|
Record |
Links |
|
Author |
Michielsen, I.; Uytdenhouwen, Y.; Pype, J.; Michielsen, B.; Mertens, J.; Reniers, F.; Meynen, V.; Bogaerts, A. |
|
|
Title |
CO 2 dissociation in a packed bed DBD reactor: First steps towards a better understanding of plasma catalysis |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Chemical engineering journal |
Abbreviated Journal |
Chem Eng J |
|
|
Volume |
326 |
Issue |
326 |
Pages |
477-488 |
|
|
Keywords |
A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Plasma catalysis is gaining increasing interest for CO2 conversion, but the interaction between the plasma and catalyst is still poorly understood. This is caused by limited systematic materials research, since most works combine a plasma with commercial supported catalysts and packings. In the present paper, we study the influence of specific material and reactor properties, as well as reactor/bead configuration, on the conversion and energy efficiency of CO2 dissociation in a packed bed dielectric barrier discharge (DBD) reactor. Of the various packing materials investigated, BaTiO3 yields the highest conversion and energy efficiency, i.e., 25% and 4.5%.
Our results show that, when evaluating the influence of catalysts, the impact of the packing (support) material itself cannot be neglected, since it can largely affect the conversion and energy efficiency. This shows the large potential for further improvement of packed bed plasma reactors for CO2 conversion and other chemical conversion reactions by adjusting both packing (support) properties and catalytically active sites. Moreover, we clearly prove that comparison of results obtained in different reactor setups should be done with care, since there is a large effect of the reactor setup and reactor/bead configuration. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000406137200047 |
Publication Date |
2017-06-01 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1385-8947 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
6.216 |
Times cited |
49 |
Open Access |
OpenAccess |
|
|
Notes |
This research was carried out with financial support of the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders) for both I. Michielsen (IWT-141093) and J. Pype (IWT-131229) and of the Walloon region through the excellence programme FLYCOAT (nr. 1318147) for the profilometry measurements. The authors also acknowledge financial support from an IOF-SBO project from the University of Antwerp and from the Fund for Scientific Research (FWO; grant number: G.0254.14 N). This research was carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions – Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb. ac.be/), and supported by the Belgian Science Policy Office (BELSPO). The authors would also like to thank Koen Van Laer for the discussions on this manuscript. |
Approved |
Most recent IF: 6.216 |
|
|
Call Number |
PLASMANT @ plasmant @ c:irua:144802 |
Serial |
4626 |
|
Permanent link to this record |