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Abstract: Many natural radial symmetrical shapes (e.g., sea stars) follow the Gielis equation (GE)
or its twin equation (TGE). A supertriangle (three triangles arranged around a central polygon)
represents such a shape, but no study has tested whether natural shapes can be represented as/are
supertriangles or whether the GE or TGE can describe their shape. We collected 100 pieces of
Koelreuteria paniculata fruit, which have a supertriangular shape, extracted the boundary coordinates
for their vertical projections, and then fitted them with the GE and TGE. The adjusted root mean
square errors (RMSEadj) of the two equations were always less than 0.08, and >70% were less than
0.05. For 57/100 fruit projections, the GE had a lower RMSEadj than the TGE, although overall
differences in the goodness of fit were non-significant. However, the TGE produces more symmetrical
shapes than the GE as the two parameters controlling the extent of symmetry in it are approximately
equal. This work demonstrates that natural supertriangles exist, validates the use of the GE and
TGE to model their shapes, and suggests that different complex radially symmetrical shapes can be
generated by the same equation, implying that different types of biological symmetry may result
from the same biophysical mechanisms.

Keywords: Gielis equation; goodness of fit; natural geometry; polar coordinate; radial symmetry

1. Introduction

Gielis [1] proposed a polar coordinate equation to describe natural shapes, especially
symmetrical shapes, as follows:
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Here, r andϕ are the polar radius and polar angle of a curve transcribing the outline of
a shape, respectively; A, B, n1, n2, and n3 are parameters that need to be estimated; and m is
a positive integer that determines the number of angles of the curve generated in [0, 2π).
This equation can be rewritten [2,3] as:
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where γ = An2/n1 , k = An2 /Bn3 , and β = 1/n1. We refer to Equation (2) as the Gielis
equation (GE) for convenience hereinafter. The GE is derived from the superellipse equation,
which can generate diamonds, ellipses, rectangles, and transitional shapes between these
classical geometries [4,5]. The GE has been demonstrated to reflect the natural shapes
of bamboo leaves [6,7], cross sections of plant stems [5,8], avian eggs [9], and ginkgo
seeds [3]. However, for radially symmetrical objects with a finite number of multiple axes
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of symmetry, such as some species of sea stars, the GE cannot validly describe their shapes.
Thus, Shi et al. [2] proposed a generalized version of the GE as follows:

r(ϕ) = f [re(ϕ)] (3)

where f is a link function, and re is the elementary polar radius, defined as:

re(ϕ) =
(∣∣∣cos
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4
ϕ
)∣∣∣n2

+ k
∣∣∣sin

(m
4
ϕ
)∣∣∣n3

)−1
(4)

Given the above, the original GE can be regarded as a special case of the generalized
GE of Shi et al. [2], in which a linear relationship between r and re on a log–log scale is
assumed, i.e.,

ln r = α+ β ln re (5)

where α = lnγ. To describe the shapes of sea stars, Shi et al. [2] proposed another special
case of the GE (their equation 12) in which a hyperbolic relationship was assumed between
r and re on a log–log scale, i.e.,

ln r =
1

a + b ln re
+ c (6)

where a, b, and c are parameters that need to be estimated. We refer to the generalized
GE with Equation (6) above as its link function as the twin Gielis equation (TGE) for
convenience herein, with “twin” reflecting the fact that the TGE and GE are both special
cases of the generalized GE. The TGE was found to better fit the shapes of some sea stars
compared to the GE [2].

