toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Girard-Sahun, F.; Biondo, O.; Trenchev, G.; van Rooij, G.; Bogaerts, A. pdf  url
doi  openurl
  Title Carbon bed post-plasma to enhance the CO2 conversion and remove O2 from the product stream Type A1 Journal article
  Year 2022 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 442 Issue Pages 136268  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract CO2 conversion by plasma technology is gaining increasing interest. We present a carbon (charcoal) bed placed after a Gliding Arc Plasmatron (GAP) reactor, to enhance the CO2 conversion, promote O/O2 removal and in­ crease the CO fraction in the exhaust mixture. By means of an innovative (silo) system, the carbon is constantly supplied, to avoid carbon depletion upon reaction with O/O2. Using this carbon bed, the CO2 conversion is enhanced by almost a factor of two (from 7.6 to 12.6%), while the CO concentration even increases by a factor of three (from 7.2 to 21.9%), and O2 is completely removed from the exhaust mixture. Moreover, the energy ef­ ficiency of the conversion process drastically increases from 27.9 to 45.4%, and the energy cost significantly drops from 41.9 to 25.4 kJ.L− 1. We also present the temperature as a function of distance from the reactor outlet, as well as the CO2, CO and O2 concentrations and the temperature in the carbon bed as a function of time, which is important for understanding the underlying mechanisms. Indeed, these time-resolved measurements reveal that the initial enhancements in CO2 conversion and in CO concentration are not maintained in our current setup. Therefore, we present a model to study the gasification of carbon with different feed gases (i.e., O2, CO and CO2 separately), from which we can conclude that the oxygen coverage at the surface plays a key role in determining the product composition and the rate of carbon consumption. Indeed, our model insights indicate that the drop in CO2 conversion and in CO concentration after a few minutes is attributed to deactivation of the carbon bed, due to rapid formation of oxygen complexes at the surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000797716700002 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes Horizon 2020 Marie Skłodowska-Curie Actions; European Research Council; This research was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project) and the European Union’s Horizon 2020 Research and Inno­vation programme under the Marie Sklodowska-Curie grant agreement No 813393 (PIONEER). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Approved (up) Most recent IF: 15.1  
  Call Number PLASMANT @ plasmant @c:irua:188286 Serial 7052  
Permanent link to this record
 

 
Author Girard-Sahun, F.; Biondo, O.; Trenchev, G.; van Rooij, G.; Bogaerts, A. pdf  url
doi  openurl
  Title Carbon bed post-plasma to enhance the CO2 conversion and remove O2 from the product stream Type A1 Journal article
  Year 2022 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 442 Issue Pages 136268  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract CO2 conversion by plasma technology is gaining increasing interest. We present a carbon (charcoal) bed placed after a Gliding Arc Plasmatron (GAP) reactor, to enhance the CO2 conversion, promote O/O2 removal and in­ crease the CO fraction in the exhaust mixture. By means of an innovative (silo) system, the carbon is constantly supplied, to avoid carbon depletion upon reaction with O/O2. Using this carbon bed, the CO2 conversion is enhanced by almost a factor of two (from 7.6 to 12.6%), while the CO concentration even increases by a factor of three (from 7.2 to 21.9%), and O2 is completely removed from the exhaust mixture. Moreover, the energy ef­ ficiency of the conversion process drastically increases from 27.9 to 45.4%, and the energy cost significantly drops from 41.9 to 25.4 kJ.L− 1. We also present the temperature as a function of distance from the reactor outlet, as well as the CO2, CO and O2 concentrations and the temperature in the carbon bed as a function of time, which is important for understanding the underlying mechanisms. Indeed, these time-resolved measurements reveal that the initial enhancements in CO2 conversion and in CO concentration are not maintained in our current setup. Therefore, we present a model to study the gasification of carbon with different feed gases (i.e., O2, CO and CO2 separately), from which we can conclude that the oxygen coverage at the surface plays a key role in determining the product composition and the rate of carbon consumption. Indeed, our model insights indicate that the drop in CO2 conversion and in CO concentration after a few minutes is attributed to deactivation of the carbon bed, due to rapid formation of oxygen complexes at the surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000797716700002 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes Horizon 2020 Marie Skłodowska-Curie Actions; European Research Council; This research was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project) and the European Union’s Horizon 2020 Research and Inno­vation programme under the Marie Sklodowska-Curie grant agreement No 813393 (PIONEER). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Govern­ment (department EWI) and the UAntwerpen. We also thank R. De Meyer, K. Leyssens and S. Defossé for performing the charcoal characterizations. Approved (up) Most recent IF: 15.1  
  Call Number PLASMANT @ plasmant @c:irua:188286 Serial 7053  
Permanent link to this record
 

 
Author Van Alphen, S.; Ahmadi Eshtehardi, H.; O'Modhrain, C.; Bogaerts, J.; Van Poyer, H.; Creel, J.; Delplancke, M.-P.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Effusion nozzle for energy-efficient NOx production in a rotating gliding arc plasma reactor Type A1 Journal article
  Year 2022 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 443 Issue Pages 136529  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-based NOx production is of interest for sustainable N2 fixation, but more research is needed to improve its performance. One of the current limitations is recombination of NO back into N2 and O2 molecules immediately after the plasma reactor. Therefore, we developed a novel so-called “effusion nozzle”, to improve the perfor­mance of a rotating gliding arc plasma reactor for NOx production, but the same principle can also be applied to other plasma types. Experiments in a wide range of applied power, gas flow rates and N2/O2 ratios demonstrate an enhancement in NOx concentration by about 8%, and a reduction in energy cost by 22.5%. In absolute terms, we obtain NOx concentrations up to 5.9%, at an energy cost down to 2.1 MJ/mol, which are the best values reported to date in literature. In addition, we developed four complementary models to describe the gas flow, plasma temperature and plasma chemistry, aiming to reveal why the effusion nozzle yields better performance. Our simulations reveal that the effusion nozzle acts as very efficient heat sink, causing a fast drop in gas tem­perature when the gas molecules leave the plasma, hence limiting the recombination of NO back into N2 and O2. This yields an overall higher NOx concentration than without the effusion nozzle. This immediate quenching right at the end of the plasma makes our effusion nozzle superior to more conventional cooling options, like water cooling In addition, this higher NOx concentration can be obtained at a slightly lower power, because the effusion nozzle allows for the ignition and sustainment of the plasma at somewhat lower power. Hence, this also explains the lower energy cost. Overall, our experimental results and detailed modeling analysis will be useful to improve plasma-based NOx production in other plasma reactors as well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000800010600003 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (depart­ment EWI) and the UAntwerpen. Approved (up) Most recent IF: 15.1  
  Call Number PLASMANT @ plasmant @c:irua:188283 Serial 7057  
Permanent link to this record
 

 
Author Wang, Y.; Chen, Y.; Harding, J.; He, H.; Bogaerts, A.; Tu, X. pdf  url
doi  openurl
  Title Catalyst-free single-step plasma reforming of CH4 and CO2 to higher value oxygenates under ambient conditions Type A1 Journal article
  Year 2022 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 450 Issue Pages 137860  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Direct conversion of CH4 and CO2 to liquid fuels and chemicals under mild conditions is appealing for biogas conversion and utilization but challenging due to the inert nature of both gases. Herein, we report a promising plasma process for the catalyst-free single-step conversion of CH4 and CO2 into higher value oxygenates (i.e., methanol, acetic acid, ethanol, and acetone) at ambient pressure and room temperature using a water-cooled dielectric barrier discharge (DBD) reactor, with methanol being the main liquid product. The distribution of liquid products could be tailored by tuning the discharge power, reaction temperature and residence time. Lower discharge powers (10–15 W) and reaction temperatures (5–20 ◦ C) were favourable for the production of liquid products, achieving the highest methanol selectivity of 43% at 5 ◦ C and 15 W. A higher discharge power and reaction temperature, on the other hand, produced more gaseous products, particularly H2 (up to 26% selec­tivity) and CO (up to 33% selectivity). In addition, varying these process parameters (discharge power, reaction temperature and residence time) resulted in a simultaneous change in key discharge properties, such as mean electron energy (Ee), electron density (ne) and specific energy input (SEI), all of which are essential determiners of plasma chemical reactions. According to the results of artificial neural network (ANN) models, the relative importance of these process parameters and key discharge indicators on reaction performance follows the order: discharge power > reaction temperature > residence time, and SEI > ne > Ee, respectively. This work provides new insights into the contributions and tuning mechanism of multiple parameters for optimizing the reaction performance (e.g., liquid production) in the plasma gas conversion process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000830813300004 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes This project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie SklodowskaCurie grant agreement No. 813393. Approved (up) Most recent IF: 15.1  
  Call Number PLASMANT @ plasmant @c:irua:189502 Serial 7100  
Permanent link to this record
 

 
Author Lang, X.; Ouyang, Y.; Vandewalle, L.A.; Goshayeshi, B.; Chen, S.; Madanikashani, S.; Perreault, P.; Van Geem, K.M.; van Geem, K.M. pdf  url
doi  openurl
  Title Gas-solid hydrodynamics in a stator-rotor vortex chamber reactor Type A1 Journal article
  Year 2022 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 446 Issue 5 Pages 137323-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The gas-solid vortex reactor (GSVR) has enormous process intensification potential. However the huge gas consumption can be a serious disadvantage for the GSVR in some applications such as fast pyrolysis. In this work, we demonstrate a recent novel design, where a stator-rotor vortex chamber (STARVOC) is driven by the fluid's kinetic energy, to decouple the solids bed rotation and gas. Gas-solid fluidization by using air and monosized aluminum balls was performed to investigate the hydrodynamics. A constructed fluidization flow regime map for a fixed solids loading of 100 g shows that the bed can only be fluidized for a rotation speed between 200 and 400 RPM. Below 200 RPM, particles settle down on the bottom plate and cannot form a stable bed due to inertia and friction. Above 400 RPM, the bed cannot be fluidized with superficial velocities up to 1.8 m/s (air flow rate of 90 Nm(3)/h). The bed thickness shows some non-uniformities, being smaller at the top of the bed than at the bottom counterpart. However by increasing the air flow rate or rotation speed the axial nonuniformity can be resolved. The bed pressure drop first increases with increasing gas flow rate and then levels off, showing similar characteristics as conventional fluidized beds. Theoretical pressure drops calculated from mathematical models such as Kao et al. model agree well with experimental measurements. Particle velocity discrepancies between the top and bottom particles reveal that the impact of gravity cannot be completely neglected. Design guidelines and possible applications for further development of STARVOC concept are proposed based on fundamental data provided in this work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000833418100006 Publication Date 2022-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 15.1  
  Call Number UA @ admin @ c:irua:189283 Serial 7167  
Permanent link to this record
 

 
Author Brienza, F.; Van Aelst, K.; Devred, F.; Magnin, D.; Tschulkow, M.; Nimmegeers, P.; Van Passel, S.; Sels, B.F.; Gerin, P.; Debecker, D.P.; Cybulska, I. pdf  url
doi  openurl
  Title Unleashing lignin potential through the dithionite-assisted organosolv fractionation of lignocellulosic biomass Type A1 Journal article
  Year 2022 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 450 Issue 3 Pages 138179-14  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract The development of biomass pretreatment approaches that, next to (hemi)cellulose valorization, aim at the conversion of lignin to chemicals is essential for the long-term success of a biorefinery. Herein, we discuss a dithionite-assisted organosolv fractionation (DAOF) of lignocellulose in n-butanol and water to produce cellulosic pulp and mono-/oligo-aromatics. The study frames the technicalities of this biorefinery process and relates them to the features of the obtained product streams. We comprehensively identify and quantify all products of interest: solid pulp (acid hydrolysis-HPLC, ATR-FTIR, XRD, SEM, enzymatic hydrolysis-HPLC), lignin derivatives (GPC, GC-MS/FID, 1H-13C HSQC NMR, ICP-AES), and carbohydrate derivatives (HPLC). These results were used for inspecting the economic feasibility of DAOF. In the best process configuration, a high yield of monophenolics was reached (~20%, based on acid insoluble lignin in birch sawdust). Various other lignocellulosic feedstocks were also explored, showing that DAOF is particularly effective on hardwood and herbaceous biomass. Overall, this study demonstrates that DAOF is a viable fractionation method for the sustainable upgrading of lignocellulosic biomass.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000888204900005 Publication Date 2022-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 15.1  
  Call Number UA @ admin @ c:irua:189322 Serial 7373  
Permanent link to this record
 

 
Author Zhou, R.; Zhou, R.; Xian, Y.; Fang, Z.; Lu, X.; Bazaka, K.; Bogaerts, A.; Ostrikov, K.(K.) pdf  url
doi  openurl
  Title Plasma-enabled catalyst-free conversion of ethanol to hydrogen gas and carbon dots near room temperature Type A1 Journal article
  Year 2020 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 382 Issue 382 Pages 122745  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Selective conversion of bio-renewable ethanol under mild conditions especially at room temperature remains a major challenge for sustainable production of hydrogen and valuable carbon-based materials. In this study, adaptive non-thermal plasma is applied to deliver pulsed energy to rapidly and selectively reform ethanol in the absence of a catalyst. Importantly, the carbon atoms in ethanol that would otherwise be released into the environment in the form of CO or CO2 are effectively captured in the form of carbon dots (CDs). Three modes of non-thermal spark plasma discharges, i.e. single spark mode (SSM), multiple spark mode (MSM) and gliding spark mode (GSM), provide additional flexibility in ethanol reforming by controlling the processes of energy transfer and distribution, thereby affecting the flow rate, gas content, and energy consumption in H-2 production. A favourable combination of low temperature (< 40 degrees C), attractive conversion rate (gas flow rate of similar to 120 mL/min), high hydrogen yield (H-2 content > 90%), low energy consumption (similar to 0.96 kWh/m(3) H-2) and the effective generation of photoluminescent CDs (which are applicable for bioimaging or biolabelling) in the MSM indicate that the proposed strategy may offer a new carbon-negative avenue for comprehensive utilization of alcohols and mitigating the increasingly severe energy and environmental issues.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000503381200200 Publication Date 2019-09-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited 20 Open Access  
  Notes ; ; Approved (up) Most recent IF: 15.1; 2020 IF: 6.216  
  Call Number UA @ admin @ c:irua:165648 Serial 6318  
Permanent link to this record
 

 
Author Andersen, Ja.; Christensen, Jm.; Østberg, M.; Bogaerts, A.; Jensen, Ad. pdf  url
doi  openurl
  Title Plasma-catalytic dry reforming of methane: Screening of catalytic materials in a coaxial packed-bed DBD reactor Type A1 Journal article
  Year 2020 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 397 Issue Pages 125519  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The combination of catalysis with non-thermal plasma is a promising alternative to thermal catalysis. A dielectric-barrier discharge reactor was used to study plasma-catalytic dry reforming of methane at ambient pressure and temperature and a fixed plasma power of 45 W. The effect of different catalytic packing materials was evaluated in terms of conversion, product selectivity, and energy efficiency. The conversion of CO2 (~22%) and CH4 (~33%) were found to be similar in plasma-only and when introducing packing materials in plasma. The main reason is the shorter residence time of the gas due to packing geometry, when compared at identical flow rates. H2, CO, C2-C4 hydrocarbons, and oxygenates were identified in the product gas. High selectivity towards H2 and CO were found for all catalysts and plasma-only, with a H2/CO molar ratio of ~0.9. The lowest syngas selectivity was obtained with Cu/Al2O3 (~66%), which instead, had the highest alcohol selectivity (~3.6%).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000542296100011 Publication Date 2020-05-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access  
  Notes Department of Chemical and Biochemical Engineering, Technical University of Denmark; We thank Haldor Topsoe A/S for providing all the catalytic materials used and the Department of Chemical and Biochemical Engineering, Technical University of Denmark, for funding this project. Approved (up) Most recent IF: 15.1; 2020 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:170613 Serial 6406  
Permanent link to this record
 

 
Author Ma, Z.; Perreault, P.; Pelegrin, D.C.; Boffito, D.C.; Patience, G.S. pdf  doi
openurl 
  Title Thermodynamically unconstrained forced concentration cycling of methane catalytic partial oxidation over CeO2FeCralloy catalysts Type A1 Journal article
  Year 2020 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 380 Issue Pages 122470-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Converting waste associated natural gas from oil fields is uneconomic with current gas-to-liquid technology. Micro Gas-to-Liquids technology ( GtL) combines process intensification and numbering up economics to reduce capital costs to convert flared and vented natural gas to value-added synthetic fuel: Milli-second contact times in the catalytic partial oxidation of methane (CPOX) integrated with a tandem Fischer-Tropsch (FT) step meets the economic constraints together with remote process control. FeCralloy knitted fibres with high thermal conductivity and low pressure drop, resist thermal and mechanical stresses in the high pressure CPOX step. The FeCralloy catalysts are free of pre-reduction treatments. We deposited Pt and/or CeO2 over the fibre surface via solution combustion synthesis. Methane conversion was higher at ambient pressure compared to 2 MPa while the Pt/CeO2 FeCralloy was relatively inert from 0.1 MPa to 2 MPa. However, both catalysts demonstrated high activity in quasi-chemical looping partial oxidation of methane: during the reduction step while feeding methane, an on-line mass spectrometer only detected H2 while in the oxidation step it detected predominantly CO. Kinetic modeling of the oxidation-reduction cycles suggests that the reaction follows a direct mechanism to produce CO and H2 rather than an indirect mechanism that first produces CO2 and H2O followed by reforming.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2019-08-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record  
  Impact Factor 15.1 Times cited Open Access  
  Notes Approved (up) Most recent IF: 15.1; 2020 IF: 6.216  
  Call Number UA @ admin @ c:irua:162119 Serial 8665  
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Bogaerts, A.; Meynen, V. pdf  url
doi  openurl
  Title 3D porous catalysts for plasma-catalytic dry reforming of methane : how does the pore size affect the plasma-catalytic performance? Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 464 Issue Pages 142574-12  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The effect of pore size on plasma catalysis is crucial but still unclear. Studies have shown plasma cannot enter micropores and mesopores, so catalysts for traditional thermocatalysis may not fit plasma catalysis. Here, 3D porous Cu and CuO with different pore sizes were prepared using uniform silica particles (10–2000 nm) as templates, and compared in plasma-catalytic dry reforming. In most cases, the smaller the pore size, the higher the conversion of CH4 and CO2. Large pores reachable by more electrons did not improve the reaction efficiency. We attribute this to the small surface area and large crystallite size, as indicated by N2-sorption, mercury intrusion and XRD. While the smaller pores might not be reachable by electrons, due to the sheath formed in front of them, as predicted by modeling, they can still be reached by radicals formed in the plasma, and ions can even be attracted into these pores. An exception are the samples synthesized from 1 μm silica, which show better performance. We believe this is due to the electric field enhancement for pore sizes close to the Debye length. The performances of CuO and Cu with different pore sizes can provide references for future research on oxide supports and metal components of plasma catalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000966076400001 Publication Date 2023-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number UA @ admin @ c:irua:194862 Serial 7262  
Permanent link to this record
 

 
Author Andersen, Ja.; Holm, Mc.; van 't Veer, K.; Christensen, Jm.; Østberg, M.; Bogaerts, A.; Jensen, Ad. url  doi
openurl 
  Title Plasma-catalytic ammonia synthesis in a dielectric barrier discharge reactor: A combined experimental study and kinetic modeling Type A1 Journal Article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 457 Issue Pages 141294  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-catalytic ammonia synthesis in a dielectric barrier discharge reactor has emerged as a possible route for electrification of nitrogen fixation. In this study, we use a combination of experiments and a plasma kinetic model to investigate the ammonia synthesis from N2 and H2, both with and without a solid packing material in the plasma zone. The effect of plasma power, feed flow rate, N2:H2 feed ratio, gas residence time, temperature, and packing material (MgAl2O4 alone or impregnated with Co or Ru) on the ammonia synthesis rate were examined in the experiments. The kinetic model was employed to improve our understanding of the ammonia formation pathways and identify possible changes in these pathways when altering the N2:H2 feed ratio. A higher NH3 synthesis rate was achieved when increasing the feed flow rate, as well as when increasing the gas tem-perature from 100 to 200 ◦C when a packing material was present in the plasma. At the elevated temperature of 200 ◦C, an optimum in the NH3 synthesis rate was observed at an equimolar feed ratio (N2:H2 =1:1) for the plasma alone and MgAl2O4, while a N2-rich feed was favored for Ru/MgAl2O4 and Co/MgAl2O4. The optimum in the synthesis rate with the N2-rich feed, where high energy electrons are more likely to collide with N2, suggests that the rate-limiting step is the dissociation of N2 in the gas phase. This is supported by the kinetic model when packing material was used. However, for the plasma alone, the model found that the N2 dissociation is only rate limiting in H2-rich feeds, whereas the limited access to H in N2-rich feeds makes the hydrogenation of N species limiting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001058978000001 Publication Date 2023-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes We thank Topsoe A/S for providing the catalytic materials used in the study, the research group PLASMANT (University of Antwerp) for sharing their plasma kinetic model and allocating time on their cluster for the calculations, and the Department of Chemical and Biochemical Engineering (Technical University of Denmark) for funding the project. Approved (up) Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:195877 Serial 7234  
Permanent link to this record
 

 
Author Morais, E.; Delikonstantis, E.; Scapinello, M.; Smith, G.; Stefanidis, G.D.; Bogaerts, A. pdf  url
doi  openurl
  Title Methane coupling in nanosecond pulsed plasmas: Correlation between temperature and pressure and effects on product selectivity Type A1 Journal Article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 462 Issue Pages 142227  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present a zero-dimensional kinetic model to characterise specifically the gas-phase dynamics of methane

conversion in a nanosecond pulsed discharge (NPD) plasma reactor. The model includes a systematic approach to

capture the nanoscale power discharges and the rapid ensuing changes in electric field, gas and electron temperature,

as well as species densities. The effects of gas temperature and reactor pressure on gas conversion and

product selectivity are extensively investigated and validated against experimental work. We discuss the

important reaction pathways and provide an analysis of the dynamics of the heating and cooling mechanisms. H

radicals are found to be the most populous plasma species and they participate in hydrogenation and dehydrogenation

reactions, which are the dominant recombination reactions leading to C2H4 and C2H2 as main

products (depending on the pressure).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000983631500001 Publication Date 2023-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes We gratefully acknowledge financial support by the Flemish Government through the Moonshot cSBO project “Power-to-Olefins” (P2O; HBC.2020.2620). Approved (up) Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:195881 Serial 7246  
Permanent link to this record
 

 
Author Van Alphen, S.; Hecimovic, A.; Kiefer, C.K.; Fantz, U.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Modelling post-plasma quenching nozzles for improving the performance of CO2 microwave plasmas Type A1 Journal Article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 462 Issue Pages 142217  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Given the ecological problems associated to the CO2 emissions of fossil fuels, plasma technology has gained

interest for conversion of CO2 into value-added products. Microwave plasmas operating at atmospheric pressure

have proven to be especially interesting, due to the high gas temperatures inside the reactor (i.e. up to 6000 K)

allowing for efficient thermal dissociation of CO2 into CO and O2. However, the performance of these high

temperature plasmas is limited by recombination of CO back into CO2 once the gas cools down in the afterglow.

In this work, we computationally investigated several quenching nozzles, developed and experimentally tested

by Hecimovic et al., [1] for their ability to quickly cool the gas after the plasma, thereby quenching the CO

recombination reactions. Using a 3D computational fluid dynamics model and a quasi-1D chemical kinetics

model, we reveal that a reactor without nozzle lacks gas mixing between hot gas in the center and cold gas near

the reactor walls. Especially at low flow rates, where there is an inherent lack of convective cooling due to the

low gas flow velocity, the temperature in the afterglow remains high (between 2000 and 3000 K) for a relatively

long time (in the 0.1 s range). As shown by our quasi-1D chemical kinetics model, this results in a important loss

of CO due to recombination reactions. Attaching a nozzle in the effluent of the reactor induces fast gas quenching

right after the plasma. Indeed, it introduces (i) more convective cooling by forcing cool gas near the walls to mix

with hot gas in the center of the reactor, as well as (ii) more conductive cooling through the water-cooled walls of

the nozzle. Our model shows that gas quenching and the suppression of recombination reactions have more

impact at low flow rates, where recombination is the most limiting factor in the conversion process.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000962382600001 Publication Date 2023-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved (up) Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:195889 Serial 7250  
Permanent link to this record
 

 
Author Liu, R.; Hao, Y.; Wang, T.; Wang, L.; Bogaerts, A.; Guo, H.; Yi, Y. pdf  url
doi  openurl
  Title Hybrid plasma-thermal system for methane conversion to ethylene and hydrogen Type A1 Journal Article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 463 Issue Pages 142442  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract By combining dielectric barrier discharge plasma and external heating, we exploit a two-stage hybrid plasmathermal

system (HPTS), i.e., a plasma stage followed by a thermal stage, for direct non-oxidative coupling of

CH4 to C2H4 and H2, yielding a CH4 conversion of ca. 17 %. In the two-stage HPTS, the plasma first converts CH4

into C2H6 and C3H8, which in the thermal stage leads to a high C2H4 selectivity of ca. 63 % by pyrolysis, with H2

selectivity of ca. 64 %.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953890500001 Publication Date 2023-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes This work was supported by the National Natural Science Foundation of China [22272015, 21503032], the Fundamental Research Funds for the Central Universities of China [DUT21JC40]. Approved (up) Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:195888 Serial 7253  
Permanent link to this record
 

 
Author Van Alphen, S.; Hecimovic, A.; Kiefer, C.K.; Fantz, U.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Modelling post-plasma quenching nozzles for improving the performance of CO2 microwave plasmas Type A1 Journal Article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 462 Issue Pages 142217  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Given the ecological problems associated to the CO2 emissions of fossil fuels, plasma technology has gained

interest for conversion of CO2 into value-added products. Microwave plasmas operating at atmospheric pressure

have proven to be especially interesting, due to the high gas temperatures inside the reactor (i.e. up to 6000 K)

allowing for efficient thermal dissociation of CO2 into CO and O2. However, the performance of these high

temperature plasmas is limited by recombination of CO back into CO2 once the gas cools down in the afterglow.

In this work, we computationally investigated several quenching nozzles, developed and experimentally tested

by Hecimovic et al., [1] for their ability to quickly cool the gas after the plasma, thereby quenching the CO

recombination reactions. Using a 3D computational fluid dynamics model and a quasi-1D chemical kinetics

model, we reveal that a reactor without nozzle lacks gas mixing between hot gas in the center and cold gas near

the reactor walls. Especially at low flow rates, where there is an inherent lack of convective cooling due to the

low gas flow velocity, the temperature in the afterglow remains high (between 2000 and 3000 K) for a relatively

long time (in the 0.1 s range). As shown by our quasi-1D chemical kinetics model, this results in a important loss

of CO due to recombination reactions. Attaching a nozzle in the effluent of the reactor induces fast gas quenching

right after the plasma. Indeed, it introduces (i) more convective cooling by forcing cool gas near the walls to mix

with hot gas in the center of the reactor, as well as (ii) more conductive cooling through the water-cooled walls of

the nozzle. Our model shows that gas quenching and the suppression of recombination reactions have more

impact at low flow rates, where recombination is the most limiting factor in the conversion process.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000962382600001 Publication Date 2023-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved (up) Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:195889 Serial 7259  
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Meynen, V.; Bogaerts, A. pdf  url
doi  openurl
  Title Dry reforming in a dielectric barrier discharge reactor with non-uniform discharge gap : effects of metal rings on the discharge behavior and performance Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume Issue Pages 142953-29  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The application of dielectric barrier discharge (DBD) plasma reactors is promising in various environmental and energy processes, but is limited by their low energy yield. In this study, we put a number of stainless steel rings over the inner electrode rod of the DBD reactor to change the local discharge gap and electric field, and we studied the dry reforming performance. At 50 W supplied power, the metal rings mostly have a negative impact on the performance, which we attribute to the non-uniform spatial distribution of the discharges caused by the rings. However, at 30 W supplied power, the energy yield is higher than at 50 W and the placement of the rings improves the performance of the reactor. More rings and with a larger cross-sectional diameter can further improve the performance. The reactor with 20 rings with a 3.2 mm cross-sectional diameter exhibits the best performance in this study. Compared to the reactor without rings, it increases the CO2 conversion from 7% to 16 %, the CH4 conversion from 12% to 23%, and the energy yield from 0.05 mmol/kJ supplied power to 0.1 mmol/kJ (0.19 mmol/kJ if calculated from the plasma power), respectively. The presence of the rings increases the local electric field, the displaced charge and the discharge fraction, and also makes the discharge more stable and with more uniform intensity. It also slightly improves the selectivity to syngas. The performance improvement observed by placing stainless steel rings in this study may also be applicable to other plasma-based processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000986051300001 Publication Date 2023-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number UA @ admin @ c:irua:195603 Serial 7264  
Permanent link to this record
 

 
Author Orozco-Jimenez, A.J.; Pinilla-Fernandez, D.A.; Pugliese, V.; Bula, A.; Perreault, P.; Gonzalez-Quiroga, A. pdf  url
doi  openurl
  Title Angular momentum based-analysis of gas-solid fluidized beds in vortex chambers Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 457 Issue Pages 141222-21  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Gas-solid vortex chambers are a promising alternative for reactive and non-reactive processes requiring enhanced heat and mass transfer rates and order-of-milliseconds contact time. The conservation of angular momentum is instrumental in understanding how the interactions between gas, particulate solids, and chamber walls influence the formation of a rotating solids bed. Therefore, this work applies the conservation of angular momentum to derive a model that gives the average angular velocity of solids in terms of gas injection velocity, wall-solids bed drag coefficient, gas and particle properties, and chamber geometry. Three datasets from published studies, comprising 1 g-Geldart B- and d-type particles in different vortex chambers, validate the model results. Using a sensitivity analysis, we assessed the effect of input variables on the average angular velocity of solids, average void fraction, and average bed height. Results indicate that the top and bottom end-wall boundaries exert the most significant braking effect on the rotating solids bed compared with the cylindrical outer wall and gas injection boundaries. The wall-solids bed drag coefficient appears independent of the gas injection velocity for a wide range of operating conditions. The proposed model is a valuable tool for analyzing and comparing gas–solid vortex typologies, unraveling improvement opportunities, and scale-up.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000951011600001 Publication Date 2022-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number UA @ admin @ c:irua:192868 Serial 7282  
Permanent link to this record
 

 
Author Ag, K.R.; Minja, A.C.; Ninakanti, R.; Van Hal, M.; Dingenen, F.; Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Impact of soot deposits on waste gas-to-electricity conversion in a TiO₂/WO₃-based photofuel cell Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 470 Issue Pages 144390-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract An unbiased photo-fuel cell (PFC) is a device that integrates the functions of a photoanode and a cathode to achieve simultaneous light-driven oxidation and dark reduction reactions. As such, it generates electricity while degrading pollutants like volatile organic compounds (VOCs). The photoanode is excited by light to generate electron-hole pairs, which give rise to a photocurrent, and are utilized to oxidise organic pollutants simultaneously. Here we have systematically studied various TiO2/WO3 photoanodes towards their photocatalytic soot degradation performance, PFC performance in the presence of VOCs, and the combination of both. The latter thus mimics an urban environment where VOCs and soot are present simultaneously. The formation of a type-II heterojunction after the addition of a thin TiO2 top layer over a dense WO3 bottom layer, improved both soot oxidation efficiency as well as photocurrent generation, thus paving the way towards low-cost PFC technology for energy recovery from real polluted air.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001030456200001 Publication Date 2023-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 15.1 Times cited Open Access Not_Open_Access: Available from 29.12.2023  
  Notes Approved (up) Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number UA @ admin @ c:irua:197222 Serial 8882  
Permanent link to this record
 

 
Author Zhang, K.; Wang, J.; Ninakanti, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Solvothermal synthesis of mesoporous TiO2 with tunable surface area, crystal size and surface hydroxylation for efficient photocatalytic acetaldehyde degradation Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 474 Issue Pages 145188-14  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Photocatalytic acetaldehyde degradation exhibits satisfactory performance only at relatively low acetaldehyde flow rates, predominately below 10 × 10-3 mL/min, leaving ample room for improvement. Therefore, it is necessary to prepare more efficient photocatalysts for acetaldehyde degradation. Moreover, the impact of the interaction strength between the titania surface and surface water on the photocatalytic acetaldehyde efficiency is poorly understood. To address these issues, in this work a series of (0 0 1)-faceted anatase titania samples with various surface properties and structures were synthesized via a solvothermal method and tested at high acetaldehyde flow rates under UV light irradiation. With increasing solvothermal time, the pore volume, surface area, and the abundance of surface OH groups all increased, while the crystallite size decreased. These were all identified to be beneficial to promote the degradation performance. When the solvothermal temperature was 180 ℃ and the reaction time was 5 h, the prepared sample displayed the most efficient performance at 19.25× 10-3 mL/min of acetaldehyde (conversion of (74 ± 1)% versus (29 ± 1)% for P25), and achieved a 100 % conversion at 16 × 10-3 mL/min. A weaker interaction strength between surface water and the titania surface was found to improve the acetaldehyde adsorption capacity, thereby promoting the acetaldehyde degradation efficiency. The stability of the best performing sample was tested over 48 h, demonstrating a highly stable performance with no signs of deactivation. Even at a relative humidity of 30 %, the acetaldehyde conversion retains 82% of its efficiency in a dry atmosphere, highlighting its potential in practical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record  
  Impact Factor 15.1 Times cited Open Access Not_Open_Access: Available from 06.02.2024  
  Notes Approved (up) Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number UA @ admin @ c:irua:198652 Serial 8933  
Permanent link to this record
 

 
Author Wang, K.; Ceulemans, S.; Zhang, H.; Tsonev, I.; Zhang, Y.; Long, Y.; Fang, M.; Li, X.; Yan, J.; Bogaerts, A. pdf  url
doi  openurl
  Title Inhibiting recombination to improve the performance of plasma-based CO2 conversion Type A1 Journal Article
  Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal  
  Volume 481 Issue Pages 148684  
  Keywords A1 Journal Article; Plasma-based CO2 splitting Recombination reactions In-situ gas sampling Fluid dynamics modeling Kinetics modeling Afterglow quenching; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Warm plasma offers a promising route for CO2 splitting into valuable CO, yet recombination reactions of CO with oxygen, forming again CO2, have recently emerged as critical limitation. This study combines experiments and fluid dynamics + chemical kinetics modelling to comprehensively analyse the recombination reactions upon CO2 splitting in an atmospheric plasmatron. We introduce an innovative in-situ gas sampling technique, enabling 2D spatial mapping of gas product compositions and temperatures, experimentally confirming for the first time the substantial limiting effect of CO recombination reactions in the afterglow region. Our results show that the CO mole fraction at a 5 L/min flow rate drops significantly from 11.9 % at a vertical distance of z = 20 mm in the afterglow region to 8.6 % at z = 40 mm. We constructed a comprehensive 2D model that allows for spatial reaction rates analysis incorporating crucial reactions, and we validated it to kinetically elucidate this phenomenon. CO2 +M⇌O+CO+M and CO2 +O⇌CO+O2 are the dominant reactions, with the forward reactions prevailing in the plasma region and the backward reactions becoming prominent in the afterglow region. These results allow us to propose an afterglow quenching strategy for performance enhancement, which is further demonstrated through a meticulously developed plasmatron reactor with two-stage cooling. Our approach substantially increases the CO2 conversion (e.g., from 6.6 % to 19.5 % at 3 L/min flow rate) and energy efficiency (from 13.5 % to 28.5 %, again at 3 L/min) and significantly shortens the startup time (from ~ 150 s to 25 s). Our study underscores the critical role of inhibiting recombination reactions in plasma-based CO2 conversion and offers new avenues for performance enhancement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links  
  Impact Factor 15.1 Times cited Open Access Not_Open_Access  
  Notes Key Research and Development Program of Zhejiang Province, 2023C03129 ; Vlaamse regering; European Research Council; National Natural Science Foundation of China, 51976191 52276214 ; Horizon 2020 Framework Programme; Fonds De La Recherche Scientifique – FNRS; Fonds Wetenschappelijk Onderzoek, 1101524N ; Vlaams Supercomputer Centrum; Horizon 2020, 101081162 810182 ; European Research Council; Approved (up) Most recent IF: 15.1; 2024 IF: 6.216  
  Call Number PLASMANT @ plasmant @ Serial 8993  
Permanent link to this record
 

 
Author Segura, P.C.; De Meur, Q.; Alloul, A.; Tanghe, A.; Onderwater, R.; Vlaeminck, S.E.; Vande Wouwer, A.; Wattiez, R.; Dewasme, L.; Leroy, B. pdf  url
doi  openurl
  Title Preferential photoassimilation of volatile fatty acids by purple non-sulfur bacteria : experimental kinetics and dynamic modelling Type A1 Journal article
  Year 2022 Publication Biochemical engineering journal Abbreviated Journal Biochem Eng J  
  Volume 186 Issue Pages 108547-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple non-sulfur bacteria (PNSB) are known for their metabolic versatility and thrive as anoxygenic photoheterotrophs. In environmental engineering and resource recovery, cells would grow on mixtures of volatile fatty acids (VFA) generated by anaerobic fermentation of waste streams. In this study, we aim to better understand the behavior of Rhodospirillum rubrum, a model PNSB species, grown using multiple VFA as carbon sources. We highlighted that assimilation of individual VFA follows a sequential pattern. Based on observations in other PNSB, this seems to be specific to isocitrate lyase-lacking organisms. We hypothesized that the inhibition phenomenon could be due to the regulation of the metabolic fluxes in the substrate cycle between acetoacetyl-CoA and crotonyl-CoA. Developed macroscopic dynamic models showed a good predictive capability for substrate competition for every VFA mixture containing acetate, propionate, and/or butyrate. These novel insights provide valuable input for better design and operation of PNSB-based waste treatment solutions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000891992900005 Publication Date 2022-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1369-703x; 1873-295x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 3.9  
  Call Number UA @ admin @ c:irua:192741 Serial 7332  
Permanent link to this record
 

 
Author Phuttaro, C.; Krishnan, S.; Saritpongteeraka, K.; Charnnok, B.; Diels, L.; Chaiprapat, S. pdf  doi
openurl 
  Title Integrated poultry waste management by co-digestion with perennial grass : effects of mixing ratio, pretreatments, reaction temperature, and effluent recycle on biomethanation yield Type A1 Journal article
  Year 2023 Publication Biochemical engineering journal Abbreviated Journal  
  Volume 196 Issue Pages 108937-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This work aims to enhance the efficiency of integrated poultry waste management in bio-circular-green economy by maximizing the co-digestion of chicken manure and its digestate-grown biomass. In a series of batch assays, Napier grass (NG) was mixed with chicken manure (CM) at various proportions (100:0, 80:20, 60:40, 50:50, 40:60, 20:80 and 0:100) to identify co-substrate synergism, followed by physiochemical conditioning (size reduction and ultrasonication) of NG before co-digestion. Results indicated that NG mix of at least 80% was required to gain a full methanation potential of the individual substrates; no synergistic ratio above unity was found. However, the combined effect of size reduction and sonication was found to markedly improve the cosubstrate's biodegradability by 88.7%. The findings were then used to run continuous co-digestion at various operating regimes. In optimal continuous co-digestion condition, NG particle size of 0.6-2.4 mm combined with sonication intensity at 1111 kJ/kgTS improved biomethanation yield as high as 106.3%. Sub-thermophilic digestion at 45 degrees C was shown to give a higher and more stable CH4 yield than at 55 degrees C. Finally, it was also found that recycling liquid effluent at 40% to replace freshwater in feed, although showed no significant difference in CH4 yield (& alpha; = 0.05), noticeably increased system buffer capacity. This optimized biodegradation regime could give co-digestion waste management a higher overall plant efficiency and economic return.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001054826200001 Publication Date 2023-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1369-703x; 1873-295x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access Not_Open_Access  
  Notes Approved (up) Most recent IF: 3.9; 2023 IF: 2.892  
  Call Number UA @ admin @ c:irua:199209 Serial 8887  
Permanent link to this record
 

 
Author Blommaerts, N.; Asapu, R.; Claes, N.; Bals, S.; Lenaerts, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Gas phase photocatalytic spiral reactor for fast and efficient pollutant degradation Type A1 Journal article
  Year 2017 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 316 Issue 316 Pages 850-856  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Photocatalytic reactors for the degradation of gaseous organic pollutants often suffer from major limitations such as small reaction area, sub-optimal irradiation conditions and thus limited reaction rate. In this work, an alternative solution is presented that involves a glass tube coated on the inside with (silvermodified) TiO2 and spiraled around a UVA lamp. First, the spiral reactor is coated from the inside with TiO2 using an experimentally verified procedure that is optimized toward UV light transmission. This procedure is kept as simple as possible and involves a single casting step of a 1 wt% suspension of TiO2 in ethanol through the spiral. This results in a coated tube that absorbs nearly all incident UV light under the experimental conditions used. The optimized coated spiral reactor is then benchmarked to a conventional annular photoreactor of the same outer dimensions and total catalyst loading over a broad range of experimental conditions. Although residence time distribution experiments indicate slightly longer dwelling of molecules in the spiral reactor, no significant difference in by-passing of gas between the spiral reactor and the annular reactor can be claimed. Acetaldehyde degradation efficiency of 100% is obtained with the spiral reactor for a residence time as low as 60 s, whereas the annular reactor could not achieve full degradation even at 1000 s residence time. In a final case study, addition of long-term stable silver nanoparticles, protected by an ultra-thin polymer shell applied via the layer-by-layer (LbL) method, to the spiral reactor coating is shown to double the degradation efficiency and provides an interesting strategy to cope with higher pollutant concentrations without changing the overall dimensions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398985200089 Publication Date 2017-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 30 Open Access OpenAccess  
  Notes N.B. wishes to thank the University of Antwerp – Belgium for financial support. N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078- COLOURATOM). S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); ecas_sara Approved (up) Most recent IF: 6.216  
  Call Number EMAT @ emat @ c:irua:140925UA @ admin @ c:irua:140925 Serial 4481  
Permanent link to this record
 

 
Author Wang, W.; Mei, D.; Tu, X.; Bogaerts, A. pdf  url
doi  openurl
  Title Gliding arc plasma for CO 2 conversion: Better insights by a combined experimental and modelling approach Type A1 Journal article
  Year 2017 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 330 Issue Pages 11-25  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A gliding arc plasma is a potential way to convert CO2 into CO and O2, due to its non-equilibrium character, but little is known about the underlying mechanisms. In this paper, a self-consistent two-dimensional (2D) gliding arc model is developed, with a detailed non-equilibrium CO2 plasma chemistry, and validated with experiments. Our calculated values of the electron number density in the plasma, the CO2 conversion and energy efficiency show reasonable agreement with the experiments, indicating that the model can provide a realistic picture of the plasma chemistry. Comparison of the results with classical thermal conversion, as well as other plasma-based technologies for CO2 conversion reported in literature, demonstrates the non-equilibrium character of the gliding arc, and indicates that the gliding arc is a promising plasma reactor for CO2 conversion. However, some process modifications should be exploited to further improve its performance. As the model provides a realistic picture of the plasma behaviour, we use it first to investigate the plasma characteristics in a whole gliding arc cycle, which is necessary to understand the underlying mechanisms. Subsequently, we perform a chemical kinetics analysis, to investigate the different pathways for CO2 loss and formation. Based on the revealed discharge properties and the underlying CO2 plasma chemistry, the model allows us to propose solutions on how to further improve the

CO2 conversion and energy efficiency by a gliding arc plasma.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414083300002 Publication Date 2017-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 38 Open Access OpenAccess  
  Notes This research was supported by the European Marie Skłodowska- Curie Individual Fellowship “GlidArc” within Horizon 2020 (Grant No. 657304) and by the FWO project (grant G.0383.16N). The support of this experimental work by the EPSRC CO2Chem Seedcorn Grant and the FWO travel grant for study abroad (Grant K2.128.17N) is gratefully acknowledged. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved (up) Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:145033 Serial 4636  
Permanent link to this record
 

 
Author Michielsen, I.; Uytdenhouwen, Y.; Pype, J.; Michielsen, B.; Mertens, J.; Reniers, F.; Meynen, V.; Bogaerts, A. pdf  url
doi  openurl
  Title CO 2 dissociation in a packed bed DBD reactor: First steps towards a better understanding of plasma catalysis Type A1 Journal article
  Year 2017 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 326 Issue 326 Pages 477-488  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is gaining increasing interest for CO2 conversion, but the interaction between the plasma and catalyst is still poorly understood. This is caused by limited systematic materials research, since most works combine a plasma with commercial supported catalysts and packings. In the present paper, we study the influence of specific material and reactor properties, as well as reactor/bead configuration, on the conversion and energy efficiency of CO2 dissociation in a packed bed dielectric barrier discharge (DBD) reactor. Of the various packing materials investigated, BaTiO3 yields the highest conversion and energy efficiency, i.e., 25% and 4.5%.

Our results show that, when evaluating the influence of catalysts, the impact of the packing (support) material itself cannot be neglected, since it can largely affect the conversion and energy efficiency. This shows the large potential for further improvement of packed bed plasma reactors for CO2 conversion and other chemical conversion reactions by adjusting both packing (support) properties and catalytically active sites. Moreover, we clearly prove that comparison of results obtained in different reactor setups should be done with care, since there is a large effect of the reactor setup and reactor/bead configuration.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000406137200047 Publication Date 2017-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 49 Open Access OpenAccess  
  Notes This research was carried out with financial support of the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders) for both I. Michielsen (IWT-141093) and J. Pype (IWT-131229) and of the Walloon region through the excellence programme FLYCOAT (nr. 1318147) for the profilometry measurements. The authors also acknowledge financial support from an IOF-SBO project from the University of Antwerp and from the Fund for Scientific Research (FWO; grant number: G.0254.14 N). This research was carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions – Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb. ac.be/), and supported by the Belgian Science Policy Office (BELSPO). The authors would also like to thank Koen Van Laer for the discussions on this manuscript. Approved (up) Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @ c:irua:144802 Serial 4626  
Permanent link to this record
 

 
Author Gholampour, N.; Chaemchuen, S.; Hu, Z.-Y.; Mousavi, B.; Van Tendeloo, G.; Verpoort, F. pdf  url
doi  openurl
  Title Simultaneous creation of metal nanoparticles in metal organic frameworks via spray drying technique Type A1 Journal article
  Year 2017 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 322 Issue Pages 702-709  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In-situ fabrication of palladium(0) nanoparticles inside zeolitic imidazolate frameworks (ZIF-8) has been established via one-step facile spray-dry technique. Crystal structures and morphologies of the Pd@ZIF-8 samples are investigated by powder XRD, TEM, SAED, STEM, and EDX techniques. High angle annular dark field scanning transmission electron microscopy (HAAD-STEM) and 3D tomographic analysis confirm the presence of palladium nanoparticles inside the ZIF-8 structure. The porosity, surface area and N-2 physisorption properties are evaluated for Pd@ZIF-8 with various palladium contents. Furthermore, Pd@ZIF-8 samples are effectively applied as heterogeneous catalysts in alkenes hydrogenation. This straightforward method is able to speed up the synthesis of encapsulation of metal nanoparticles in metal organic frameworks. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000401594200069 Publication Date 2017-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 0300-9467 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 14 Open Access OpenAccess  
  Notes ; The authors would like to express their deep accolade to “State Key Laboratory of Advanced Technology for Materials Synthesis and Processing” for financial support. S.C. appreciates of the National Natural Science Foundation of China (303-41150231), the Fundamental Research Funds for the Central Universities (WUT: 2016IVA092) and the Research Fund for the Doctoral Program of Higher Education of China (471-40120222). N.G. thanks the Chinese Scholarship Council (CSC) for her Ph.D. study grant 2013GXZ985. Z.-Y. H and G. V.T. acknowledge the support from the EC Framework 7 program ESTEEM2 (Reference 312483). ; Approved (up) Most recent IF: 6.216  
  Call Number UA @ lucian @ c:irua:144152 Serial 4686  
Permanent link to this record
 

 
Author Wang, W.; Kim, H.-H.; Van Laer, K.; Bogaerts, A. pdf  url
doi  openurl
  Title Streamer propagation in a packed bed plasma reactor for plasma catalysis applications Type A1 Journal article
  Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 334 Issue Pages 2467-2479  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A packed bed dielectric barrier discharge (DBD) is widely used for plasma catalysis applications, but the exact plasma characteristics in between the packing beads are far from understood. Therefore, we study here these plasma characteristics by means of fluid modelling and experimental observations using ICCD imaging, for packing materials with different dielectric constants. Our study reveals that a packed bed DBD reactor in dry air at atmospheric pressure may show three types of discharges, i.e. positive restrikes, filamentary microdischarges, which can also be localized between two packing beads, and surface discharges (so-called surface ionization

waves). Restrikes between the dielectric surfaces result in the formation of filamentary microdischarges, while surface charging creates electric field components parallel to the dielectric surfaces, leading to the formation of surface discharges. A transition in discharge mode occurs from surface discharges to local filamentary discharges between the packing beads when the dielectric constant of the packing rises from 5 to 1000. This may have implications for the efficiency of plasma catalytic gas treatment, because the catalyst activation may be limited by constraining the discharge to the contact points of the beads. The production of reactive species occurs most in the positive restrikes, the surface discharges and the local microdischarges in between the beads, and is less significant in the longer filamentary microdischarges. The faster streamer propagation and discharge development with higher dielectric constant of the packing beads leads to a faster production of reactive species. This study is of great interest for plasma catalysis, where packing beads with different dielectric constants are often used as supports for the catalytic materials. It allows us to better understand how different packing materials can influence the performance of packed bed plasma reactors for environmental applications.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000418533400246 Publication Date 2017-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 36 Open Access Not_Open_Access: Available from 10.01.2020  
  Notes We acknowledge financial support from the Fund for Scientific Research Flanders (FWO) (grant nos G.0217.14 N, G.0254.14 N and G.0383.16 N), the TOP-BOF project of the University of Antwerp, the European Marie Skłodowska-Curie Individual Fellowship “GlidArc” within Horizon2020 (Grant No. 657304) and the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders). This research was carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions – Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb.ac.be/), and supported by the Belgian Science Policy Office (BELSPO). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved (up) Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:147864 Serial 4800  
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Van Alphen, S.; Michielsen, I.; Meynen, V.; Cool, P.; Bogaerts, A. pdf  url
doi  openurl
  Title A packed-bed DBD micro plasma reactor for CO 2 dissociation: Does size matter? Type A1 Journal article
  Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 348 Issue Pages 557-568  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract DBD plasma reactors are of great interest for environmental and energy applications, such as CO2 conversion, but they suffer from limited conversion and especially energy efficiency. The introduction of packing materials has been a popular subject of investigation in order to increase the reactor performance. Reducing the discharge gap of the reactor below one millimetre can enhance the plasma performance as well. In this work, we combine both effects and use a packed-bed DBD micro plasma reactor to investigate the influence of gap size reduction, in combination with a packing material, on the conversion and efficiency of CO2 dissociation. Packing materials used in this work were SiO2, ZrO2, and Al2O3 spheres as well as glass wool. The results are compared to a regular size reactor as a benchmark. Reducing the discharge gap can greatly increase the CO2 conversion, although at a lower energy efficiency. Adding a packing material further increases the conversion when keeping a constant residence time, but is greatly dependent on the material composition, gap and sphere size used. Maximum conversions of 50–55% are obtained for very long residence times (30 s and higher) in an empty reactor or with certain packing material combinations, suggesting a balance in CO2 dissociation and recombination reactions. The maximum energy efficiency achieved is 4.3%, but this is for the regular sized reactor at a short residence time (7.5 s). Electrical characterization is performed to reveal some trends in the electrical behaviour of the plasma upon reduction of the discharge gap and addition of a packing material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000434467000055 Publication Date 2018-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 22 Open Access Not_Open_Access: Available from 03.05.2020  
  Notes We acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund for Scientific Research (FWO; Grant Number: G.0254.14N) and an IOF-SBO (SynCO2Chem) project from the University of Antwerp. Approved (up) Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:151238 Serial 4956  
Permanent link to this record
 

 
Author Zhang, H.; Wang, W.; Li, X.; Han, L.; Yan, M.; Zhong, Y.; Tu, X. pdf  url
doi  openurl
  Title Plasma activation of methane for hydrogen production in a N2 rotating gliding arc warm plasma : a chemical kinetics study Type A1 Journal article
  Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 345 Issue 345 Pages 67-78  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, a chemical kinetics study on methane activation for hydrogen production in a warm plasma, i.e., N-2 rotating gliding arc (RGA), was performed for the first time to get new insights into the underlying reaction mechanisms and pathways. A zero-dimensional chemical kinetics model was developed, which showed a good agreement with the experimental results in terms of the conversion of CH4 and product selectivities, allowing us to get a better understanding of the relative significance of various important species and their related reactions to the formation and loss of CH4, H-2, and C2H2 etc. An overall reaction scheme was obtained to provide a realistic picture of the plasma chemistry. The results reveal that the electrons and excited nitrogen species (mainly N-2(A)) play a dominant role in the initial dissociation of CH4. However, the H atom induced reaction CH4+ H -> CH3+ H-2, which has an enhanced reaction rate due to the high gas temperature (over 1200 K), is the major contributor to both the conversion of CH4 and H-2 production, with its relative contributions of > 90% and > 85%, respectively, when only considering the forward reactions. The coexistence and interaction of thermochemical and plasma chemical processes in the rotating gliding arc warm plasma significantly enhance the process performance. The formation of C-2 hydrocarbons follows a nearly one-way path of C2H6 -> C2H4 -> C2H2, explaining why the selectivities of C-2 products decreased in the order of C2H2 > C2H4 > C2H6.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Sequoia Place of Publication Lausanne Editor  
  Language Wos 000430696500008 Publication Date 2018-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 25 Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 6.216  
  Call Number UA @ lucian @ c:irua:151450 Serial 5036  
Permanent link to this record
 

 
Author Li, K.; Liu, J.-L.; Li, X.-S.; Lian, H.-Y.; Zhu, X.; Bogaerts, A.; Zhu, A.-M. pdf  url
doi  openurl
  Title Novel power-to-syngas concept for plasma catalytic reforming coupled with water electrolysis Type A1 Journal article
  Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 353 Issue Pages 297-304  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We propose a novel Power to Synthesis Gas (P2SG) approach, composed of two high-efficiency and renewable electricity-driven units, i.e., plasma catalytic reforming (PCR) and water electrolysis (WE), to produce high quality syngas from CH4, CO2 and H2O. As WE technology is already commercial, we mainly focus on the PCR unit, consisting of gliding arc plasma and Ni-based catalyst, for oxidative dry reforming of methane. An energy efficiency of 78.9% and energy cost of 1.0 kWh/Nm3 at a CH4 conversion of 99% and a CO2 conversion of 79% are obtained. Considering an energy efficiency of 80% for WE, the P2SG system yields an overall energy efficiency of 79.3% and energy cost of 1.8 kWh/Nm3. High-quality syngas is produced without the need for posttreatment units, featuring the ideal stoichiometric number of 2, with concentration of 94.6 vol%, and a desired CO2 fraction of 1.9 vol% for methanol synthesis. The PCR unit has the advantage of fast response to adapting to fluctuation of renewable electricity, avoiding local hot spots in the catalyst bed and coking, in contrast to conventional catalytic processes. Moreover, pure O2 from the WE unit is directly utilized by the PCR unit for oxidative dry reforming of methane, and thus, no air separation unit, like in conventional processes, is required. This work demonstrates the viability of the P2SG approach for large-scale energy storage of renewable electricity via electricity-to-fuel conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441527900029 Publication Date 2018-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 7 Open Access OpenAccess  
  Notes This project is supported by the National Natural Science Foundation of China (11705019, 11475041), the Fundamental Research Funds for the Central Universities (DUT16QY49, DUT16LK16) and the Fund for Scientific Research Flanders (FWO; grant G.0383.16N). Approved (up) Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:153059 Serial 5049  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: