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1 ABSTRACT 
Gas-solid vortex chambers are a promising alternative for reactive and non-reactive processes 

requiring enhanced heat and mass transfer rates and order-of-milliseconds contact time. The 

conservation of angular momentum is instrumental in understanding how the interactions 

between gas, particulate solids, and chamber walls influence the formation of a rotating solids 

bed. Therefore, this work applies the conservation of angular momentum to derive a model 

that gives the average angular velocity of solids in terms of gas injection velocity, wall-solids 

bed drag coefficient, gas and particle properties, and chamber geometry. Three datasets from 

published studies, comprising 1g-Geldart B- and D-type particles in different vortex 

chambers, validate the model results. Using a sensitivity analysis, we assessed the effect of 

input variables on the average angular velocity of solids, average void fraction, and average 

bed height. Results indicate that the top and bottom end-wall boundaries exert the most 

significant braking effect on the rotating solids bed compared with the cylindrical outer wall 

and gas injection boundaries. The wall-solids bed drag coefficient appears independent of 

the gas injection velocity for a wide range of operating conditions. The proposed model is a 

valuable tool for analyzing and comparing gas-solid vortex typologies, unraveling 

improvement opportunities, and scale-up. 



2 NOMENCLATURE 
Latin characters: 𝐴 Surface area of the boundary wall 𝑚2 𝑎𝑐 Average centripetal acceleration at the bed’s 

center of mass 
𝑚 𝑠−2 𝐶𝑓  Wall-bed drag coefficient − 𝐷 Chamber diameter 𝑚 𝑑𝑝 Average particle diameter 𝑚 𝐹 External force 𝑁 𝐺 Centrifugal field intensity − ℎ Average bed height 𝑚 �̇� Rate of change of angular momentum 𝑘𝑔 𝑚2 𝑠−2 𝐼0 Injection slit width 𝑚 𝐼𝑁 Number of injection slits − 𝐾𝑤𝑎𝑙𝑙  Wall superficial parameter − 𝑘 Gas injection expansion factor − 𝑘𝑠 Wall roughness 𝑚 𝐿𝑅 Chamber length 𝑚 �̇�𝑔 Gas mass flow rate 𝑘𝑔 𝑠−1 ℳ Moment of a force about the chamber’s axis 𝑁 𝑚 𝑀𝑠 Chamber solids loading 𝑘𝑔 𝑀𝑠𝑚𝑎𝑥 Maximum solids loading 𝑘𝑔 𝑚𝑠 Solid mass in the control volume 𝑘𝑔 𝑃 Gas gauge pressure 𝑃𝑎 𝑟 Radial coordinate 𝑚 𝑟𝑏  Average radius of the bed inner edge 𝑚 𝑅 Chamber radius 𝑚 𝑅𝑒𝜃 

Azimuthal Reynolds number for the gas at the 

injection 
𝑅𝑒𝜃 = 𝜌𝑔𝑣𝑖𝑛 cos 𝛾 𝑅𝜇𝑔  𝑅𝑒𝑝 Particle Reynolds number 𝑅𝑒𝑝 = 𝜌𝑠𝑑𝑝𝑣𝑟,𝑠𝑢𝑝𝜇𝑔  𝑆 Swirl ratio 𝑆 = 2𝜋𝑅 cos 𝛾𝐼𝑁𝐼0  

𝑆𝑡𝐺𝑆𝑉𝑅 GSVR Stokes number 

𝑆𝑡𝐺𝑆𝑉𝑅= 𝜌𝑠𝑑𝑝2𝑣𝑖𝑛18𝜇𝑔(𝑅 − 𝑟𝑏)𝑆 𝑢 Particle velocity 𝑚 𝑠−1 �̅�𝜃�̅� Radially averaged solids azimuthal velocity 𝑚 𝑠−1 𝑣 Gas velocity 𝑚 𝑠−1 𝑉𝑏 Volume of the control volume 𝑚3 
 



Greek characters: 𝛼 Control volume’s sector angle 𝑅𝑎𝑑 𝛽 Interphase momentum transfer coefficient 𝑘𝑔 𝑚−3 𝑠−1 𝛾 Injection slit angle with respect to the tangent 𝑅𝑎𝑑 Γ Angular momentum circulation 𝑚2 𝑠−1 𝜀𝑔 Volumetrically averaged void fraction − 𝜃 Injection slit projection angle 𝑅𝑎𝑑 𝜇𝑔 Gas viscosity 𝑘𝑔 𝑚−1 𝑠−1 𝜌 Density 𝑘𝑔 𝑚−3 �̅� Biphasic flow density 𝑘𝑔 𝑚−3 𝜏𝑤 Wall shear stress 𝑁 𝑚−2 𝜑 Outlet angle of the gas phase 𝑅𝑎𝑑 𝜒 Gas-phase attenuation − 𝜔 Solids bed average angular velocity 𝑅𝑎𝑑 𝑠−1 
 

o Subscript: 𝑐ℎ Chimney 𝑐𝑚 Center of mass 𝑑𝑟𝑎𝑔 Gas-solid drag 𝐸 Ergun 𝑒𝑤 End wall 𝐺 Gibilaro 𝑔 Gaseous 𝑔𝑜 Gas-only 

grav Gravitational 𝑖 Incoming 𝑖𝑛 Gas injection 𝑜 Outgoing 𝑜𝑤 Outer wall 𝑟 Radial direction 𝑠 Solids 𝑠𝑡𝑎𝑡𝑖𝑐 Static 𝑠𝑢𝑝 Superficial 𝜃 Azimuthal direction 

 

o Abbreviations: 

CFB Conventional Fluidized Beds 

CFD Computer Fluid Dynamics 

CV Control Volume 

DEM Discrete Element Method 

GSVR Gas-Solid Vortex Reactor 



GVU Gas Vortex Unit 

HDPE High Density Polyethylene 𝑃𝐶 Polycarbonate 

PI Process Intensification 

RFB Rotating Fluidized Bed 

VC Vortex Chamber 

VFB Vibrating Fluidized Bed 

 

3 INTRODUCTION 
Gas-solid vortex chambers are static centrifugal contactors that generate a rotating solids bed 

via tangential gas injection from its cylindrical outer wall. These devices can potentially 

extend and surpass the operational range of conventional fluidized beds by enabling 

centrifugal accelerations much higher than Earth gravity, which enhances heat and mass 

transfer rates [1]. Previous analytical approaches to the hydrodynamics of gas-solid vortex 

chambers include the maximum retention capacity by Sazhin et al. [2], the drag model, and 

the maximum solids capacity by Friedle et al. [3], [4], and the average angular velocity model 

using the gas-solid tangential slip factor by de Wilde and de Broqueville [5]. However, 

according to Kuzmin [6], there is still a lack of predictive methods to calculate swirl flow 

characteristics, especially multiphase ones. This knowledge gap hinders the development and 

deployment of such flows despite their significant Process Intensification (PI) potential. 

Influential efforts toward an analytical treatment of multiphasic swirling flow in vortex 

chambers can be traced down to Rosenzweig et al. [7] and Wormley [8] in the ’60s. Those 

studies used integral angular momentum balances to estimate the pressure and velocity 

profiles, starting from Navier-Stokes’ equations. However, those analytical approaches suffer 

from oversimplifications and mathematical complexity, making them intractable and 

impractical by today’s Computational Fluid Dynamics (CFD) standards. That is not to say 

these efforts have been in vain. For example, Volchkov [9] and Goldshtik [10] have made 

outstanding advancements in the theoretical understanding of vortex chamber phenomena 

using this very same approach. 

The angular momentum balance developed by Anderson et al. [11] in the ’70s fits the 

experimental results from the colloid core vortex nuclear reactor. The model predicts crucial 

hydrodynamic observables even with limited input data. This convenience contrasts with 

CFD Euler-Euler approaches, which require calibration against experimental data given the 

semi-empirical nature of the Johnson-Jackson boundary condition. Furthermore, Euler-

Lagrange CFD approaches, such as the CFD-DEM (discrete element method) coupling, are 

limited to a certain number of particles and require the particle size to be smaller than the 

grid cell size. This condition is presently unattainable in the gas injection region of vortex 

chambers because very minute cell sizes are needed to simulate momentum transfer near the 

slits [12]. 

The analytical models described above offer ingenious approaches to the complex 

hydrodynamics of vortex chambers. The gas-solid angular momentum exchange determines 



the solids bed hydrodynamics and the response of particles to the incoming gas jets [1]. In 

this regard, an angular momentum balance may offer robustness, and practical convenience, 

which is a valuable first step given the complex and computationally expensive CFD 

procedures, the insurmountable design typologies, and the wide operational ranges. 

The proposed model elaborates upon the angular momentum balance for gas-solid vortex 

chambers developed by Anderson et al. [11] and Smulsky [13]. The model correlates the 

average solids bed angular velocity 𝜔 with gas injection velocity 𝑣𝑖𝑛 , wall-solids bed drag 

coefficients 𝐶𝑓,𝑜𝑤 , 𝐶𝑓,𝑒𝑤 , solids loading 𝑀𝑠, inner bed edge radius 𝑟𝑏 , gas and solids 

properties, and chamber geometrical parameters. The model encompasses a discrete balance 

for the outermost bed layer where the outer-wall skin friction 𝐶𝑓,𝑜𝑤  acts upon, and a 

continuous balance for top and bottom end walls where the end-wall skin friction 𝐶𝑓,𝑒𝑤  is 

dominant. 

 

4 METHODS 

4.1 Model assumptions 
Vertical axis of rotation 

This way, gravitational effects only occur in a plane perpendicular to the bed’s rotation with 

negligible effects on the angular momentum exchange. 

Axisymmetrical rotating bed with rigid body-like movement 

A specific hydrodynamic regime is assumed, consisting of a compact and uniformly 

distributed rotating bed with a well-defined inner edge. This regime is attainable for various 

solid particles with sufficient gas injection velocity and solids loading [14]. Additionally, the 

azimuthal velocity of particles 𝑢𝜃  follows the rigid body kinematic expression 𝑢𝜃 = 𝜔𝑟. 
These conditions are widely employed in analytical formulations in vortex chambers and 

swirling fluidized beds (SFB) [5][15][16][17][18]. This analysis does not consider time-

dependent phenomena, particle entrainment, and particle size and density distributions. 

Consequently, the rotating bed can be considered a series of cells with periodical variations 

in their hydrodynamic quantities between consecutive slits and continuity at the boundaries 

between each cell. 

Azimuthal no-slip condition between gas and solid phases at the bed edge boundary 

A similar boundary condition is found in [11] and [17] for the gas-solid vortex reactor 

(GSVR) and SFB, respectively. This condition couples the gas azimuthal velocity with the 

solids bed's rigid body-like rotation at the bed's inner edge boundary in a way that 𝑣𝑟𝑏 ,𝜃 ≅𝜔𝑟𝑏. This assumption comes from the azimuthal gas-solid slip factor 𝑠𝑔𝑠 introduced by de 

Wilde et al. [5], which represents a proportionality factor written as 𝑠𝑟𝑏𝑔𝑠 = �̅�𝑟𝑏𝑣𝑟𝑏,𝜃. Niyogi et al. 



[19] reported radial profiles of azimuthal gas-solid slip velocities for 1-g Geldart D-type 

particles in a wide range of gas injection velocities, for which all the analyzed conditions 

achieve a zero-slip azimuthal velocity near the inner bed edge. Thus, the azimuthal no-slip 

condition between phases is applicable for an appropriate bed inner edge radius choice. 

Flow symmetry in the axial direction 

The gas-solid flow is analyzed for the whole axial length of the bed, considering the friction 

forces about the end walls, 𝐹𝑒𝑤,𝑢𝑝 and 𝐹𝑒𝑤,𝑑𝑜𝑤𝑛 , as parallel and identical in magnitude. 

According to Rosales-Trujillo et al. [20], this is a plausible assumption for a sufficiently high 

gas injection velocity and a dense particle bed. This way, azimuthal velocity gradients in the 

axial direction and the flow effects of the exhaust are dampened by the rotating solids bed. 

Incompressible gas flow 

A subsonic flow with 𝑀𝑎 < 0.3 must be guaranteed; this condition applies to the typical 

operational range of gas-solid vortex chambers. 

 

4.2 Model derivation 
The control volume follows the shape of a symmetric rotating solids bed, resembling a torus 

of rectangular cross-section, as depicted in Figure 1Figure 1. Given appropriate symmetry 

conditions, the control volume further reduces to an annular sector between two consecutive 

gas injection slits, as shown in Figure 2Figure 2. 

 

Figure 1 3D representation of the vertical vortex chamber used for the model derivation. 



 

Figure 2 Detailed top-view of CV inter-slit space. 

The sector angle 𝛼, according to the vortex chamber geometry, is given by Equation 1. 𝛼 = 2𝜋𝐼𝑁  (1) 

where 𝐼𝑁 is the number of gas injection slits. 

Equation 2 gives the volume of the vortex chamber 𝑉𝑏. 𝑉𝑏 = 12𝛼(𝑅2 − 𝑟𝑏2)𝐿𝑅 (2) 

where 𝑅 is the chamber radius, 𝑟𝑏  the radius of the inner bed edge, and 𝐿𝑅 the chamber length. 

Equation 3 gives the solids mass in the control volume 𝑚𝑠. 𝑚𝑠 = 𝑀𝑠𝐼𝑁  (3) 

where 𝑀𝑠 is the solids loading of the vortex chamber. 

Equation 4 gives the gas mass flow rate �̇�𝑔 for a rectangular slit of dimensions 𝐼0 ∙ 𝐿𝑅. �̇�𝑔 = 𝜌𝑔𝐼0𝐿𝑅𝑣𝑖𝑛  (4) 

where 𝜌𝑔 is the gas density and 𝑣𝑖𝑛  the gas injection velocity. 

The volumetrically averaged void fraction of the solids bed 𝜀𝑔 is given by Equation 5. 

𝜀𝑔 = 1 − 𝑉𝑠𝑉𝑏 = 1 − 𝑚𝑠𝜌𝑠𝑉𝑏  (5) 

where 𝑉𝑠 and 𝜌𝑠 are the solids volume and density, respectively. 

The average biphasic flow density 𝜌 ̅ is described by Equation 6. 



𝜌 ̅ = 𝜌𝑠𝑉𝑠 + 𝜌𝑔𝑉𝑔𝑉𝑏  (6) 

Equation 7 arises from substituting Equation (6)(6) in Equation (5)(5). 𝜌 ̅ = (1 − 𝜀𝑔)𝜌𝑠 + 𝜀𝑔𝜌𝑔 (7) 

Figure 3Figure 3 depicts a 2D angular momentum diagram. Two forces act upon the 

boundaries, the friction force on the outer wall 𝐹𝑜𝑤 , and the friction force on the top and 

bottom end walls 𝐹𝑒𝑤 . Figure 3Figure 3 also illustrates the main mass and angular 

momentum fluxes through the vortex chamber, expressed in terms of mass flow rates �̇� and 

flow circulation Γ. 

 

Figure 3 CV’s 2D angular momentum diagram. The outer wall curvature has been 
exaggerated to enhance the visual effect. 

The angular momentum balances apply for successive cylindrical surface layers, advancing 

in the radial direction from the outer wall to the inner bed edge. Discrete and continuous 

angular momentum balances are necessary to account for 𝐹𝑜𝑤  and 𝐹𝑒𝑤 , respectively. 

4.2.1 Discrete angular momentum balance for the outer wall 

According to Figure 4Figure 4, the outer wall area 𝐴𝑜𝑤  given by Equation 8 corresponds to 

the surface area of the cylindrical outer wall at the chamber radius 𝑅. 
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𝐴𝑜𝑤 = 𝛼′𝑅𝐿𝑅 (8) 

where 𝛼′ is the sector angle excluding the injection slit. 

Equation 9 gives the sector angle 𝛼′. 𝛼′ = 𝛼 − 𝜃 (9) 

where 𝛼 is the sector angle in Equation (1)(1) and 𝜃 the projected slit angle given by 

Equation (10)(10). 𝜃 = 𝑐𝑜𝑠−1 [𝑐𝑜𝑠 𝛾 − 𝐼0𝑅]−𝛾 (10) 

where 𝛾 is the injection slit angle relative to a tangent line. 

Equation 11 results from substituting Equations (1)(1) and (10)(10) into Equation (9)(9). 𝛼′ = 2𝜋𝐼𝑁 − 𝑐𝑜𝑠−1 [𝑐𝑜𝑠 𝛾 − 𝐼0𝑅]+𝛾 (11) 

 

Figure 4 Angular momentum diagram for the outer wall. 

Figure 4Figure 4 also illustrates the angular momentum balance for the outer wall 

cylindrical indicated by Equation 12. �̇�𝑖𝑛 +∑ℳ𝑒𝑥𝑡 = �̇�𝑅 (12) 
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where ∑ℳ𝑒𝑥𝑡  is the sum of all external torques on the outer wall boundary, �̇�𝑖𝑛  the rate of 

change of angular momentum of the inlet gas, and �̇�𝑅  the rate of change of angular 

momentum for the gas flowing through the outer layer of the solids bed. Equation 13 with 

the appropriate subscripts gives �̇�𝑖𝑛  and �̇�𝑅. �̇� = �̇�𝑔𝑣𝜃𝑟 = �̇�𝑔𝛤 (13) 

where Γ is the angular momentum circulation at radius 𝑟, 𝑣𝜃𝑟. This definition encompasses 

the azimuthal velocity and lever-arm effects into one variable [11] [13] [21]. 

Replacing all known variables in Equation (12)(12) results in Equation 14. �̇�𝑔𝛤𝑖𝑛 −ℳ𝑜𝑤 = �̇�𝑔𝛤𝑅 (14) 

where 𝛤𝑖𝑛  corresponds to 𝑣𝑖𝑛 𝑐𝑜𝑠 𝛾 𝑅, and ℳ𝑜𝑤  represents the friction moment about the 

outer wall. 

The friction moment ℳ𝑜𝑤  requires a constitutive equation to model the solids collision and 

sliding phenomena along with the fluid skin friction and gas jet impingement. Several authors 

[6] [13] [21] [22] agree that the aerodynamic drag equation is the best suited for modeling, 

in an approximate fashion, gas-solid and gas-liquid boundary wall interactions in vortex 

chambers and cyclones. For example, Goldshtik [21] concluded that this Equation 

overestimates the braking effects on the bed but provides a conservative prediction. 

Additionally, for an axisymmetrical rotating bed ℳ𝑜𝑤  equals 𝐹𝑜𝑤𝑅. This way, the outer wall 

resistive action is independent of the angular position in which it is analyzed, following the 

axial symmetry assumption. From the drag coefficient definition, the outer wall drag 

coefficient 𝐶𝑓,𝑜𝑤  is used to determine 𝐹𝑜𝑤  as indicated in Equation 16. 

𝐹𝑜𝑤 = 𝐶𝑓,𝑜𝑤 𝜌𝑅𝑣𝑅,𝜃22 𝐴𝑜𝑤  (15) 𝐶𝑓,𝑜𝑤  represents the ratio of the outer wall shear stress 𝜏𝑤 to the outer wall normal stress, 

here described by the flow’s dynamic pressure 12𝜌𝑅𝑣𝑅,𝜃2  at the outer wall. Equation (15)(15) 

also describes a quadratic dependency of the friction force 𝐹𝑜𝑤  on the flow’s azimuthal 
velocity at the outer wall layer 𝑣𝑅,𝜃; and a linear dependency on the biphasic flow density at 

the outer wall layer 𝜌𝑅. The latter variable considers the hydrodynamic effects of gas 

injection on this boundary and relates to the mean biphasic density �̅� through the gas injection 

expansion factor 𝑘, given by Equation 16. 𝑘 = 𝜌𝑅�̅�  (16) 

Here 𝑘 takes values in the interval (0,1] and describes the increase in void fraction at the 

outer wall layer once the bed comes into contact with the incoming gas jet. Using X-rays, 

Anderson et al. [11] observed this expansion in a vortex chamber. However, they did not 

offer a method for its estimation, assigning a value of 0.1 considering their experimental 
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findings for 1g-Geldart C-type particles. Niyogi et al. [19] and Vandewalle et al. [12] have 

also documented this expansion in experimentally validated 3D Euler-Euler CFD 

simulations, while Gonzalez-Quiroga et al. [1] reported a similar behavior in their observed 

azimuthal and radial bed voidage patterns. Furthermore, these findings revealed a sinusoidal 

profile for the azimuthal velocity of solids between consecutive injection slits. Thus, the gas 

injection expansion factor 𝑘 could help to quantify the effect of the bed’s azimuthal 
acceleration and deacceleration on the mean angular velocity of the solids bed. 

The authors surmise that the expansion factor 𝑘 should depend on the 1g-Geldart particle 

type and the mechanisms by which the rotating solids bed interacts with the incoming gas 

jets. We also conjecture that 𝑘’s behavior follows a correlation of the type 𝑘 =𝑓(𝑅𝑒𝜃, 𝑆𝑡𝐺𝑆𝑉𝑅), by analogy with the cyclone’s separation efficiency at low solids loadings 

[22], with the Reynolds and Stokes dimensionless groups arising naturally from the 

interaction of solid particles and swirling flows. The cyclone’s separation efficiency 
describes the tendency of solid particles to be centrifuged away in the cyclone body, which 

can simultaneously measure their propensity to follow gas streamlines closely. Dring et al. 

[23] also analyzed particle trajectories in swirling flows, pointing out that these 

dimensionless groups describe the interactions between particles and gas streamlines. 

According to Smulsky [13], Equation 17 gives the azimuthal Reynolds number for gas 

injection in a vortex chamber. 𝑅𝑒𝜃 = 𝜌𝑔(𝑣𝑖𝑛 𝑐𝑜𝑠 𝛾)𝑅𝜇𝑔  (17) 

where 𝜇𝑔 corresponds to the gas viscosity. Equation 18 gives the Stokes number for a GSVR, 

following Vandewalle et al. [12]. 

𝑆𝑡𝐺𝑆𝑉𝑅 = 𝜌𝑠𝑑𝑝2𝑣𝑖𝑛18𝜇𝑔(𝑅 − 𝑟𝑏)𝑆 (18) 

where 𝑑𝑝 is the average particle diameter. Additionally, 𝑆 represents the swirl ratio, defined 

as the ratio between the gas azimuthal velocity at the injection 𝑣𝑖𝑛,𝜃 and the gas superficial 

radial velocity at radius 𝑅 𝑣𝑠𝑢𝑝,𝑅, as given by Equation 19. 𝑆 = 𝑣𝑖𝑛,𝜃𝑣𝑠𝑢𝑝,𝑅 = 2𝜋𝑅 𝑐𝑜𝑠 𝛾𝐼𝑁𝐼0  (19) 

Spherical, dense, and coarse solid particles are more efficient at transferring the gas jet’s 
momentum in fluidized beds [24], a result that has been extended to centrifugal fluidized 

beds by different authors [12] [25]. Furthermore, de Wilde et al. [5] and Kulkarni et al. [26] 

found that most of the gas jet’s angular momentum transfers to the solids bed in the vicinity 

of the outer wall, which in turn produces a near radial-like flow pattern for the rest of the gas 

transit through the solids bed. Nevertheless, further research is needed to unravel the gas jet’s 



dispersion profile and the degree of local contraction and expansion of the rotating solids 

bed. 

Equation 20 gives the circulation at the radius 𝑅, 𝛤𝑅. 𝛤𝑅 = 𝑣𝑅,𝜃𝑅 (20) 

Substituting Equations (8)(8), (16)(16) and (20)(20) in Equation (15)(15) results in 

Equation 21. 

ℳ𝑜𝑤 = 12𝛼′𝐶𝑓,𝑜𝑤𝑘�̅�𝐿𝑅Γ𝑅2 (21) 

Substituting Equation (21)(21) in Equation (14)(14) yields Equation 22. 

𝛼′𝐶𝑓,𝑜𝑤𝑘�̅�𝐿𝑅2�̇�𝑔 Γ𝑅2 + Γ𝑅 − Γ𝑖𝑛 = 0 

(22) 

Solving the quadratic formula for Γ𝑅 and applying the restriction Γ𝑅 ≥ 0 yields Equation 23. 

𝛤𝑅 = √1 + 2𝛼
′𝐶𝑓,𝑜𝑤𝑘�̅�𝐿𝑅𝛤𝑖𝑛�̇�𝑔 − 1𝛼′𝐶𝑓,𝑜𝑤𝑘�̅�𝐿𝑅�̇�𝑔  

(23) 
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4.2.2 Continuous angular momentum balance for the end walls 

 

Figure 5 Angular momentum diagram for the end walls. 

Figure 5Figure 5 illustrates the angular momentum balance for the bottom and top end walls. 

For a layer of thickness 𝑑𝑟 on the interval 𝑟𝑏 ≤ 𝑟 < 𝑅, Equation 24 gives the differential 

angular momentum balance. 𝑑�̇�𝑜 − 𝑑�̇�𝑖 = 𝑑ℳ𝑒𝑤  (24) 

Equation 25 applies for a differential element, considering a compact and axisymmetrical 

rotating solids bed. 𝑑�̇�𝑜 − 𝑑�̇�𝑖 = [�̇�𝑔𝛤 + �̇�𝑠𝛤𝑠] − [�̇�𝑔(𝛤 + 𝑑𝛤) + �̇�𝑠𝛤𝑠] = −�̇�𝑔𝑑𝛤 

(25) 

Equation 26 gives the resistive friction moment for both end walls. 𝑑ℳ𝑒𝑤 = −(𝑑𝐹𝑒𝑤,𝑢𝑝 + 𝑑𝐹𝑒𝑤,𝑑𝑜𝑤𝑛) ∗ 𝑟 (26) 

Both forces are parallel and identical following the flow symmetry in the axial direction 

assumption, as indicated by Equation 27. 



𝑑ℳ𝑒𝑤 = −2𝑑𝐹𝑒𝑤 ∗ 𝑟 (27) 

The aerodynamic drag model for skin friction, given by Equation 28, is employed in its 

differential form. 

𝑑ℳ𝑒𝑤 = −2(𝐶𝑓,𝑒𝑤 ∗ �̅�𝑣𝜃22 ∗ 𝑑𝐴𝑒𝑤) ∗ 𝑟 (28) 

Equation 29 gives the differential end wall area 𝐴𝑒𝑤 . 𝑑𝐴𝑒𝑤 = 𝛼𝑟𝑑𝑟 (29) 

Replacing Equation (29)(29) in Equation (28)(28) results in Equation 30. 𝑑ℳ𝑒𝑤 = −𝛼�̅�𝐶𝑓,𝑒𝑤𝛤2𝑑𝑟 (30) 

The end wall drag coefficient 𝐶𝑓,𝑒𝑤  does not have to be, in principle, identical to its outer 

wall counterpart 𝐶𝑓,𝑜𝑤  given the notable differences in hydrodynamic conditions between 

each boundary. There is no gas injection via the end walls; hence, the mean biphasic flow 

density �̅� can be employed without further modifications. Substituting Equations (25)(25) 

and (30)(30) in Equation (24)(24) yields Equation 31. −�̇�𝑔𝑑𝛤 = −𝛼𝐶𝑓,𝑒𝑤�̅�𝛤2𝑑𝑟 (31) 

Finally, integrating between the outermost radius 𝑅 and innermost radius 𝑟𝑏  yields Equation 

32. ⇒ 1Γ𝑟𝑏 = 1ΓR + 𝛼𝐶𝑓,𝑒𝑤 �̅�(𝑅 − 𝑟𝑏)�̇�𝑔  (32) 

 

4.2.3 Total angular momentum balance 

Equation 33 results from substituting Equation (23)(23) in Equation (32)(32). Γ𝑟𝑏 = 1𝛼′𝐶𝑓,𝑜𝑤𝑘�̅�𝐿𝑅�̇�𝑔√1 + 2𝛼′𝐶𝑓,𝑜𝑤𝑘�̅�𝐿𝑅Γ𝑖𝑛�̇�𝑔 − 1 + 𝛼𝐶𝑓,𝑒𝑤�̅�(𝑅 − 𝑟𝑏)�̇�𝑔
 

(33) 

According to the azimuthal no-slip assumption between phases at the inner edge of the solids 

bed, the circulation at that position follows Equation 34. 𝛤𝑟𝑏 = 𝑣𝑟𝑏 ,𝜃𝑟𝑏 = 𝜔𝑟𝑏2 (34) 

Therefore Equation (33)(33) can be rewritten as Equation 35. 
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𝜔𝑟𝑏2 = 1𝛼′𝐶𝑓,𝑜𝑤𝑘�̅�𝐿𝑅�̇�𝑔√1 + 2𝛼′𝐶𝑓,𝑜𝑤𝑘�̅�𝐿𝑅𝛤𝑖𝑛�̇�𝑔 − 1 + 𝛼𝐶𝑓,𝑒𝑤 �̅�(𝑅 − 𝑟𝑏)�̇�𝑔
 

(35) 

Equation 36 results from Equation (4)(4): 𝜔𝑟𝑏2 = 𝑣𝑖𝑛𝛼′𝐶𝑓,𝑜𝑤𝑘�̅�𝜌𝑔𝐼0√1 +  2 𝛼′𝐶𝑓,𝑜𝑤𝑘�̅�𝜌𝑔𝐼0 cos 𝛾 𝑅 − 1 + 𝛼𝐶𝑓,𝑒𝑤�̅�(𝑅 − 𝑟𝑏)𝜌𝑔𝐼0𝐿𝑅
 

(36) 

Contrasting Equation (36)(36) with Ohm’s law and Fourier’s law, a similar analogy can be 
made for the circulation at the inner edge of the solids bed 𝜔𝑟𝑏2, the injection velocity 𝑣𝑖𝑛 , 

and the denominator of the right side of the said Equation 36. 

Thus, we introduce three resistances in Equations 37-39, one for each flow boundary. 

➢ Injection resistance ℛ𝑖𝑛: ℛ𝑖𝑛 = 1cos 𝛾 𝑅 (37) 

➢ Outer wall resistance ℛ𝑜𝑤 : ℛ𝑜𝑤 = 𝛼′𝐶𝑓,𝑜𝑤𝑘�̅�𝜌𝑔𝐼0  (38) 

➢ Outer wall resistance ℛ𝑒𝑤 : ℛ𝑒𝑤 = 𝛼𝐶𝑓,𝑒𝑤�̅�(𝑅 − 𝑟𝑏)𝜌𝑔𝐼0𝐿𝑅  (39) 

Finally, substituting Equations (37)(37), (38)(38), and (39)(39) in Equation (36)(36) yields 

Equation 40. 𝜔𝑟𝑏2 = 𝑣𝑖𝑛
( ℛ𝑜𝑤√1+ 2ℛ𝑜𝑤ℛ𝑖𝑛 − 1 + ℛ𝑒𝑤) 

 
 

(40) 

Equation (40)(40) synthesizes the proposed gas-solid angular momentum balance model in 

a convenient form, taking advantage of the linear relationship between 𝜔𝑟𝑏 and 𝑣𝑖𝑛 . The 

resistances have been separated according to their physical origin in such a way that the 

magnitude of 𝜔𝑟𝑏 decreases if any of the resistances increases. 
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4.2.4 Gas-only formulation 

Equation (36)(36) reduces to a gas-only formulation by considering �̅� = 𝜌𝑔 and 𝑘 = 1. 

Additionally, 𝐶𝑓,𝑜𝑤𝑔𝑜
 and 𝐶𝑓,𝑒𝑤𝑔𝑜  are the gas-only counterparts of the wall drag coefficients, and, 

as there is no solids bed, the lower limit of integration on Equation (32)(32) is an arbitrary 

radius 𝑟 with a corresponding circulation of Γ𝑟 = 𝑣𝜃𝑟. Equation 41 arises from all previous 

simplifications. 𝑣𝜃𝑟 = 𝑣𝑖𝑛𝛼′𝐶𝑓,𝑜𝑤𝑔𝑜𝐼0√1 +  2𝛼′𝐶𝑓,𝑜𝑤𝑔𝑜𝐼0 𝑐𝑜𝑠 𝛾 𝑅 − 1 +
𝛼𝐶𝑓,𝑒𝑤𝑔𝑜 (𝑅 − 𝑟)𝐼0𝐿𝑅

 

(41) 

Equation (41)(41) correlates the average azimuthal gas velocity at radius 𝑟 with the outer 

wall and end wall braking effects. The radius of analysis 𝑟 must lie between the chamber 

radius 𝑅 and the chimney radius 𝑟𝑐ℎ. Angular resistances can still be derived for both walls, 

resulting in Equation 42 and Equation 43. 

ℛ𝑜𝑤𝑔𝑜 = 𝛼′𝐶𝑓,𝑜𝑤𝑔𝑜𝐼0  (42) 

ℛ𝑒𝑤𝑔𝑜 = 𝛼𝐶𝑓,𝑒𝑤𝑔𝑜 (𝑅 − 𝑟)𝐼0𝐿𝑅  (43) 

The Injection resistance ℛ𝑖𝑛 , given by Equation 44, resembles its gas-solid definition in 

Equation (37)(37). ℛ𝑖𝑛𝑔𝑜 = ℛ𝑖𝑛 = 1𝑐𝑜𝑠 𝛾 𝑅 (44) 

If ℛ𝑜𝑤𝑔𝑜  tends to zero, the angular momentum balance on Equation (41)(41) yields Equation 

45. 𝑣𝜃𝑟 = 𝑣𝑖𝑛1𝑐𝑜𝑠 𝛾 𝑅 + 𝛼𝐶𝑓,𝑒𝑤𝑔𝑜 (𝑅 − 𝑟)𝐼0𝐿𝑅  

⇒ 𝑣𝜃𝑟 = 𝑣𝑖𝑛ℛ𝑖𝑛𝑔𝑜 +ℛ𝑒𝑤𝑔𝑜  

(45) 

Moreover, the condition ℛ𝑒𝑤𝑔𝑜  tends to zero in Equation (45)(45), resulting in Equation 46. ⇒ 𝑣𝜃𝑟 = 𝑣𝑖𝑛 𝑐𝑜𝑠 𝛾 𝑅 (46) 
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The latter corresponds to the angular momentum balance for a free vortex flow in vortex 

chambers [22]. Equation 47 describes how close the gas-only vortex flow is to a free vortex 

[27]. 𝑣𝑖𝑛 𝑐𝑜𝑠 𝛾 𝑅𝑚 = 𝑣𝜃𝑟𝑚 (47) 

For 𝑚 = 1 the flow behaves like a free vortex flow. It can be proven that 0 < 𝑚 < 1 for all 

possible values of Equation (41)(41) in single-phase vortex chambers. Thus, the radial 

profile of the average azimuthal gas velocity in a single-phase flow will behave like a 

hyperbolic function with values strictly lower than its free vortex counterpart, in agreement 

with CFD simulations and experiments [28]. 

However, gas-only flow behaves very differently from particulate flow, featuring distinct 

patterns such as near-wall jets [28], counterflows, backflows, gas bypass, cell flows [29], and 

non-stationary phenomena like the precessing vortex core [6]. In addition, the solids bed in 

a vortex chamber tends to smooth out and dissipate gas-phase phenomena [26], facilitating 

isotropy and symmetry assumptions such as those used in Section 4.1. 

4.2.5 Auxiliary equations 

An auxiliary equation helps to close the nonlinear system of Equations (5)(5) and (36)(36). 

The output variables are the bed’s average angular velocity 𝜔, average bed’s inner edge 

radius 𝑟𝑏 , and average bed void fraction 𝜀𝑔. For 𝑟𝑏 , a proportionality between the bed’s inner 
edge radius and the vortex chamber radius of the form 𝑟𝑏 = 𝑎𝑅 can be considered. However, 

this constant strongly depends on the set of operating conditions (𝑣𝑖𝑛 , 𝑀𝑠) and particle 

properties (𝑑𝑝 , 𝜌𝑠) as shown by different authors [18] [19]. Therefore, a more systematic 

approach is needed to describe the average bed’s inner edge radius behavior for different 

design parameters and operating conditions. 

A radial force balance for the solids bed is the most straightforward alternative to this 

predicament. The two most dominating contributions of the solids bed force balance are the 

radially inwards drag force and the radially outwards solids bed centrifugal force, as stated 

by Kovacevic et al. [14] [18] and Fan et al. [30]. Equation 48 represents Newton’s 2nd law 

for the center of mass of the solids bed. 𝐹𝑑𝑟𝑎𝑔 = 𝑚𝑠𝑎𝑐 (48) 

Every other dynamic and centrifugal force component that arises from a more rigorous 

formulation, such as the integral formulation by Fan et al. [30] and the differential 

formulation by Chen [31] for rotating fluidized beds (RFB), is demonstrably less than both 

of the previous forces by a factor of 
𝜌𝑔𝜌𝑠, unless injection velocities and void fractions take 

very high or very low values, respectively. Thus, Equation (48)(48) is a reasonable 

approximation for gas-solid centrifugal flows. 

The location of interest for the radial force balance is the center of mass rather than the bed 

inner edge radius, as typically done in other formulations [11][18]. Newton’s 2nd law 

formulation for equipollent force systems relies on the center of mass of the set of bodies 
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inside the control volume. Additionally, the rotating solids bed on a vortex chamber does not 

fluidize layer-by-layer like an RFB. Hence, the onset of centrifugal fluidization at the bed’s 
inner edge radius could not be a valid fluidization criterion. Previous studies [1] [14] pointed 

out that vortex chambers feature different flow regimes compared with RFBs at the same 

centrifugal acceleration, with many intermediate and non-stationary states, which explains 

the need for more appropriate fluidization criteria. Equation (48)(48) is by no means a 

complete fluidization criterion; it only intends to model the behavior of the rotating solids 

bed when the drag force and centrifugal force exactly balance each other out, which, 

according to Gonzalez-Quiroga et al. and Kovacevic et al. [1] [14], is the lower bound 

required to achieve a uniformly distributed and stable solids bed. More research must be done 

regarding the most appropriate vortex chamber fluidization criteria. 

Equation 49 gives the average centrifugal acceleration at the center of mass. 𝑎𝑐 = 𝜔2𝑟𝑐𝑚 (49) 

The center of mass can be determined by assuming a homogenous solids bed of sufficient 

solids loading and gas injection velocity. Then, by applying centroid superposition for two 

circle sectors of angle 𝛼, one of radius 𝑅 and one of radius 𝑟𝑏 , to produce the vortex chamber 

cross-section (seen in Figure 2Figure 2), the resulting annular sector has a center of mass 

given by Equation 50. 

𝑟𝑐𝑚 = 4𝑠𝑖𝑛 𝛼23𝛼 ∗ 𝑅3 − 𝑟𝑏3𝑅2 − 𝑟𝑏2 (50) 

The interfacial gas-solid drag force 𝐹𝑑𝑟𝑎𝑔  is defined according to various models, each having 

its weaknesses and strengths. They can usually be written in the form of Equation 51. 𝐹𝑑𝑟𝑎𝑔𝑉𝑏 = 𝛽|𝑢𝑟 − 𝑣𝑟,𝑠𝑢𝑝| (51) 

where 𝛽 is the interphase momentum transfer coefficient, a function that depends entirely on 

the selected gas-solid drag model. Literature reports several analytical approaches using 

various drag models for radial force balance in vortex chambers. The Supplementary Material 

summarizes some of the most notable. 

Of the entirety of drag models currently found in gas-solid vortex chamber literature, 

Gidaspow’s model is, by a wide margin, the most prevalent of them. This prevalence is due, 

in part, to its simplicity and convergence properties in Euler-Euler CFD studies. Part of its 

ubiquity also comes from its wide range of applications, as it is the combination of Ergun’s 
model for dense regimes (𝜀𝑔 < 0.80) and Wen and Yu’s model for dilute regimes (𝜀𝑔 >0.80) [5]. 

Most gas-solid drag models have been created for CFBs and packed beds and have been 

adapted or extended for their implementation in vortex chambers. An advantage of vortex 

chambers compared with CFBs is that solid beds of higher density and slip velocities can be 
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achieved [5]. Thus, it is more convenient to study vortex chambers in their most efficient 

operational context, i.e., on a relatively dense and uniformly distributed rotating solids bed 

with void fractions of much less than 0.8. Therefore, Ergun’s drag model is selected to close 
the radial force balance on the proposed angular momentum model. 

Equation 52 gives Ergun’s interphase momentum transfer coefficient [5]. 

𝛽𝐸 = 150(1− 𝜀𝑔)2𝜀𝑔2 𝜇𝑔𝑑𝑝2 + 1.75 (1 − 𝜀𝑔)𝜌𝑔𝜀𝑔𝑑𝑝 |𝑢𝑟 − 𝑣𝑟,𝑠𝑢𝑝| (52) 

Equation 53 results from neglecting radial solids displacement inside the vortex chamber. 𝑢𝑟 ≅ 0 

 ⇒ 𝛽𝐸 = 150(1 − 𝜀𝑔)2𝜀𝑔2 𝜇𝑔𝑑𝑝2 + 1.75 (1 − 𝜀𝑔)𝜌𝑔𝜀𝑔𝑑𝑝 𝑣𝑟,𝑠𝑢𝑝 (53) 

 

The gas radial superficial velocity at the center of mass is given by Equation 54. 𝑣𝑟,𝑠𝑢𝑝 = �̇�𝑔𝜀𝑔𝜌𝑔𝛼𝑟𝑐𝑚𝐿𝑅 (54) 

Substituting Equation (4)(4) in Equation (54)(54) yields Equation 55. 𝑣𝑟,𝑠𝑢𝑝 = 𝐼0𝑣𝑖𝑛𝜀𝑔𝛼𝑟𝑐𝑚  (55) 

Equation 56 results from substituting Equation (53)(53) on Equation (51)(51). 

𝐹𝑑𝑟𝑎𝑔 = [150(1 − 𝜀𝑔)2𝜀𝑔2 𝜇𝑔𝑑𝑝2 𝑣𝑟,𝑠𝑢𝑝 + 1.75 (1 − 𝜀𝑔)𝜌𝑔𝜀𝑔𝑑𝑝 𝑣𝑟,𝑠𝑢𝑝2 ] 𝑉𝑏 (56) 

 

Then, substituting Equations (49)(49) and (56)(56) on Equation (48)(48) yields Equation 

57. 

[150(1 − 𝜀𝑔)2𝜀𝑔2 𝜇𝑔𝑑𝑝2 𝑣𝑟,𝑠𝑢𝑝 + 1.75 (1− 𝜀𝑔)𝜌𝑔𝜀𝑔𝑑𝑝 𝑣𝑟,𝑠𝑢𝑝2 ] 𝑉𝑏 = 𝑚𝑠𝜔2𝑟𝑐𝑚  (57) 

By substituting Equation (5)(5), we finally get Equation 58. 

150(1 − 𝜀𝑔)2𝜀𝑔2 𝜇𝑔𝑑𝑝2 𝑣𝑟,𝑠𝑢𝑝 + 1.75 (1 − 𝜀𝑔)𝜌𝑔𝜀𝑔𝑑𝑝 𝑣𝑟,𝑠𝑢𝑝2 = (1 − 𝜀𝑔)𝜌𝑠𝜔2𝑟𝑐𝑚 (58) 

Equation (58)(58) can now be solved simultaneously with Equations (5)(5) and (36)(36) 

for 𝜔, 𝜀𝑔, and 𝑟𝑏  by using a nonlinear numerical solver for a set of known input parameters.  

heeft opmaak

heeft opmaak

Cursief, Spellin

heeft opmaak

heeft opmaak

heeft opmaak

heeft opmaak

heeft opmaak

heeft opmaak

heeft opmaak

heeft opmaak

heeft opmaak

Cursief, Spellin

heeft opmaak

heeft opmaak

heeft opmaak

heeft opmaak

heeft opmaak

heeft opmaak

heeft opmaak

heeft opmaak

heeft opmaak

Cursief, Spellin

heeft opmaak

heeft opmaak

heeft opmaak

Cursief, Spellin

heeft opmaak

heeft opmaak

heeft opmaak

Cursief, Spellin

heeft opmaak

heeft opmaak

heeft opmaak

heeft opmaak

heeft opmaak

heeft opmaak

Cursief, Spellin

heeft opmaak



An alternative procedure can be done for any other radial drag model. In this case, there is a 

clear incentive to independently corroborate Ergun’s drag model results, given its reported 
accuracy and physical significance deficiencies. This is advisable because, as seen in Ergun’s 
original derivation [32], his model assumes a packed solids bed with little to no void fraction 

variations around 𝜀𝑔 ≈ 0.4. This, according to Gibilaro [33], is not representative of typical 

expanded fluidized beds found in practice. The previous argument allowed him to propose a 

new model that included particle bed expansion in the gas pressure drop, using bed tortuosity 

and an expanded friction factor. Thus, following Gibilaro’s original formulation, his model 
can be adapted to a vortex chamber, as shown in the Supplementary Material. 

Although the previous formulations seem reasonable for typical vortex chambers, they are 

not universally valid. For instance, Equation (48)(48) is not always valid for low solids 

loading or very high gas injection velocities. Under these conditions, the centrifugal force 

becomes greater than the radial drag force, meaning the outer wall and end wall contact forces 

become much more considerable and significantly influence the radial force balance. 

Furthermore, radial-force-balance models disregard the particles’ radial deflection at the gas 

injection, which could result in non-negligible radial solids velocities, radial impingement 

forces, and end wall contact forces in specific regions of the vortex chamber. Hence if 

experimental information about the void fraction or bed’s inner edge radius is available, it is 

strongly suggested to use that data instead. The auxiliary equations can be implemented 

whenever there is insufficient input data while exercising caution regarding the physicality 

of void fraction and bed edge radius results. 

Graphs of correlations between relevant variables and other significative results are shown 

in Section 5.1 for two different auxiliary equations, where applicable: Ergun’s drag model, 
and the ratio 𝑟𝑏 = 𝑎𝑅 fitted to a relevant point of operation. 

5 RESULTS AND DISCUSSION 

5.1 Model Validation 
The proposed angular momentum model for vortex chambers has been validated using 

datasets from three investigations, as described in Table 1Table 1. Niyogi et al. [19] 

comprise experimentally validated Euler-Euler CFD simulation of 1g-Geldart B- and D-type 

particles on a 54 cm diameter vortex chamber with an L/D aspect ratio of 0185. Kovacevic 

et al. [18] consist of experimental measurements of 1g-Geldart B-type and D-type particles 

on a 54 cm diameter in a vortex chamber with an L/D aspect ratio of 0185. Finally, Gonzalez-

Quiroga et al. [1] consist of experimental measurements of 1g-Geldart B-type particles on an 

8 cm diameter vortex chamber with an L/D aspect ratio of 0187. 

An exploration of the current state of the art on vortex chambers research returns only a 

handful of investigations that correlate multiple relevant operating conditions for the cold 

flow hydrodynamics and provide sufficient input/output data to make meaningful 

predictions. In particular, radial profiles for the average or the maximum particle azimuthal 

velocity were instrumental in acquiring sufficient information about the solids bed, which 

resulted in realistic values of predicted bed heights and bed voidage, and also fitted 𝐶𝑓  values 



of good confidence, according to relevant literature [11][21]. All three investigations in Table 

1 report radial profiles of multiple hydrodynamic variables, while only Gonzalez-Quiroga et 

al. reports azimuthal and radial profiles. 

The proposed angular momentum balance model has three degrees of freedom: 𝑘, 𝐶𝑓,𝑜𝑤 , 𝐶𝑓,𝑒𝑤 . However, only one degree of freedom fits the data for validation purposes. A decision 

was made to fix 𝑘 = 0.1 based on Anderson et al. [11] and to merge the outer wall and end 

wall drag coefficients into one as 𝐶𝑓 = 𝐶𝑓,𝑜𝑤 = 𝐶𝑓,𝑒𝑤  following Smulsky’s procedure [13]. 

This will not restrict the model’s effectiveness considerably, given that the model output 
variables (𝜔,𝜀𝑔 , 𝑟𝑏) depend weakly on the expansion factor 𝑘, as shown in Section 5.2. 

However, we expect very different behaviors between the outer wall and end wall drag 

coefficients, so the decision to implement an “effective” drag coefficient 𝐶𝑓  that coalesces 

both boundary effects into one number is only provisional and for comparison purposes. 