There are many complex triangular shapes in nature, but such shapes have so far rarely
been studied using parametric models. Herein, we propose the term “supertriangle”, which
is derived from the terms “supercircle” and “superellipse” [1,4], to describe such shapes.
Special instances of Lamé curves [4] can be generalized by the GE and TGE to produce a
wide variety of bilaterally and radially symmetrical shapes. This includes supertriangles,
which are obtained in the GE and TGE when m = 3 and comprise three outward-pointing
triangles linked at their bases to a central polygon. Simulated examples of supertriangles
can be found in Matsuura’s work [10]. Considering that, similarly to sea stars, some of these
shapes exhibit multiple, finite axes of complex radial symmetry (i.e., tri- or pentaradial
symmetry), it would be worthwhile to test whether they follow the GE or TGE. There is
also value in comparing the goodness of fit and the characteristics of symmetry modelled
by the GE and TGE. In this study, we examined the vertical projections (from the fruit
petiole to the fruit tip) of 100 pieces of fruit from the golden rain tree (Koelreuteria paniculata
Laxmann, which belongs to the family Sapindaceae), an important urban landscape tree
species that has fruit in the form of papery capsules, with a three-pointed shape when
viewed from the petiole or tip. The shape of this tree’s fruit with a vertical view resembles
a supertriangle, a shape that presumably could be modelled by the GE or TGE; although,
importantly, no past study has investigated supertriangles in nature. Therefore, we fitted
the outlines of the planar projections of these fruit to the GE and TGE to test: (i) whether the
vertical projections of these fruit are supertriangles that follow the GE or TGE; (ii) whether
the GE or TGE was better able to describe such a shape; and (iii) whether the GE or TGE
generated a more symmetrical shape.

2. Materials and Methods
2.1. Fruit Sampling and Photography

Given that the conspecific morphological variation in plant organs (e.g., leaf shape)
mainly results from genetic differences (between cultivars) rather than differences in the
growing environment [11], we randomly sampled 100 fresh pieces of fruit from six adult
golden rain trees (K. paniculata) of the same population growing on the Nanjing Forestry
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University campus (32◦08′20” N, 118◦80′84” E) from 8–9 October 2021. In China, the tree
is naturally distributed in the lower reaches of the Yellow River and the Yangtze River,
including the studied site. We chose to sample fruit in early October as the fruit was mature,
and some had even fallen to the ground from the sampled trees. The collected fruit was
then quickly brought back to the laboratory and photographed using the camera of an
Apple iPhone 11 with 3024 × 4032 pixels. Each fruit was placed vertically in a round
hole in a plastic test tube rack (27.8 cm × 23.0 cm × 7.5 cm, radius = 2 cm) to keep the
vertical axis through the fruit petiole to the fruit tip approximately perpendicular to the
horizontal surface of the rack (see Figure 1 for an example). To reduce measurement error,
we photographed the fruit one at a time while arranging a transparent plastic ruler around
each piece to measure its actual scale. The mean distance from the lens of the camera to the
fruit averaged 15 cm.
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Figure 1. Side view (A) and top view (vertical projection) (B) of a K. paniculata fruit.

2.2. Image Processing and Outline Data Acquisition

We adjusted the image size to its actual size according to the scale of the ruler in the
photo, and then saved the adjusted photos as BMP files at a resolution of 600 dpi. The
m-file based on MATLAB (version ≥ 2009a) developed by Shi et al. [8,12] was used to
extract the planar coordinates of the vertical projection of each fruit. The R script developed
by Su et al. [13] was used to calculate the area of each fruit’s vertical projection; this was
performed in R version 4.0.2 [14].

2.3. Models

Following the principle of Occam’s razor, we reduced the number of parameters in
the tested models as much as possible to decrease model complexity. Simplified versions of
the GE and TGE were used herein, rather than their original versions, as follows:
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The two simplified equations were obtained by setting m = 3 and k = 1 in Equations (2) and (6).
Thus, when we mention the GE and TGE hereinafter, we refer to Equations (7) and (8),
respectively, and we do not refer to their original versions again.

2.4. Data Fitting Methods

For a standard curve generated by the GE or TGE in [0, 2π), the polar point is located
at (0, 0) and the x-axis passes through the apex of an angle and the intersection of two
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other lobes of the circumcircle of the supertriangle, which is referred to as the major axis
for convenience. However, for a scanned image, the polar point may not be the origin, and
the major axis may not overlap with the x-axis. Thus, we needed to add three additional
location parameters—x0, y0, and θ—to represent the planar coordinates of the polar point
and the angle between the major axis and the x-axis. We estimated the location parameters
and model parameters using the Nelder-Mead optimization method [15] by minimizing
the target function of the residual sum of squares (RSS) between the observed polar radii
from the polar point to the data points on the outline of the fruit’s vertical projection and
those predicted by the GE or TGE as follows:

RSS = ∑N
i=1(ri − r̂i)

2 (9)

where ri and r̂i represent the i-th observed and predicted polar radii, respectively, and N
represents the number of data points on the outline of the fruit’s vertical projection.

2.5. Comparison and Analysis of Models

To compare the goodness of fit to the data between the GE and TGE, the adjusted root
mean square error (RMSEadj) was calculated [2,16] as:

RMSEadj =

√
RSS/N

A/π
(10)

Here, A represents the area of the fruit’s vertical projection. As the number of data
points on the outline of a fruit projection image is fairly large (ranging from 2990 to 3000
for each of the 100 projections), it is almost meaningless to compare models by considering
the influence of the number of model parameters on model structural complexity using,
for example, Akaike’s Information Criterion or its corrected version [17,18]. However, the
parameters n2 and n3 in the GE and TGE play important roles in determining whether a
curve is more or less symmetrical, and thus can be used to evaluate the shapes produced
by the two tested models. When the two parameters are equal, the GE or TGE can generate
a perfect radially symmetrical shape with perfect bilateral symmetry along any one of
the three major axes of a supertriangle. There is no evidence that the fruit of K. paniculata
needs to deviate from a perfect triradially symmetrical shape. Thus, we hypothesized
that the two parameters should be equal to maintain the radial symmetry of the fruit’s
shape in vertical projection. To test whether this hypothesis held true, we performed a
linear regression between the estimates of n3 and n2. If the 95% confidence interval (CI)
of the slope included 1 and the intercept was not significant, we concluded that n3 was
not significantly different from n2, which suggested that the shape produced had radial
symmetry; otherwise, a deviation from perfect radial symmetry for the vertical projections
of fruit was suggested.

Analysis of variance (ANOVA) at a 0.05 significance level was used to test whether there
was a significant difference in the adjusted RMSE values between the GE and TGE. In addition,
the mean and standard deviation of the 100 fruit projection areas were calculated for
obtaining the coefficient of variation (=standard deviation/mean × 100%) of the samples.
The statistical software R (version 4.0.2) [14] was used to carry out these calculations and
statistical analyses.

3. Results

The mean and standard deviation of the 100 fruit vertical projection areas were 6.59
and 0.91 cm2, respectively. The coefficient of variation in the vertical projection size was
equal to 13.86%.

Figure 2 shows the fitted results for four fruit vertical projections randomly sampled
from the 100 studied projections. Although the shapes predicted by the GE and TGE did
not overlap perfectly with the photographed outlines of fruit vertical projections, both
equations basically generated shapes that approximated those of the actual projections.
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The adjusted RMSEs for the four samples shown in Figure 2 were all smaller than 0.05,
which means that for each sample, the average absolute deviation between the observed
and predicted radii from the polar point to the outline of the fruit’s vertical projection was
less than 5% of the radius of a circle whose hypothetical area equals that of the projection.
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Figure 2. Four sample vertical projections of K. paniculata fruit (A,D,G,J), and their fitted outlines
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columns from the left, the gray curves are the scanned outlines of fruit projections, and the red curves
are the outlines predicted by the GE (second column) and by the TGE (third column).
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The fitted results of the GE and TGE to the 100 fruit vertical projections were tabulated
in Tables S1 and S2 in the online Supplementary Materials. For the GE, the adjusted RMSE
values of 77 out of 100 fruit vertical projections were less than 0.05, while for the TGE 73 out
of 100 fruit vertical projections had adjusted RMSE values less than 0.05. For the remaining
projections, the adjusted RMSEs for both equations ranged from 0.05 to 0.072 (Figure 3).
This demonstrates the validity of both the GE and TGE for use in describing the shapes
of projections of K. paniculata fruit. The adjusted RMSE values of the GE were smaller
than those of the TGE for 57 out of 100 fruit vertical projections. However, there was no
significant overall difference in adjusted RMSEs between the GE and TGE (F1,198 = 0.97;
p = 0.326). The estimates of n3 and n2 in the GE were not equal because the estimated
intercept of the linear regression between these was significantly different from zero and
the 95% CI of the slope was significantly different from one (Figure 4A). In contrast, the
estimates of n3 and n2 in the TGE did not differ significantly—i.e., the regression intercept
was not significantly different from zero and the 95% CI of the slope included one. Thus, we
dropped the intercept from the regression of n3 vs. n2 for the TGE and redid the regression
with the intercept set to zero. After doing this, the 95% CI of the proportionality coefficient
(i.e., the slope) still included one (Figure 4B), so we then concluded that the n3 and n2
parameters in the TGE tended to be equal for the vertical projections of K. paniculata fruit.
This suggested that the fitted curve of the TGE exhibits the characteristic radial symmetry
of the fruit vertical projections. However, the GE predicted a certain amount of deviation
from radial symmetry for the fruit projections.
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4. Discussion

In this study, we photographed the vertical projections of fruit, rather than directly
vertically scanning fruit to obtain their vertical projections, as the morphology of the
fruit capsules made it difficult to maintain a consistent vertical view of the fruit using
a photo scanner. We cannot exclude the possibility that artificial measurement errors
were introduced when a smartphone was used to take the photos. Slight variations in the
photographing distance and angle must inevitably have led to some errors [19]. In that
case, even for a perfectly radially symmetrical object, some deformation from its original
symmetry may have arisen when taking vertical photographs. In our calculations, there
were relatively high adjusted RMSEs (>0.05) for a proportion (<30%) of fruit projections,
which can be accounted for by such photographic errors to a great extent. The GE and TGE
would have presumably been better able to describe the shapes of the fruit projections if
photographic errors had been eliminated. Another source of errors is likely the individual
variation in fruit morphology, as variation in fruit traits frequently exists within the same
plant species [20]. If such variation does not change the radial symmetry of the fruit
shape, it does not impact the validity of the GE and TGE in describing the shapes of fruit
projections. However, some variation might have been caused by the physical compression
of fruit by other fruit in close proximity as the studied fruit grew in clusters within the
crown of the golden rain tree [21]. In addition to such physical compression through
interactions between fruit, growth in clusters may also have led to heterogeneity in the
light falling on different surfaces of the same fruit, potentially leading to deviation from
the hypothesized radial symmetry of the fruit. The extreme physiological stress caused by
low light has been demonstrated to increase the asymmetry of plant organs, especially of
fruit [22]. Therefore, the asymmetry resulting from the physical compression of clustered
fruit and physiological stress caused by light limitation may have decreased the goodness
of fit to the data achieved by the GE and TGE.

There are many modern statistical approaches that can accurately describe or quan-
tify the outlines of complex shapes (e.g., elliptic Fourier analysis, the square root veloc-
ity function and the Riemannian elastic metric, and comprehensive machine learning
models) [23–26]. These methods allow one to extract and quantify the morphological traits
of the outlines of objects and serve as a basis for classification and discrimination among
different species or different individuals of the same species. However, these methods are
not universal, and require very large sample sizes to accurately carry out such classification
and discrimination, which is time-consuming. In practice, these approaches usually cannot
quantify the extent of the asymmetry of an object and neglect to account for the scaling
relationship or other functional relationships that exist between morphological dimensions
that widely exist in biology and physics [27,28]. Relative to modern statistical methods,
especially non-parametric data-fitting techniques, the GE and TGE have much simpler
mathematical expressions, with four to five model parameters for describing supertrian-
gles. Indeed, to describe sea star shapes, the GE and TGE only need three to four model
parameters [2] as most sea star species have a lower extent of asymmetry than the fruit of
the golden rain tree. It should also be noted that the GE and TGE can produce other shapes,
such as avian eggs, bamboo leaves, ginkgo seeds, and the cross sections of some plant
stems, in addition to sea stars [1–3,5,6,8,9,29]. This suggests that different types of shapes
with natural symmetry can potentially be depicted by the same general geometric equation
with different internal link functions, which deserves further investigation in the future.

In the GE and TGE, the parameters n2 and n3 control the extent of symmetry in
the shapes produced. These two parameters differed significantly in the GE, and this
indicates that the GE predicts asymmetrical projection shapes for the studied golden rain
tree fruit; however, these two parameters did not differ significantly in the TGE, which
suggests that the studied fruit projections tended to be radially symmetrical. Although the
estimated n2 was proportional to the estimated n3 in the TGE, with the 95% CI of the slope
including one, there were still some deviances between the two parameters, as reflected
by the coefficient of determination of the regression being 0.901 (Figure 4B). This means
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that the TGE also reflects a certain degree of deviation from perfect radial symmetry for
these fruit vertical projections, although the inequality between the parameters n2 and
n3 in the TGE was less than in the GE. In other words, the GE might somewhat overfit
the outlines of fruit vertical projections, while the TGE is somewhat conservative and less
likely to reflect asymmetry. Considering model structure, the TGE is more complex than
the GE as the TGE is based on the hypothesis of there being a hyperbolic relationship
between the polar radius (r) and the elementary polar radius (re) of a shape on a log–log
scale, whereas the GE hypothesizes a simpler linear relationship for these parameters on a
log–log scale (see Equations (5) and (6)). However, there was no significant difference in
goodness of fit between the GE and TGE. A shortcoming of the TGE is that it has five model
parameters. Since n2 is not significantly different from n3, we set n2 = n3 to fit the outline
data of the fruit projections. This setting limited the TGE from freely reflecting possible
asymmetry during the data fitting, and thus decreased the ability of the TGE to describe
actual fruit vertical projections. When n2 = n3 was set in the TGE, the mean adjusted RMSE
was significantly higher than that of the GE and unconstrained TGE, although 52 out of
100 adjusted RMSEs of the simplified TGE (with n2 = n3) were still smaller than 0.05 and
the remaining 48 adjusted RMSEs ranged from 0.05 to 0.10. Because of space limitations,
we do not repeat these results in detail here. We do not recommend using this simplified
TGE because it excessively limits the flexibility of model fitting without allowing for the
existence of any asymmetry in the modelled shape. In addition, here we used the mature
fruit. We did not attempt to provide “fixed” reference values of model parameters for the
studied fruit. For immature fruit, the growth process may change the detailed numerical
values of model parameters, but it should not change the conclusions that supertriangles
exist in nature and that fruit vertical projections of K. paniculata can be described by GE
or TGE.

We consider that the radial symmetrical structure for the vertical projections of
K. paniculata fruit might be closely associated with a special function for seed emergence.
The studied plant has fruit in the form of papery capsules. However, fresh fruit is not light,
which implies that such a shape cannot facilitate the long-distance dispersal for seeds by
themselves. The supertriangular cross section parallel to the ground is likely to reduce
wind resistance and accelerate the speed of fruit falling. Thus, it can increase the impact of
fruit falling on the ground to cause seeds to emerge from a cracked fruit.

5. Conclusions

The four-parameter Gielis equation with m = 3 (GE) and the five-parameter twin
Gielis equation with m = 3 (TGE) can both describe the supertriangular shapes of the
vertical projections of the studied golden rain tree fruit well. There was no significant
difference in the goodness of fit (reflected by the adjusted root mean square errors) between
the two equations. However, the GE tends to overfit asymmetrical shapes, and the TGE
tends to produce more symmetrical shapes even when there should be a certain degree of
asymmetry. The evidence obtained from the 100 studied fruit vertical projections shows
that supertriangles described by the Gielis equation do exist in nature. The approximate
radial symmetry of the three major axes of such shapes can be described by the GE and TGE,
such as the five major axes of some sea star species in previous research. The present study
shows that some radially symmetrical curves generated by the GE and TGE can correspond
to actual natural shapes, and suggests that the natural symmetry of such shapes is likely to
result from the same or similar development or growth mechanisms. Thus, the homology
of natural symmetry can be expressed in mathematics. Additionally, it should be noted that,
although in this study we focused on the fruit of Koelreuteria paniculata, supertriangular
structures might exist in other organs of plants, e.g., flowers, in their early developmental
stages [30], so this merits further investigation in the future.
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