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Abstract: Many geometries of plant organs can be described by the Gielis equation, a polar coordi-

nate equation extended from the superellipse equation, 𝑟 ൌ 𝑎 ቂቚcos ቀ௠ସ φቁቚ௡మ ൅ ቚଵ௞ sin ቀ௠ସ φቁቚ௡యቃିଵ ௡భ⁄
. 

Here, r is the polar radius corresponding to the polar angle φ; m is a positive integer that determines 
the number of angles of the Gielis curve when φ ∈ [0 to 2π); and the rest of the symbols are pa-
rameters to be estimated. The pentagonal radial symmetry of calyxes and corolla tubes in top view 
is a common feature in the flowers of many eudicots. However, prior studies have not tested 
whether the Gielis equation can depict the shapes of corolla tubes. We sampled randomly 366 flow-
ers of Vinca major L., among which 360 had five petals and pentagonal corolla tubes, and six had 
four petals and quadrangular corolla tubes. We extracted the planar coordinates of the outer rims 
of corolla tubes (in top view) (ORCTs), and then fitted the data with two simplified versions of the 

Gielis equation with k = 1 and m = 5: 𝑟 ൌ 𝑎 ቂቚcos ቀହସ φቁቚ௡మ ൅ ቚsin ቀହସ φቁቚ௡యቃିଵ ௡భ⁄
 (Model 1), and 𝑟 ൌ𝑎 ቂቚcos ቀହସ φቁቚ௡మ ൅ ቚsin ቀହସ φቁቚ௡మቃିଵ ௡భ⁄

 (Model 2). The adjusted root mean square error (RMSEadj) was 

used to evaluate the goodness of fit of each model. In addition, to test whether ORCTs are radially 
symmetrical, we correlated the estimates of n2 and n3 in Model 1 on a log-log scale. The results 
validated the two simplified Gielis equations. The RMSEadj values for all corolla tubes were smaller 
than 0.05 for both models. The numerical values of n2 and n3 were demonstrated to be statistically 
equal based on the regression analysis, which suggested that the ORCTs of V. major are radially 
symmetrical. It suggests that Model 1 can be replaced by the simpler Model 2 for fitting the ORCT 
in this species. This work indicates that the pentagonal or quadrangular corolla tubes (in top view) 
can both be modeled by the Gielis equation and demonstrates that the pentagonal or quadrangular 
corolla tubes of plants tend to form radial symmetrical geometries during their development and 
growth. 

Keywords: flower geometry; Gielis equation; model complexity; natural geometries; planar coordi-
nates; polygonal structure; radial symmetry 
 

1. Introduction 
In geometry, the circle and ellipse have been demonstrated to be expressed as two 

special cases of the superellipse [1]. As a direct extension of the superellipse equation in 
the polar coordinate system, Gielis [2,3] created a highly versatile equation to reflect nat-
ural geometries, especially symmetrical geometries. We refer to it as the Gielis equation 
hereinafter. In the past decade, many studies have been carried out to examine the validity 
of the Gielis equation in fitting actual biological geometries. A simplified version of this 
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equation was used by Shi et al. [4,5] and Lin et al. [6] to fit the boundary data of cross-
sections of tree rings for five species of conifers and bamboo leaves for 46 bamboo species. 
These studies verified the potential of the Gielis equation to describe the shapes of tree 
rings and bamboo leaves and demonstrated that the Gielis equation is a valid scientific 
method for quantitative characterization of the size and shape of widely differing planar 
biological objects. 

Shi et al. [7] proposed a twin version of the Gielis equation by introducing a link 
function and found that the twin Gielis equation was superior in depicting the shapes of 
some sea stars. Tian et al. [8] used the Gielis equation to fit the seed projections (in side 
view) of two Gingko biloba cultivars, and used it to quantify the morphological differences 
between the two cultivars. Li et al. [9] compared the original Gielis equation with its twin 
version in describing the planar projections of Koelreuteria paniculata fruits (in top view) 
and demonstrated that the two versions of the Gielis equation both can model the shapes 
of the vertical fruit projections well. Nevertheless, the twin Gielis equation predicted an 
axial symmetry of K. paniculata fruits, while the original Gielis equation tends to overfit 
the data. In addition, a recent study shows that a simplified Gielis equation can describe 
all existing egg shapes of birds and has a better goodness of fit than other egg shape mod-
els [10]. Flowers can also be modelled in the same way [2,3,11–13], but the capacity of the 
Gielis equation to simulate flower shape has not been quantitatively studied. 

Here, we focused on the geometries of the outer rims of corolla tubes of Vinca flowers 
that are representative to the five-petal flowers with a fused pentagonal base (corolla top). 
The genus Vinca is native to western Mediterranean Europe, Asia Minor and Northern 
Africa, but it has been introduced as ornamental to all continents and has naturalized in 
many sites. It is a small evergreen ground cover plant and in addition to sexual reproduc-
tion, spreads via stolons. Taxonomically, Vinca belongs to the Apocynaceae family, one of 
the five families within the order Gentianales; together with the orders Solanales and La-
miales they form the Lamiids [14]. Lamiids are characterized by late sympetaly, the fusion 
of stamen filaments with the corolla tube and opposite leaves [15]. The Apocynaceae have 
a conserved architecture of highly synorganized flowers, and within this family Vinca L. 
is the type genus of the tribe Vinceae, in particular, of the subtribe Vincinae. The corolla 
is infundibuliform, and the lobe aestivation is sinistrorse [15]. 

The petals of Vinca are fused at their bottom, forming a corolla tube. When the flower 
opens, the distal, unfused parts of the petals fold back in a plane, whereas the upper part 
of the corolla tube formed by the fused parts of the petals becomes clearly delineated. The 
upper ridge or rim of the corolla tube has a clear pentagonal symmetry (although quad-
rangular or hexagonal symmetry may occur). In contrast to the purple color of the free 
petals and the base of the tube, the upper rim of the floral tube is white. The purple petals 
exhibit a high ultraviolet reflectance, whereas the corolla tube, in particular, the upper rim 
of the flower, strongly absorbs ultraviolet (Ultraviolet Flowers: Vinca minor. Available 
online: http://www.naturfotograf.com/UV_VINC_MIN.htm (accessed on 1 July 2022)). 

Most flowers in this species have five petals, but flowers with four or six petals occur 
rarely (Figure 1). Five petals correspond to a corolla tube of pentagonal symmetry and a 
pentagonal rim, and four petals correspond to a quadrangular rim (Figure 1). In the re-
mainder of the paper, we use the term the outer rim of the corolla tube (in top view) 
(ORCT) to denote this polygonal structure and characterize the geometry of the outer rim 
of the corolla tube in top view (i.e., represented by a vertical projection). The two types of 
ORCTs (i.e., pentagonal and quadrangular rims) both seem to exhibit a radial symmetry, 
whereas the distal ends of the petals are rotated counterclockwise, relative to the corolla 
tube. The main reason is the sinistrorse aestivation of the flowers. The Vinca flowers dis-
play contorted aestivation of the corolla, and each petal is asymmetric. However, the en-
tire corolla exhibits a rotational symmetry (Figure 1). 

Pentagonal symmetry is a general condition in Eudicots [16], but a clear pentagonal 
shape, as in the corolla tube of Vinca, is uncommon. In trumpet, campanulate or salver-
form corolla tubes, the transition from fused proximal parts of the petals to the free parts 
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is gradually curved. In Vinca, on the other hand, the plane formed by the free ends of the 
petals is almost perpendicular to the corolla tube. Although the ORCT is never completely 
flat, a projection using a photography or an image scanner can be obtained, making a 2D 
quantitative study possible. In this study, 360 flowers with five petals and six flowers with 
four petals from V. major were sampled to examine whether the ORCTs follow the Gielis 
equation, and to evaluate whether a deviation from pure rotational symmetry can be 
found. 

   
(a) (b) 

Figure 1. Representative flowers of Vinca major L. with five (a) and with four petals (b). 

2. Materials and Methods 
2.1. Flower Sampling and Image Processing 

Vinca major flowers were randomly sampled at the Nanjing Forestry University cam-
pus (118°48′35″ E, 32°04′67″ N), Nanjing, China from 7–23 April 2022 when the peak 
blooming occurred. To keep the flowers fresh, each sampled flower was placed in a 10 mL 
beaker with 1–2 mL water until its image was scanned. The flowers were scanned by an 
Epson photo scanner (V550, Epson, Batam, Indonesia) at a resolution of 2400 dpi, then 
their images were converted into black-white images after being cropped and saved as 
bmp (Bitmap) format using Adobe Photoshop CS2 (version 9.0; Adobe, San Jose, CA, USA; 
http://www.adobe.com/products/photoshop.html). 

2.2. Data Acquisition 
To extract the planar coordinates of the outer rim of the corolla tube (in top view) 

(ORCT), we used MATLAB (version ≥ 2009a; MathWorks, Natick, MA, USA) with a pro-
gram developed by refs. [4,17,18]. We fitted the coordinate data of each ORCT using the 
‘biogeom’ package (version 1.0.5) [19] based on R (version 4.2.0) [20]. 

2.3. Models 
Gielis [2] proposed a polar coordinate equation to describe natural shapes: 

2 3 1

1

1 1(φ) cos φ sin φ
4 4

−
     = +        

n n nm mr
A B

 (1)

where r and φ are the polar radius and polar angle, respectively; A, B, n1, n2 and n3 are 
parameters to be fitted; and m is a positive integer that determines the number of angles 
of the Gielis curve within [0, 2π). Given that the ORCT can be pentagonal or quadrangular, 
m was either five or four in this study. 

Equation (1) can be rewritten as [7,8]: 
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2 3 1

1

1(φ) cos φ sin φ
4 4

−
     = +        

n n nm mr a
k

 (2)

where 2 1/n na A=  and 2 3// n nk B A= . In this work, k was set to 1 because the ORCT of V. 
major exhibits radial symmetry. Most flowers have five petals, so m was set to 5, resulting 
in: 

2 3 1

1

5 5(φ) cos φ sin φ
4 4

n n n

r a
−

 
= +  

 
 (3)

To test whether a radial symmetrical version of the Gielis equation is applicable to 
the ORCT, we set n2 = n3 in Equation (3) so that we have: 

2 2 1

1

5 5(φ) cos φ sin φ
4 4

n n n

r a
−

 
= +  

 
 (4)

We refer to Equations (3) and (4) as Models 1 and 2 for convenience hereinafter. 

2.4. Model Fitting and Data Analysis 
We used the Nelder–Mead optimization method [21] to minimize the residual sum 

of square (RSS) between the observed and predicted polar radii, and obtained the esti-
mated values of the parameters in Equations (3) and (4): 

2

1

ˆRSS ( )
=

= −
N

i i
i
r r  (5)

where ri represents the observed distance from the polar point to the i-th point on a 
scanned ORCT; îr  represents the predicted distance from the polar point to the i-th point 
on the predicted ORCT based on Equation (3) or Equation (4); and N represents the num-
ber of data points on a scanned ORCT. 

Additionally, the root-mean-square error (RMSE) was calculated to reflect the good-
ness of fit: 

RMSE RSS /= N  (6)

However, given the influence of the ORCT size (area) on absolute values of RMSE, 
we used the adjusted RMSE (RMSEadj) [7,9,22]. In that case, we can directly compare the 
differences in the model goodness of fits among different ORCT sizes. 

adj
RSSRMSE

π
= N

S  (7)

where S represents the area of an ORCT. The RMSEadj represents the ratio of the mean 
absolute deviation (between the observed and predicted radii from the polar point to the 
ORCT) to the radius of a hypothetical circle whose area equals to that of the ORCT pro-
jection, which can standardize the prediction error regardless of the ORCT size. 

There are still four parameters in Model 1, and the question is whether a less complex 
model can produce an approximate goodness of fit with fewer parameters. On the one 
hand, the difference between n2 and n3 in Model 1 determines the extent of symmetry. If 
the difference is equal to zero (i.e., Model 2), it can produce a perfectly axial symmetrical 
curve for the ORCT; the larger the difference, the worse the extent of the rim’s symmetry. 
On the other hand, the ORCTs of interest appear visually to be axial symmetrical penta-
gons, so it is necessary to test whether Model 1 (with four model parameters) can be sim-
plified to Model 2 (with three model parameters). Therefore, we performed a linear 
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regression on the estimated values of n3 and n2 for all of the samples. To stabilize the var-
iance of the estimated values of the two parameters and to normalize the data, the log-
transformation was used [23,24]: 

α β = +y x  (8)

where y = ln 𝑛ො3 and x = ln 𝑛ො2, where the circumflex represents the estimated value. The 
parameters α and β were estimated using reduced major axis regression protocols [25,26]. 
The bootstrap percentile method [27,28] was used to calculate 95% confidence intervals 
(CIs) of the intercept and the slope of the regression line. If the CI of the intercept includes 
zero and the CI of the slope includes one, it can indicate that n3 is not significantly different 
from n2, which means that Model 2 is superior to Model 1 due to reduced complexity. It 
also suggests that ORCTs tend to be perfectly axially symmetrical. If n3 is not statistically 
significant from n2, it is unnecessary to compare the RMSEadj values of the two models. It 
is apparent that an additional parameter can increase the goodness of fit, but it might 
result from the overfitting to the data with a certain measurement error. In other words, 
the flexibility in curve fitting of Model 1 may cause an incorrect parameter estimation due 
to the measurement errors. As a rule of thumb, a ≤ 0.05 RMSEadj can reflect the validity 
of a model in curve fitting. 

To compare the goodness of fit between Models 1 and 2, a paired sample t-test was 
used to compare the average values of the RMSEadj values of Models 1 and 2 at 0.05 sig-
nificance level. The log-transformed values of adjusted RMSEs were used to normalize 
the data of adjusted RMSEs. 

In addition, we used nonlinear least-squares to fit the ORCTs by minimizing the sum 
of squares (RSS) between the observed and predicted polar radii. The distribution of the 
residuals in nonlinear least-squares is usually hypothesized to be normal, but the hypoth-
esis in nonlinear least-squares seldom holds true. In that case, we calculated the mean and 
corresponding 95% CI of residuals to examine whether the mean equals 0 and the corre-
sponding 95% CI includes 0. We also calculated the skewness (Sk) of residuals to see 
whether the skewness seriously deviates from zero. For a normal distribution, the skew-
ness equals zero. A positive skewness represents a right skewed distribution curve, and a 
negative skewness represents a right-skewed distribution curve [17]: 

3
μ
σk

z
S E

  − 
 =  
   

 (9)

where z represents the residual between the i-th observed and predicted radii; μ repre-
sents the mean of residuals; and σ represents the standard error of residuals. We used the 
Shapiro–Wilk test [29] to test the normality of residuals only as a reference. 

3. Results 
Both Models 1 and 2 provided generally a good representation of the ORCT (Figure 

2 for sample fits). The RMSEadj values of pentagonal ORCTs predicted by Models 1 and 2 
ranged from 0.0116 to 0.0392 and from 0.0118 to 0.0481, respectively (Figure 3a). This ver-
ified the validities of the two models in describing the shapes of ORCTs of V. major. The 
RMSEadj values calculated by Model 1 were smaller than those calculated by Model 2 for 
346 out of 360 (ca. 96%) ORCT samples, and for the remaining 14 samples, the RMSEadj 
values between the two models were the same. The mean ln(RMSEadj) of Model 1, M1, was 
significantly smaller than that of Model 2, M1 (t = −5.5666, df = 718, p < 0.001). This indicates 
that Model 1 with four parameters provided a better fit than Model 2 with three parame-
ters, although the difference was significant in statistics but fairly small. The percentage 
error, i.e., |ሺ𝑀ଶ − 𝑀ଵ) 𝑀ଵ⁄ | × 100%, between the two mean ln(RMSEadj) values, was less 
than 2.7% (Figure 3b). From the tradeoff between the model complexity and goodness of 
fit, Model 1 is not as good as Model 2, and the latter has a more concise model structure. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 2. Representative images of V. major flowers with five petals (top view; a,b), and the meas-
ured (gray) and predicted (red) outer rims of corolla tubes (ORCTs) using Model 1 (c,d) and Model 
2 (e,f). The boundary coordinate data of ORCTs were obtained from scanned images, and were fitted 
by the R package ‘biogeom’. RMSEadj is the adjusted root-mean-square error (Equation (7)). 
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(a) (b) 

Figure 3. Comparison of adjusted root-mean-square errors (a, RMSEadj, Equation (7)) and their ln-
transformations between Models 1 and 2 (b). The thick horizontal lines represent median values in 
the boxes; a box’s body length represents the difference between the 3/4 quantile and the 1/4 quantile; 
whiskers represent 1.5 times the box’s body length or maximum (or minimum) values; and the small 
gray open circles represent the distribution of data points. The ln-transformed values in (b) were 
compared by a paired sample t-test. 

The results of the linear regression of the data of ln(𝑛ො3) vs. ln(𝑛ො2) and the distribution 
diagrams of 2000 bootstrap replicates of the regression intercept (α) and slope (β) indicated 
that the 95% CI of the intercept included zero and the 95% CI of the slope included 1.0 
(Figures 4 and 5). Thus, there was no significant difference between the estimated values 
of n3 and that of n2, suggesting that the three-parameter Model 2 is sufficient to depict the 
geometry of the ORCT of V. major, although the goodness of fit of Model 1 is slightly 
greater than that of Model 2 (Figure 3). The estimated values of parameters in Models 1 
and 2 have been listed in Tables S1 and S2 in the online Supplementary Materials. 

 
Figure 4. Fitted results to the data of the estimated values of the model parameter n3 vs. the model 
parameter n2 (Equation (3)). The data were fitted according to reduced major axis protocols on a log-
log scale. y represents the ln-transformation of the estimated value of n3; x represents the ln-trans-
formation of the estimated value of n2; the straight line is the regression line; CIintercept represents the 
95% confidence interval of the intercept; CIslope represents the 95% confidence interval of the slope; 
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r2 is the coefficient of determination that reflects the goodness of fit; and N is the sample size, i.e., 
the number of flowers used. 

  
(a) (b) 

Figure 5. Frequency histograms of bootstrap replicates of the intercept (a) and slope (b) of the re-
gression between the model parameters n3 and n2 (Equation (3); Figure 4). The red curves are normal 
density curves; and the blue vertical straight lines represent 0.025 quantile (left) and 0.975 quantile 
(right) that are the lower and upper bounds of the 95% confidence interval in each panel. 

Although all p values of the normality test were smaller than 0.05, indicating that the 
distributions of residuals between the observed and predicted radii were not normal, the 
skewness only ranged from −1.1 to 1.1, which suggested that the distributions of residuals 
were not seriously skewed. The means of residuals for all samples ranged from −0.0002 to 
0.0006 approximate to zero, and all of the 95% CIs of residuals included 0 (see Table S2). 
In other words, the distribution of residuals is approximate to be normal, and the above 
results at least demonstrated the validity of nonlinear least-squares in fitting the ORCTs. 

4. Discussion 
4.1. Analysis of the Prediction Errors 

Multiple artificial measurement errors occurred when we scanned and extracted the 
boundaries of the 360 outer rims of corolla tubes (ORCTs). On the way from the site of 
plant growth to the laboratory, artificial physical pressures might have caused a certain 
deformation of the flowers. In addition, during scanning, the physical pressures on differ-
ent contact points of a ORCT with the scanning plane could also cause a certain morpho-
logical deformation of the ORCT. Thus, there are some parts on an ORCT especially close 
to the vertices of the pentagon that are not well resolved in scanned images. This generates 
some uncertainties in extracting the ORCT. Nevertheless, given that such deformations 
were smaller than 0.05 mm, we conclude that the impact of such deformations on model 
fitting can be neglected. 

In addition, the interspecific variation from a perfect symmetrical pattern in the 
growth process of V. major probably increased the deviation of the actual shape of ORCT 
from the predicted shape. The intraspecific variation reflects both genotypic differences 
as well as plastic modifications to differences in the growth microenvironment, including 
differences in the availability in light, water and nutrients [30–34]. Although the plants 
used were irrigated by sprinklers, the individuals closer to the water source formed a 
denser cover, indicating that water availability introduced some changes in the plant phe-
notype in this study. A stronger intraspecific competition for space at greater water 
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availability caused some physical compression within adjacent individuals during flower 
growth; this resulted in the deformation of some flowers to a certain degree and subse-
quently led ORCTs to be less symmetrical. All of the factors outlined likely had some im-
pact on the prediction errors using the two simplified Gielis models to describe the shapes 
of ORCTs. Nevertheless, the RMSEadj values of the two models were all smaller than 0.05. 
This verified the validity of the Gielis equation in fitting the real natural geometries of 
corolla tubes of V. major. 

4.2. Comparison of the Two Models 
The parameters n2 and n3 determine the extent of symmetry for the geometry gener-

ated by Model 1. The regression analysis indicated that there was no significant difference 
between n2 and n3, indicating that the analysis can be simplified by replacing n3 with n2. 
Therefore, we conclude that Model 2 with fewer parameters can replace Model 1 for de-
scribing the ORCT of V. major. Although most of the adjusted RMSE values calculated by 
Model 1 were slightly smaller than those calculated by Model 2 among 360 ORCTs, all of 
the RMSEadj values for both models were less than 0.05. This means that for any sample, 
the average absolute deviation between the observed and predicted radii from the polar 
point to an ORCT was less than 5% of the radius of a circle whose hypothetical area equals 
that of the ORCT. 

The use of Model 2 has several practical advantages. In particular, as fewer parame-
ters need to be fitted, the efficiency of parameter estimation is higher. This implies that 
the probability for the model parameters not to converge is lower for Model 2; also, the 
average computer running time to complete the optimization for each dataset using 
Model 2 is less than that using Model 1. In addition, Model 1 with an additional parameter 
n3 tends to lead to an overfitting of the planar coordinate data of ORCTs. Accordingly, this 
blurs the biological meaning of the parameter values. Model 2 with parameters n3 = n2 
diminishes the possibility of generating an asymmetrical curve and therefore agrees better 
with previous studies (e.g., refs. [7,9]). 

4.3. Variation in the Number of Polygon Sides of the ORCT of V. major 
In addition to pentagonal ORCTs, there was a very small proportion of quadrangular 

ORCTs among the flowers of the sampled V. major population (Figure 6a). In addition, 
flowers with hexagonal ORCTs can be observed in this species (personal observations), 
but were not found in the current study. The plants with pentagonal ORCTs have five 
petals, while the plants with quadrilateral ORCTs have four petals; each angle of an ORCT 
corresponds to a petal (Figures 1 and 6). In flower sampling, we found only six specimens 
with quadrilateral petals, i.e., a ratio of 6:366 in the total sample of flowers collected. It is 
currently unclear what causes the formation of four-petal flowers in V. major, but given 
that it is a clonal species, it is unlikely that the variation of petal number is of genetic origin, 
although we cannot rule out that the sampled population was a mix of several clones. In 
fact, the situation is similar to Syringa spp. that typically have four-petal flowers, but oc-
casionally form five-petal flowers, and sometimes even flowers with more than five petals 
in the same inflorescence. 

Similar to flowers with pentagonal ORCTs, we fitted the coordinate data of the six 
quadrilateral ORCTs of V. major using Model 2. As with flowers with pentagonal ORCTs, 
all of the adjusted RMSE values for flowers with quadrilateral ORCTs were smaller than 
0.05 (Table S3 in the online Supplementary Materials). Thus, Model 2 also well describes 
the shape of the ORCT of V. major with four petals (Figure 6b). 
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(a) (b) 

Figure 6. The vertical projection of V. major flower with four petals (a), and the comparison between 
the observed and predicted ORCTs (b). In panel (b), the gray curve represents the observed ORCT 
and the red curve represents the predicted ORCT using Model 2. Presentation and symbols as in 
Figure 3. 

5. Conclusions 
The simplified Gielis equations with m = 5 or m = 4 are both valid in describing the 

outer rims of the corolla tubes (in top view) (ORCTs) of V. major. A further simplified 
Gielis model with n2 = n3 predicted a perfectly axial symmetrical ORCT. The use of the 
simpler model can avoid model overfitting and reduce the running time for completing 
parameter estimation. This work shows that the ORCTs of plants can be modeled by the 
Gielis equation and can provide a reference for future research on superelliptic shapes of 
plant organs or tissues, e.g., projections of calyxes and polygonal cross-sections of fruits, 
e.g., ref. [9]). Additionally, the small difference between the parameters n2 and n3 in Model 
1 did not cause a large deviation for ORCTs from a perfectly axial symmetrical pattern. 
This work provides evidence that the natural morphology of plant organs and tissues fol-
lows the superformula proposed by Gielis [2], and the process of growth and development 
of corolla tubes exhibits a general but unknown biophysical mechanism that is commonly 
shared by other organs or tissues of many species, which at least can be reflected by the 
same mathematical model. Thus, it is worth further examining the validity of the Gielis 
equation in depicting more geometries found in nature to uncover the influence(s) of such 
a general biophysical mechanism on biological geometry and morphology. 
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results of the planar coordinate data of ORCTs of V. major with four petals using Model 2. 
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