pabst, M.; Weissbrodt, D.G. url  doi
openurl 
  Title Exploring the role of antimicrobials in the selective growth of purple phototrophic bacteria through genome mining and agar spot assays Type A1 Journal article
  Year 2022 Publication Letters in applied microbiology Abbreviated Journal Lett Appl Microbiol  
  Volume 75 Issue 5 Pages 1275-1285  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple non-sulphur bacteria (PNSB) are an emerging group of microbes attractive for applied microbiology applications such as wastewater treatment, plant biostimulants, microbial protein, polyhydroxyalkanoates and H-2 production. These photoorganoheterotrophic microbes have the unique ability to grow selectively on organic carbon in anaerobic photobioreactors. This so-called selectivity implies that the microbial community will have a low diversity and a high abundance of a particular PNSB species. Recently, it has been shown that certain PNSB strains can produce antimicrobials, yet it remains unclear whether these contribute to competitive inhibition. This research aimed to understand which type of antimicrobial PNSB produce and identify whether these compounds contribute to their selective growth. Mining 166 publicly-available PNSB genomes using the computational tool BAGEL showed that 59% contained antimicrobial encoding regions, more specifically biosynthetic clusters of bacteriocins and non-ribosomal peptide synthetases. Inter- and intra-species inhibition was observed in agar spot assays for Rhodobacter blasticus EBR2 and Rhodopseudomonas palustris EBE1 with inhibition zones of, respectively, 5.1 and 1.5-5.7 mm. Peptidomic analysis detected a peptide fragment in the supernatant (SVLQLLR) that had a 100% percentage identity match with a known non-ribosomal peptide synthetase with antimicrobial activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000837055500001 Publication Date 2022-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0266-8254 ISBN Additional Links (up) UA library record; WoS full record  
  Impact Factor 2.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.4  
  Call Number UA @ admin @ c:irua:189519 Serial 7162  
Permanent link to this record
 

 
Author Faust, V.; Gruber, W.; Ganigue, R.; Vlaeminck, S.E.; Udert, K.M. pdf  url
doi  openurl
  Title Nitrous oxide emissions and carbon footprint of decentralized urine fertilizer production by nitrification and distillation Type A1 Journal article
  Year 2022 Publication ACS ES&T engineering Abbreviated Journal  
  Volume 2 Issue 9 Pages 1745-1755  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Combining partial nitrification, granular activated carbon (GAC) filtration, and distillation is a well-studied approach to convert urine into a fertilizer. To evaluate the environmental sustainability of a technology, the operational carbon footprint and therefore nitrous oxide (N2O) emissions should be known, but N2O emissions from urine nitrification have not been assessed yet. Therefore, N2O emissions of a decentralized urine nitrification reactor were monitored for 1 month. During nitrification, 0.4-1.2% of the total nitrogen load was emitted as N2O-N with an average N2O emission factor (EFN2O) of 0.7%. Additional N2O was produced during anoxic storage between nitrification and GAC filtration with an estimated EFN2O of 0.8%, resulting in an EFN2O of 1.5% for the treatment chain. N2O emissions during nitrification can be mitigated by 60% by avoiding low dissolved oxygen or anoxic conditions and nitrite concentrations above 5 mg-N L-1. Minimizing the hydraulic retention time between nitrification and GAC filtration can reduce N2O formation during intermediate storage by 100%. Overall, the N2O emissions accounted for 45% of the operational carbon footprint of 14 kg-CO2,equiv kg-N-1 for urine fertilizer production. Using electricity from renewable sources and applying the proposed N2O mitigation strategies could potentially lower the carbon footprint by 85%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000835412700001 Publication Date 2022-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189599 Serial 7182  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: