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Figure 1: On the left-side, VR shape widgets for exploring and selecting supershapes. On the right-side, a selection task example for
which a user starts adjusting a handle (a) to match a target shape (b).

ABSTRACT

Supershapes are used in Parametric Design to model, literally, thou-
sands of natural and man-made shapes with a single 6 parameter
formula. However, users are left to probe such a rich yet dense
collection of supershapes using a set of independent 1-D sliders.
Some of the formula’s parameters are non-linear in nature, making
them particularly difficult to grasp with conventional 1-D sliders
alone. VR appears as a promising setting for Parametric Design
with supershapes since it empowers users with more natural visual
inspection and shape browsing techniques, with multiple solutions
being displayed at once and the possibility to design more interest-
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ing forms of slider interaction. In this work, we propose VR shape
widgets that allow users to probe and select supershapes from a
multitude of solutions. Our designs take leverage on thumbnails,
mini-maps, haptic feedback and spatial interaction, while supporting
1-D, 2-D and 3-D supershape parameter spaces. We conducted a user
study (N = 18) and found that VR shape widgets are effective, more
efficient, and natural than conventional VR 1-D sliders while also
usable for users without prior knowledge on supershapes. We also
found that the proposed VR widgets provide a quick overview of the
main supershapes, and users can easily reach the desired solution
without having to perform fine-grain handle manipulations.

Index Terms: Human-centered computing—User interface de-
sign; Human-centered computing—Virtual reality Human-centered
computing—Graphical user interfaces

1 INTRODUCTION

Parametric Design (PD) represents objects as a collection of shapes
with well-defined parameters that encode geometric features such
as dimension, curvature or symmetry [11]. These shapes can be



changed by modifying parameter values, thus, allowing users to
easily generate a large and diverse number of objects from a sin-
gle formula or algorithm. Supershapes are a class of parametric
models used in PD to represent a plethora of natural and man-made
shapes [26, 27, 47]. PD with supershapes has been studied before
in curve/surface fitting [49], computer vision [23], Constructive
Solid Geometry [20, 22], shape recovery [21], and even procedural
modeling in Virtual Reality (VR) [37]. In fact, several real-world
applications rely on PD with supershapes such as designing or mod-
eling urban buildings [37], tangible user interfaces [33], wind tur-
bines [44], antennas [8], seed morphology [48], nanotechnology [6],
mechanical design [12, 13], robotic haptic recognition [24] among
many other examples.

Many VR apps for PD exist [1, 4, 9] and several studies have re-
ported that PD benefits from VR as immersive technologies promote
the creation of 3-D shapes in different design stages [15, 17, 19].
Surely, VR can also become an appropriate medium for modeling
objects made of supershapes. Actually, 2-D supershape apps are
already available in game engine asset stores such as [3] but studies
on VR applied to PD with supershapes are still lacking [37].

Probably the most obvious VR scenario for PD with supershapes
is to explore and select smooth curved objects within the parameter
space. Supershapes were originally formulated to model objects
found in nature such as eggs, flowers, leaves, shells or horns [26,
30]. Yet, in VR, such organic objects are commonly modeled with
polygonal meshes [43] or splines [2, 46] that, although more flexible
for designing smooth curved objects, carry a lot of manual input
in the form of sketching multiple strokes and editing many control
points. Supershapes could complement these 3-D modeling tasks by
providing 2-D cross-section curves or 3-D shapes of entire objects
that could easily be converted into polygonal meshes [42] and even
spline curves [12].

However, interacting with supershapes comes with a couple of
challenges. Firstly, users are left to probe such a rich yet dense
collection of supershapes using conventional 1-D sliders, leaving
users to fiddle and tweak the numerical values of the parameters
by adjusting slider handles [18, 35, 39, 40]. Secondly, some of the
formula’s parameters are non-linear in nature, making them partic-
ularly difficult to grasp with conventional 1-D sliders alone. Such
supershape challenges were partially addressed by Lopes et al. [39]
who proposed two widgets for supershape exploration and selection
comparing them to 1-D sliders in terms of task completion, selection
accuracy and user satisfaction. However, their study considered
flat WIMP interfaces that are well known to hinder the process of
visual exploration and shape selection. This creates an opportunity
to re-frame supershape widget design in the context of VR. In fact,
VR appears as a promising medium to address these challenges
since it empowers users with more natural visual inspection and
shape browsing techniques, making multiple solutions available at
once and the possibility to design more interesting forms of slider
interaction [10, 34, 38].

Therefore, before developing a fully fledged VR system for PD
with supershapes, it is necessary to address which type of VR wid-
gets best suit fundamental supershape modeling tasks. According
to Bowman et al. [10], selection is a generic task to any 3D user
interface. This of course applies to PD in VR. Moreover, not only
VR can make available dozens or hundreds of shape solutions at
once, but empowers users with camera control, bi-manual interaction
and body movements that promote more natural visual inspection,
shape browsing and shape selection tasks [34]. Thus, to promote
VR as a medium for PD with supershapes, it is necessary to first
design widgets suitable for probing and selecting supershapes from
a multitude of solutions.

In this work, we propose VR widgets shaped as lines, quads,
and cubes to explore and select supershapes from 1-D, 2-D, and
3-D parameter spaces. Each parameter space is a sub-set defined

by the three non-linear parameters of the supershape formula. Our
widget design options are based on guidelines from the literature
that inform which widget features make parameter space exploration
more user-friendly [5, 7, 34, 38, 41]. In particular, our designs take
leverage on thumbnails, mini-maps, haptic feedback and spatial in-
teraction, while supporting 1-D, 2-D, and 3-D supershape parameter
spaces. We conducted a user study to evaluate whether the proposed
VR shape widgets support a more natural probing and selection of
supershapes, and verify if they have adequate usability for users
that have no prior knowledge on supershapes. We compare the VR
shape widgets among each other and against conventional 1-D slid-
ers. Task completion time, selection accuracy, perceived usability
and task load, participant satisfaction and participant preferences
were measured to validate our initial concepts of the line, quad, and
cube VR shape widgets (Figure 1).

2 SUPERSHAPES

Also known as Gielis Transformations [27,47], supershapes have the
noteworthy capacity to model a rich family of natural and man-made
2-D shapes, while relying only on a single mathematical formula
with just 6 or less parameters [26]. Supershapes have even been
successfully tested on more than 40000 specimen from biology [30].
More complex 3-D shapes can be modeled with two or more 2-
D supershapes either by applying a cross-product between a pair
of orthogonal supershapes or by defining the cross-sections of a
generalized cylinder as supershapes [27].

In computer graphics, supershapes were introduced as a general-
ization of superquadrics [28, 29], but can also be considered as the
generalization of polygons with linear or non-linear curved edges,
i.e., supershapes are able to represent a variety of symmetrical and
asymmetric shapes with either smooth boundaries or sharp features.
The geometric locus of a supershape is defined by its relative dimen-
sions (a, b), number of sides (m), and three exponents (n1,n2,n3)
whose non-linear behaviour regulates the curvature of the sides, i.e.,
define a more convex or concave shape appearance. The 2-D super-
shape formula is written in the following parametric angle-center
expression:
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where r ∈R
+
0 and θ ∈ [0,2π[ are the polar coordinates of radius and

angle, respectively. Figure 2 showcases several types of supershapes
with varying a, b, m, n1, n2, and n3. Given the 6 parameters of
(Equation 1), the exponents n1, n2, and n3 are those that spark
greater interest. While a, b, and m are intuitive parameters (i.e., they
define the size and number of sides of the shape), the exponents have
a non-linear behaviour.

To cope with the challenges of interacting with the non-linear and
multi-dimensional parameter space defined by the exponent values,
we propose the design of line, quad, and cube shaped widgets for
probing 1-D (n1 = n2 = n3), 2-D (n1 ̸= n2 = n3), and 3-D (n1 ̸=
n2 ̸= n3) exponent parameter spaces, respectively. Several studies
only consider such sub-sets of the exponent parameter space (i.e.,
n1 = n2 = n3; n1 ̸= n2 = n3) since the full set (i.e., n1 ̸= n2 ̸= n3) is
vast and often does not offer many useful shape solutions [27, 30].
Moreover, since these sub-set exponent parameter spaces are more
constrained they offer greater control for exploration tasks and to
find a desirable shape solution. Nevertheless, the full set can be also
of interest, in particular, for providing more creative or exotic shape
solutions that cannot be found in the sub-sets, which is particularly
useful for computational creativity applications [16].

3 SUPERSHAPE LINE, QUAD, AND CUBE WIDGET DESIGN

A total of 6 shape widgets were designed to explore and select
supershapes from 1-D, 2-D, and 3-D exponent parameter spaces



Figure 2: Assortment of supershapes with different dimensions (a,b)
values of number of sides (m) and exponents (n1,n2,n3). Each under-
lying array corresponds to (a,b,m,n1,n2,n3).

(Figure 1). Our supershape widgets consider techniques found in
slider design and infovis studies [7, 32, 38, 41]. Even though most
of these techniques were not designed with VR in mind, they are
easily extendable to spatial user interfaces [5, 34]. The implemented
techniques were the following:

Re-scaling - Since most of the supershapes’ diversity resides in
exponent values that belong to sub-intervals ]0,1] and ]1,2] [27],
we re-scaled the exponent parameters so that the sub-intervals
ni ∈]0,1], ]1,2] and ]2,L] (i = 1,2,3, L ∈ R+,L ≫ 2) had the same
length/area/volume in the sliders tracks (Figure 3). Without loss of
generality, we consider non-null positive exponents only.

Figure 3: A quad widget showcasing equally spaced sub-intervals of
the exponent values.

Thumbnails - Liu et al. [38] explored small multiples to display
a great variety of design solution at once, to facilitate visual compar-
isons and provide an overview of the data with minimal interaction.
Here, we replace the concept of ‘small multiples’ with thumbnails,
each of which represents a supershape placed at equally spaced posi-

tions within the re-scaled intervals (i.e., ni ∈ {0+, 1
2 ,1,1

1
2 ,2,

L
2 ,L},

where L ≫ 2), which guarantees a proper sampling of these inter-
vals without loss of details [27, 42]. Each thumbnail is clickable to
enable users to select the displayed supershape. All the considered
thumbnail layouts follow the traditional arrangement of a grid with
a fixed and predefined order (Figure 4) [38]. For the cube shaped
widget (Figure 4(c)), we followed the Space Cutting technique by
Bach et al. [7]. Although this method does not show an overview
of the entire space at once, it does significantly reduce visual noise
and can be used to quickly survey the entire cube in one continuous
motion.

Figure 4: Three types of VR shape widgets picturing thumbnails for
(a) 1-D, (b) 2-D, and (c) 3-D exponent parameter spaces.

Bands - Sliders of continuous value benefit from representing
sub-intervals with bands instead of ticks [41]. The usage of bands to
decorate a slider enables unbiased handle adjustments with the preci-
sion of tick marks while reducing response time. Thus, bands were
used to visually represent the span of each exponent sub-interval.

Mini-maps and re-sizable handles - Similar to a World-in-
Miniature [7, 14], we also considered mini-maps that display reg-
ular spaced samples of supershapes in the vicinity of the handle
position, which inform the user about the supershapes underly-
ing the area occupied by the slider handle (e.g., a smaller han-
dle represents a smaller sub-interval), consequently, allows for
more precise fine-tuning. More specifically, whenever a handle,
placed at exponent value v, is re-sized to a width w, the mini-map
showcases multiples of 3 (i.e., ni ∈ {v − w

2 ,v,v +
w
2 }) or 5 (i.e.,

ni ∈ {v− w
2 ,v−

w
4 ,v,v+

w
4 ,v+

w
2 }) thumbnails per parameter di-

mension (Figure 5).

Figure 5: Three types of VR shape widgets picturing mini-maps and
re-sizable handles for (a) 1-D, (b) 2-D, and (c) 3-D exponent parameter
spaces.

Haptic feedback - Tactile haptics in the form of vibration is
considered a supporting channel that enhances the visual feedback
of touch during manipulation tasks [45]. Therefore, subtle haptic
feedback (i.e., small intensity and short duration pulses) was in-
troduced whenever the handle reaches key points of the exponent

parameters space (i.e., ni ∈ {0+, 1
2 ,1,1

1
2 ,2,

L
2 ,L}). Note that haptic

feedback was not used when selecting thumbnails, but just to inform
the user whenever the handle reached an end point or crossed over
the sub-intervals of the exponent values.

3.1 VR 1-D Sliders

As baseline of comparison, for each dimension we consider a set of
1 (1DSlider), 2 (2DSlider) and 3 (3DSlider) 1-D sliders vertically



stacked inside a panel (Figure 1). Such sliders follow their counter-
part 2-D desktop metaphor to perform numerical value adjustments.
The exponents of the supershape formula are directly mapped to
these sliders. Interaction with 1-D sliders can be done by moving a
handle constrained to a track or clicking on a point on the track.

3.2 Supershape Line Widgets (n1 = n2 = n3)

Two line shaped widgets (Line and LineMap) were designed to select
shapes inside a 1-D exponent parameter space and have a similar
mechanics to traditional 1-D sliders (Figure 1). They only allow the
input of a single value γ = n1 = n2 = n3 encoded by the coordinate
of the handle relative to the origin of the track (left end). These
widgets have three distinct bands and haptic feedback to denote
when the user transitions from one band to another. It features an
array of 7 thumbnails. Similarly, the mini-map for LineMap shows
an array of 5 shapes being sampled from the sub-interval defined by
the handle, presented in a separate panel above the slider.

3.3 Supershape Quad Widgets (n1 ̸= n2 = n3)

As for the 2-D exponent parameter space, we designed two quad
shaped widgets (Quad and QuadMap) represented by square han-
dles that move within square tracks forming 2-D sliders (Figure 1).
They allow two input values respectively encoded by the x and y
coordinates of the handle relative to the origin of the track (lower left
corner). The resulting shape is dictated by γ1 = n1 and γ2 = n2 = n3.
The tracks are divided into 3×3 re-scaled bands and haptic feedback
is provided to indicate transitions between bands. They feature an
embedded matrix of 7×7 thumbnails. Likewise, QuadMap has a
secondary panel or mini-map, positioned to the right of the slider that
shows a matrix of 5×5 thumbnails sampled from the sub-interval
inside the handle.

3.4 Supershape Cube Widgets (n1 ̸= n2 ̸= n3)

Regarding the 3-D exponent parameter space, we designed two
cube shaped widgets (Cube and CubeMap) represented by cubic
handles with cube-shaped tracks forming 3-D sliders (Figure 1).
Both support three input values respectively encoded by the x, y and
z coordinates of the handle relative to the origin of the track (lower
left corner of the cube’s closest face). The user can control all three
exponent parameters. The resulting shape is dictated by γ1 = n1,
γ2 = n2 and γ3 = n3. Inside the cube, 2-D slices are populated by
thumbnails in the same configuration as the Quad widget. Sliding
the handle along the z axis of the cube, shows a forward-facing 2-D
slice of the 3-D parameter space encompassed by the slider’s track
similar to a color cube [34]. The mini-map of CubeMap is a 3-D
matrix of 3×3 thumbnails representing the sub-interval of the slider
handle; this number is more reduced than it’s lower dimensional
counterparts due to excessive overlap in primitives which made it
too cluttered to use efficiently.

4 USER STUDY

A user study was conducted to assess supershape selection perfor-
mance, perceived usability, perceived task load, user satisfaction and
preferences of the proposed VR shape widgets. We declare the type
of VR widget as our single independent variable (WidgetDesign):
conventional 1-D sliders (1DSlider, 2DSlider, 3DSlider), shape wid-
gets without mini-map (Line, Quad, Cube), and shape widgets with
mini-map (LineMap, QuadMap, CubeMap). To address the research
questions of our study, we declare 4 dependent variables: (i) Task
Completion Time, (ii) Selection Error, (iii) Perceived Usability, and
(iv) Perceived Task Load. Note that, we are interested in assess-
ing the metrics per parametric space dimension and not between
different dimensions.

We consider the following hypothesis for our study:

H1: Shape widgets will produce shorter task completion times.

H2: Shape widgets will contribute towards smaller selection error.

H3: Including a Mini-Map will increase the accuracy of the
selections.

H4: Shape widgets will produce a higher perceived workload.

H5: Shape widgets will generally be perceived as having better
usability.

4.1 Participants

A total of 18 volunteer participants performed the user study
(26.3±7.9 years old, 7 female). Recruitment was done through
email lists for people interested in participating in Human-Computer
Interaction studies. Nine participants had hobbyist level of experi-
ence while one operates shape modeling software in a daily basis.
Regarding their experience with VR, eight have a high level of
VR experience (level of expertise 4 in 1-5 scale; 5 indicates full
agreement) while the remaining participants had little to none VR
experience. None of the participants indicated to be familiar to su-
pershapes (1 in a 1-5 scale; 5 indicates full agreement), in fact, none
of them knew what a supershape was before the experiment.

4.2 Apparatus

Our setup relies on the Oculus Quest™ headset. Both controllers
were used as hand-held input devices to track hand gestures, to
provide button input and to render haptic feedback. All code de-
velopment was performed using Unity (v2020.2), XR Interaction
Toolkit (v0.9.4) and C# scripting. Supershapes were rendered with
an in-house HLSL fragment shader.

4.3 Measures

We measured the following dependent variables:

Task Completion Time (TCT) [seconds]. The time taken by the
user to complete a given task. The time is counted from the moment
the target shape is presented to the moment the user decides they are
satisfied with the result.

Selection Error (SE) [exponent difference value]. The absolute
difference between the selected exponent and the corresponding
target exponent (three exponents are calculated per task). For the
purpose of analysis, we average the relevant exponent errors for each
dimension level.

System Usability Scale (SUS) [score 0-100]. Simple, reliable
tool for measuring perceived usability.

Task Load Index (Raw NASA-TLX) [score 0-100]. Subjective,
multidimensional rating procedure to determine perceived workload
and assess a system’s effectiveness. The sub-scales were not rated
by participants and were considered to be equally weighted [31].

4.4 Tasks

Participants were invited to perform habituation tasks that consisted
of interacting with all available features, introducing participants
to supershapes and enabling them to explore the parameter space
values. A total of 9 habituation tasks (1 per widget) were performed.
Then, participants were asked to select a shape that matched, as
closely as possible, a target shape displayed in front of them (Figure
1). Participants were prompted to complete 27 tasks (3 exponent pa-
rameter spaces x 3 VR shape widgets per parameter space x 3 target
shapes). All target shapes differed from each other, none consisted
of a common shape (e.g., circle or regular polygon) nor was any
of the target shapes one of the displayed thumbnails. Without loss
of generality, target shapes parameters were defined with relative
dimensions a,b ∈ R+, number of sides m ∈ N0, and exponents
n1,n2,n3 ∈]0,50]. Each task session was individual and timed, al-
though a time limit of 90 seconds was imposed. Besides the controls
of each VR shape widget, the participant had a ’done’ button to set



the TCT, which was measured since the beginning of the task until
the participant was satisfied with the result.

4.5 Procedure

Each session was conducted remotely as we could not perform the
experiments in a laboratory environment due to COVID-19 restric-
tions. Participants were asked to download the application and
install it on their own Oculus Quest. The study procedure was com-
pletely scripted and ran without the oversight of an experimenter.
All questionnaires were online forms presented directly in VR (Ocu-
lus Browser) using a readable font size. In terms of experimental
setting, each participant wore a headset, held both controllers on
each hand and were instructed to perform the study in standing
position in a room without nearby obstacles nor distractions. The
relative positions and orientations of the avatar and all VR content
was determined by Oculus Quest tracking system. The widgets were
placed in front of the participant at arm’s reach, with the panels
placed at a 45° inclination bellow shoulder height so that the panels
are faced towards the user’s head. The size of the sliders, handles
and panels lie within ranges of found in real-world controls and VR
widgets [5].

The expected duration of each evaluation session was about 30-45
minutes. Before performing any task, participants were prompted
to fill in an Informed Consent and Demographic Profile forms. Af-
terwards, participants were guided through the interactive system.
Then, they were asked to explore the widgets to familiarize them-
selves with the interface and its mechanics followed by the execution
of 27 tasks. Quantitative metrics described in Sub-Section 4.3 were
measured. The sequence of tasks was ordered by resorting on Latin
squares’ permutations. Finally, user satisfaction and user prefer-
ence were assessed with a list of statements scored on a 5-point
Likert Scale (5 indicates full agreement), while perceived usability
and perceived task load were collected by filling out the SUS and
NASA-TLX questionnaires, respectively.

5 RESULTS

All data was tested using the Shapiro-Wilk test and although not
all metrics followed a normal distribution, all of them presented
skewness and kurtosis values within ± 2 [25]. Statistical significance
was tested using three one-way repeated measures ANOVAs, one
per parameter space dimension, with Post Hoc pairwise comparison
using Least Significant Differences.

Task Completion Time - We extracted the TCTs from the data col-
lected during the study, the results are shown in Figure 6. Amongst
the 1-D widgets, Line was the fastest method (M = 9.87 s, SD =
4.19 s) and the slowest was 1DSlider (M = 17.75 s, SD = 10.27
s). There was a statistically significant difference between group
means as determined by one-way ANOVA (F(1.42,24.143)=12.309,

p < .001, η2 = 0.420) and pairwise comparisons found signifi-
cant difference between all 3 pairs: 1DSlider and Line (p = .001);
1DSlider and LineMap (p = .005); Line and LineMap (p = 0.035).
Amongst 2-D widgets Quad was the fastest (M = 19.04 s, SD =
8.76 s) and QuadMap the slowest (M = 28.95 s, SD = 14.58 s) just
behind 2DSlider (M = 28.82 s, SD = 16.90 s). ANOVA determined
there was a statistically significant difference (F(2,34)=5.588, p =

.008, η2 = 0.247) and pairwise comparison showed that 2DSlider
and Quad (p = .007), as well as Quad and QuadMap (p = .002)
differed significantly. Finally, amongst 3-D widgets Cube was the
fastest (M = 43.77 s, SD = 20.73 s) and CubeMap the slowest (M
= 54.87 s, SD = 20.28 s). We found a statistically significant differ-
ence (F(2,34)=3.493, p = .042, η2 = 0.170) and pairwise comparison
showed that Cube differed significantly from CubeMap (p = 0.01).

Selection Error - The measured SEs are shown in Figure 7.
Amongst the 1-D widgets, the widget with smallest error was Line
(M = .011, SD = .009) followed by LineMap (M = .012, SD = .012)

Figure 6: Mean TCT per WidgetDesign for 1-D, 2-D, and 3-D exponent
parametric spaces. The error bars represent standard error. Hori-
zontal line segments topped with an asterisk (*) denote statistical
significant difference.

and the largest error, by a large margin, was 2DSlider (M = .054, SD
= .056). ANOVA analysis found a statistically significant difference
(F(1.027,17.454)=10.07, p = .005, η2 = 0.372) and pairwise compari-
son showed that 1DSlider and Line (p = .004) as well as 1DSlider
and LineMap (p = .007) differed significantly. Amongst 2-D widgets,
QuadMap had the smallest error (M = .057, SD = .048) and 2DSlider
the largest (M = .159, SD = .182). ANOVA revealed there was a
statistically significant effect (F(2,34)=3.62, p = .038, η2 = 0.176)
and pairwise comparison showed a significant difference between
2DSlider and QuadMap (p = 0.16). Amongst 3-D widgets, Cube
produced the smallest error (M = .158, SD = .122) and 3DSlider the
largest (M = .259, SD = .238). However, the ANOVA analysis was
unable to find statistical significance (F(2,34)=1.066, p = .355, η2 =
0.059).

Figure 7: Mean SE per WidgetDesign for 1-D, 2-D, and 3-D exponent
parametric spaces. The error bars represent standard error. Hor-
izontal line segments topped with an asterisk (*) denote statistical
significant difference.

To analyse the qualitative ordinal data such as the score for the
SUS and TLX we applied non-parametric Friedman’s Test for each



dimension separately (1-D, 2-D, and 3-D exponent parameter space).
We then conduct a post-hoc analysis using Wilcoxon signed-rank test
to calculate effect size. The reported p-values are Holm-Bonferroni
corrected.

System Usability Scale - We calculated the SUS score from the
data collected. Amongst the 1-D widgets, Line had the greatest mean
score (M = 86.11, SD = 11.28), with 1DSlider (M = 79.0, SD =
11.5) and LineMap (M = 78.6, SD = 16.25) having similar inferior
scores. Friedman test found statistical significance (X2(2)=9.224,
p=.010)) and post hoc tests showed a significant difference between
Line and LineMap (p = .008), as well as 1DSlider and Line (p =
.024). Amongst 2-D widgets, similar result was observed with Quad
coming out on top (M = 82.77, SD = 16.77) and 2DSlider being
the worst mean score (M = 66.39, SD = 22.73). Friedman test
found statistical significance (X2(2)=6.2, p=.045)) and post hoc tests
showed statistical significance between the pairs 2DSlider and Line
(p = .016), and also, Line and LineMap (p = .004). For the 3-D
widgets, we continue to observe the trend where the shape widget
with no mini-map (Cube) gets the highest SUS score (M = 72.36,
SD = 20.14) and the conventional widgets (3DSlider) gets the lowest
score (M =59.16, SD = 24.47). However, Friedman test showed that
no statistical significance was found (p = .33).

Task Load Index - Finally, for the NASA-TLX we observed that
VR shape widgets (with and without mini-map) had a slightly lower
scores, but after running Friedman test no statistical significance was
found (p ≥ .109).

Regarding user preference ranking, we found that amongst 1-
D widgets Line was the most preferred by the participants (50%),
amongst 2-D shape widgets Quad was the most preferred (61%),
while Cube was the most preferred (44%) of the 3-D shape widgets.
The least preferred widgets were 1DSlider (61%), 2DSlider (66%)
and 3DSlider (72%).

6 DISCUSSION

Overall, the proposed VR shaped widgets were well received by the
participants, even though they were not familiar with supershapes. In
general, the performance metrics (TCT and SE), perceived usability,
perceived task load, and user preference were better scored next to
VR shape widgets without mini-maps, while 1-D sliders presented
the lowest scores.

Concerning TCT, the widget shape seems to have a significant
effect over task completion times, however this observation is not
all-encompassing. For 1-D and 2-D, the VR shape widget design
approach clearly leads to shorter times, with the addition of the
mini-map the TCT becomes statistically significantly longer but
still remains below or equal to the baseline of 1-D Sliders. In the
case of 3-D widgets, we found that TCT do not have a significant
difference despite the means showing that the mini-map design
produces slightly shorter TCTs. Thus, we accept H1 for 1-D and
2-D widgets but we do not conclude this for 3-D cube widgets as the
only valid observation is that the TCT for CubeMap is significantly
longer than Cube. Note that TCT values increase from 1-D to 3-
D, which was expectable since higher dimension parameter spaces
present more visual information, hence, more content to interact
with. Yet, for 2-D and, mainly, 3-D the mini-maps introduced less
efficiency. The reason that we see longer TCTs for widgets that
include a mini-map is likely due to the increase in cognitive load that
comes with the extra functionality to interact with and the increased
amount of visual information, leading participants to spend more
time reshaping their selection inside two distinct interactive spaces.
We expected this trade-off to come at the expense of selection tasks
with finer control and improved accuracy.

As for selection accuracy, we notice that a significant increase
appears when comparing the conventional widgets 1DSlider and

2DSlider to their shape widget counterparts, both with and with-
out the inclusion of a mini-map (i.e., Line, LineMap, Quad, and
QuadMap), which leads us to accept H2 for both 1-D and 2-D
widgets dimensions. Once again, despite the lack of statistical sig-
nificance, we do find the same trend with the 3-D widgets but we
fall short of being able to accept H2 in this case. This might be
due to the small test sample size or the high variance found in the
data collected. However, the non-linear behaviour of the supershape
formula (Equation 1) may have affected the SE when target shapes
present either n1 > 2 or n2,3 > 2 as the formula can render visually
identical shapes for different exponent parameter values, thus, lead-
ing participants to select one solution from several solutions that
look alike but have distinct exponent values. To attain a more rep-
resentative SE metric, we could consider a metric based not on the
difference between exponent parameters but rather on the differences
between 2-D signals (e.g., dynamic time warping), yet cognitive sci-
ence studies report that when performing visual similarity-judgment
task, our perception of shapes is not based on differences, but on
similarity [36]. So, greater attention needs to be given on how to
formulate a representative SE metric, possibly one that combines
exponent values, 2-D signal processing and perception metrics.

Unexpectedly, we did not observe a significant effect in SE for
shape widget including the mini-map. According to participant
feedback, the thumbnails paradigm is not appropriate for fine-tuning
at the scale. This is due to the fact that spotting visual differences
between shapes that are too alike becomes increasingly harder when
this difference is so reduced. Users would sometimes mistakenly
select a neighbouring shape and become frustrated at the fact that it
did not produce the expected change. From these observations we
reject H3 and conclude that the increase in TCT that comes with
implementing a mini-map with a discrete set of solutions requires
further design iterations.

As for perceived usability, the analysis of SUS scores were largely
inconclusive. We saw a significant effect for 1-D and 2-D dimen-
sions, but not 3-D. In spite of this, our means revealed VR shape
widgets without mini-maps to be most well scored in terms of us-
ability across the board. Despite the lack of statistical significance,
which does not support H5, participant feedback and user prefer-
ences painted a favorable image for these shape widgets.

Finally, we expected that the VR shape widgets would imply
higher perceived task load. However, despite presenting more visual
information and requiring higher physical exertion, this assumption
was not supported by the results of the analysis to TLX where we
observed no significant effect and the means actually presented
an optimistic perception in that the scores for shape widgets were
overall lower. Thus, we can safely reject H4.

7 CONCLUSIONS AND FUTURE WORK

In this work, we designed novel VR shape widgets for probing and
selecting supershapes. We conducted a user study to compare the
VR shape widgets with conventional VR 1-D sliders. Our findings
indicate that (i) the proposed VR shape widgets are effective, more
efficient, and promote a more natural interaction when compared to
conventional VR 1-D sliders; (ii) the VR shape widget without mini-
maps are more appropriate for probing and selecting supershapes,
being more accurate and less time-consuming approach for super-
shape selection when compared to conventional 1-D sliders or when
resorting to mini-maps; and (iii) more importantly, we found that
the proposed VR shape widget are effective and usable for novice
users without prior knowledge in supershapes.

Finally, despite our efforts in pandemic times we only tested our
VR widgets next to 18 participants. Even though a greater number
participants would provide more solid statistical evidence to support
the reported findings, our initial concepts of VR shape widgets were
validated from the collected feedback and point towards future work
on parametric modeling with supershapes in VR. In particular, we



aim to include the VR shape widgets in a VR 3D modeling tool
that supports nature patterns as 3D primitives to model organic ob-
jects, specially those with many details of complex shapes [50]. We
also intend to conduct an in-depth user study next to professionals
such as digital artists, 3D modelers and architects that would be
asked to perform several shape exploration tasks to properly validate
the computational creativity side of the VR shape widgets. Still
on exploratory tasks, we aim to build a comprehensive supershape
taxonomy that could provide relevant shape cues on how handle
adjustments affect shape features, and we also intend to verify how
haptic techniques can be used to encode shape information through
vibration signatures allowing users to better distinguish two super-
shapes or identify specific class of supershapes.
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curves in biology and geometry. In Proceedings of the Conference

Riemannian Geometry and Applications, RIGA 2021, 2021.

[31] S. G. Hart. Nasa-task load index (nasa-tlx); 20 years later. Proceed-

ings of the Human Factors and Ergonomics Society Annual Meeting,

50(9):904–908, 2006. doi: 10.1177/154193120605000909

[32] X. He, Y. Tao, Q. Wang, and H. Lin. Multivariate spatial data visual-

ization: a survey. Journal of Visualization, 22(5):897–912, Oct 2019.

doi: 10.1007/s12650-019-00584-3

[33] L. Hirsch, B. Rossmy, and A. Butz. Shaping concrete for interaction.

In Proceedings of the Fifteenth International Conference on Tangible,

Embedded, and Embodied Interaction, TEI ’21. Association for Com-

puting Machinery, New York, NY, USA, 2021. doi: 10.1145/3430524.

3440625

[34] J. Jerald. The VR Book: Human-Centered Design for Virtual Reality.

Morgan /&; Claypool Publishers, 2015.

[35] Y. Koyama, I. Sato, and M. Goto. Sequential gallery for interactive

visual design optimization. ACM Trans. Graph., 39(4), July 2020. doi:

10.1145/3386569.3392444
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