toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Wang, W.; Mei, D.; Tu, X.; Bogaerts, A. pdf  url
doi  openurl
  Title Gliding arc plasma for CO 2 conversion: Better insights by a combined experimental and modelling approach Type A1 Journal article
  Year (down) 2017 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 330 Issue Pages 11-25  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A gliding arc plasma is a potential way to convert CO2 into CO and O2, due to its non-equilibrium character, but little is known about the underlying mechanisms. In this paper, a self-consistent two-dimensional (2D) gliding arc model is developed, with a detailed non-equilibrium CO2 plasma chemistry, and validated with experiments. Our calculated values of the electron number density in the plasma, the CO2 conversion and energy efficiency show reasonable agreement with the experiments, indicating that the model can provide a realistic picture of the plasma chemistry. Comparison of the results with classical thermal conversion, as well as other plasma-based technologies for CO2 conversion reported in literature, demonstrates the non-equilibrium character of the gliding arc, and indicates that the gliding arc is a promising plasma reactor for CO2 conversion. However, some process modifications should be exploited to further improve its performance. As the model provides a realistic picture of the plasma behaviour, we use it first to investigate the plasma characteristics in a whole gliding arc cycle, which is necessary to understand the underlying mechanisms. Subsequently, we perform a chemical kinetics analysis, to investigate the different pathways for CO2 loss and formation. Based on the revealed discharge properties and the underlying CO2 plasma chemistry, the model allows us to propose solutions on how to further improve the

CO2 conversion and energy efficiency by a gliding arc plasma.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414083300002 Publication Date 2017-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 38 Open Access OpenAccess  
  Notes This research was supported by the European Marie Skłodowska- Curie Individual Fellowship “GlidArc” within Horizon 2020 (Grant No. 657304) and by the FWO project (grant G.0383.16N). The support of this experimental work by the EPSRC CO2Chem Seedcorn Grant and the FWO travel grant for study abroad (Grant K2.128.17N) is gratefully acknowledged. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:145033 Serial 4636  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: