|
Record |
Links |
|
Author |
Ngo, K.N.; Tampon, P.; Van Winckel, T.; Massoudieh, A.; Sturm, B.; Bott, C.; Wett, B.; Murthy, S.; Vlaeminck, S.E.; DeBarbadillo, C.; De Clippeleir, H. |
|
|
Title |
Introducing bioflocculation boundaries in process control to enhance effluent quality of high‐rate contact‐stabilization systems |
Type |
A1 Journal article |
|
Year |
2022 |
Publication |
Water environment research |
Abbreviated Journal |
Water Environ Res |
|
|
Volume |
94 |
Issue |
8 |
Pages |
e10772-17 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL) |
|
|
Abstract |
High-rate activated sludge (HRAS) systems suffer from high variability of effluent quality, clarifier performance, and carbon capture. This study proposed a novel control approach using bioflocculation boundaries for wasting control strategy to enhance effluent quality and stability while still meeting carbon capture goals. The bioflocculation boundaries were developed based on the oxygen uptake rate (OUR) ratio between contactor and stabilizer (feast/famine) in a high-rate contact stabilization (CS) system and this OUR ratio was used to manipulate the wasting setpoint. Increased oxidation of carbon or decreased wasting was applied when OUR ratio was <0.52 or >0.95 to overcome bioflocculation limitation and maintain effluent quality. When no bioflocculation limitations (OUR ratio within 0.52–0.95) were detected, carbon capture was maximized. The proposed control concept was shown for a fully automated OUR-based control system as well as for a simplified version based on direct waste flow control. For both cases, significant improvements in effluent suspended solids level and stability (<50-mg TSS/L), solids capture over the clarifier (>90%), and COD capture (median of 32%) were achieved. This study shows how one can overcome the process instability of current HRAS systems and provide a path to achieve more reliable outcomes. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000840360100001 |
Publication Date |
2022-07-23 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1061-4303; 1554-7531 |
ISBN |
|
Additional Links |
UA library record; WoS full record |
|
|
Impact Factor |
3.1 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
|
Approved |
Most recent IF: 3.1 |
|
|
Call Number |
UA @ admin @ c:irua:189409 |
Serial |
7174 |
|
Permanent link to this record |