Subsequent investigations will address 𝑘, 𝐶𝑓,𝑜𝑤  and 𝐶𝑓,𝑒𝑤  in a more direct, systematic 

approach. The model enables the calculation of the radially-averaged azimuthal velocity of 

the solids bed by considering the linear velocity profile of the rigid body-like rotation, as 

indicated in Equation 59. �̅�𝜃�̅� = 𝜔𝑠 (𝑅 + 𝑟𝑏2 ) (59) 

Table 1Table 1 shows the points of operation used to fit the merged wall-bed drag coefficient 𝐶𝑓 . The rest of the aggregated data serves for validating and assessing the model and can be 

found in the respective bibliography. 

Table 1 Datasets. Only the points of operation used to fit the model are shown. 

Datasets 
Gonzalez-Quiroga 

et al. [1] 
Kovacevic et al. [18] Niyogi et al. [19] 𝑅, 𝑚𝑚 40 270 270 𝐿𝑅 , 𝑚𝑚 15 100 100 𝐼0 , 𝑚𝑚 0.94 2 2 𝐼𝑁 8 36 36 𝛾, ° 10 10 10 

Fluid 
Air @ 20 °C and 1 

atm 
Air @ 15 °C and 1 atm 

Air @ 15 °C and 1 

atm 𝜌𝑔, 𝑘𝑔 𝑚−3 1.204 1.225 1.225 𝜇𝑔 , 𝑘𝑔 𝑚−1 𝑠−1 1.789 ∗ 10−5 1.813 ∗ 10−5 1.813 ∗ 10−5 
Solids 

Aluminum 

particles 

Walnut 

shells 

HDPE 

(multiple 𝑑𝑝) 

HDPE 

(multiple 𝑀𝑠) HDPE and 

Polycarbonate 

Multiple 

densities 

Multiple 𝑑𝑝 𝜌𝑠, 𝑘𝑔 𝑚−3 2700 700 950 950 
(950; 

1240) 
(450;  950 
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5.1.1 Niyogi et al. data 

Niyogi performed a parametric study for various gas inlet velocities and particle properties, 

such as average solids density and average particle diameter. However, because the angular 

momentum model has one degree of freedom, the merged wall-bed drag coefficient must be 

fitted to one data point. Therefore, the validation dataset consists of average solids bed 

azimuthal velocity measurements for 2 kg of 1 mm HDPE particles and different inlet gas 

velocities, ranging from 18.94 m/s to 109.24 m/s, as shown in Figure 6Figure 6. 

 

Figure 6 Gas injection velocity vs. Average solids azimuthal velocity for 1 mm 2 kg HDPE 

particles. The asterisk corresponds to the fitted point. 

All three models were fitted to the third data point, enumerated from left to right, 

corresponding to an inlet velocity of  54.17 𝑚/𝑠. This produces a 𝐶𝑓  value of 3.78 ∗ 10−3 

950; 

1800) 𝑑𝑝 , 𝑚𝑚 0.5 0.53 

(1;  

1.5; 

 2) 

1.5 2 1 (0.5; 2) 

𝑀𝑠, 𝑘𝑔 
10.7∗ 10−3 7.88∗ 10−3 2 

(3;  

4;  

5.4) 

(5.5; 

5.8) 
2 2 

𝑣𝑖𝑛 , 𝑚 𝑠−1 91.38 92.15 70 70 100 54.17 54.17 

�̅�𝜃�̅�, 𝑚 𝑠−1 2.00 3.59 

(7.78; 

6.16; 

5.41) 

(6.45; 

6.10; 

5.14) 

(6.24;  

4.22) 

(6.60;  

5.84; 

4.29) 

(7.45; 

4.08) 
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for Ergun’s model. Concerning the average void fraction, Ergun’s model returned a value of 

0.5002 at the fitted point.  

Additionally, Niyogi et al. provided enough experimental data to extract the ratio 
𝑟𝑏𝑅 =0.9037 at the fitted point. Using this ratio, the proposed angular momentum model could be 

implemented without any auxiliary equation, shown in Figure 6Figure 6 as a black dashed 

line. This model produced an average bed voidage of 0.4986. Considering that the 

experimental average void fraction provided by Niyogi et al. at the fitted condition is 0.5250, 

the relative error for Ergun’s model is 4.7%. 

Concerning the average bed height, Ergun’s model returned 26.10 mm at the fitted point. The 

experimental average bed height provided by Niyogi et al. at the fitted condition is reported 

to be 26.00 mm. Thus, the relative error of Ergun’s model is 0.38%. This result and the 

average void fraction relative errors indicate that Ergun’s model is suitable to describe vortex 

chamber beds similar to the ones studied by Niyogi et al. 

Lastly, one can see from Figure 6Figure 6 that the two models follow the data points very 

closely. This result seems to imply that, if everything else stays equal, 𝐶𝑓  is virtually constant 

for the studied range of gas injection velocities. This range of no correlation between the 

wall-bed drag coefficient and the gas injection velocity may correspond to the region where 

the gas-solid drag force is roughly proportional to the gas injection velocity, predicted by de 

Wilde and de Broqueville [5] and observed experimentally by Rosales-Trujillo et al. [20] and 

Gonzalez-Quiroga et al. [1]. For greater injection velocities, the inlet gas angular momentum 

may be too high to be transferred efficiently to the bed, so the assumptions of a stable 

axisymmetrical rotating solids bed or the azimuthal no-slip condition at the bed’s inner edge 

may not hold. As will be seen in subsequent sections, the invariant property of the wall-bed 

drag coefficient 𝐶𝑓  with respect to gas injection velocity will prove instrumental for scale-up 

purposes. 

Figure 7Figure 7 shows a parity plot to evaluate the models’ fitness relative to the measured 
azimuthal velocities of solids by Niyogi et al. 



 

Figure 7 Parity plot for the average solids azimuthal velocity for 1 mm 2 kg HDPE 

particles. The asterisks are the fitted data points. The dashed lines represent a ±10% 

margin of error. 

Regarding Figure 7Figure 7, the rightmost data point yields a relative error of -6.80% for 

the two models, while the rest produce relative errors of less than ±2.4%. Thus, the two 

models produce virtually identical results, with the highest standard deviation being 0.024 

for the rightmost data point. The deviation of this data point, corresponding to an inlet gas 

velocity of 109 m/s, may be related to the overestimation of the wall-bed braking effect in 

the angular momentum model. 

Niyogi et al. provided more usable data than the one employed here for validation. These 

extra datasets are in the form of radial profiles of the average solids azimuthal velocity for a 

specific variation in solids parameter, all at the same inlet gas velocity of 54.17 𝑚/𝑠. 
However, no other invariant quantity (other than the inlet gas velocity itself) could be 

determined from these variations. Thus, no parity plots could be constructed from them, 

given that each new data point would need to be used to fit each merged wall-bed drag 

coefficient 𝐶𝑓 . Nonetheless, the fitted 𝐶𝑓  values are of great importance and have been 

calculated in Table 2Table 2 using Ergun’s model. 

Table 2 Fitted 𝐶𝑓  values for various datapoints extracted from Niyogi et al. [19], using the 

developed angular momentum model and Ergun’s radial drag model. 

Solid particles Fitted 𝐶𝑓  value, ∗ 10−3 
For 2 kg of 0.5 mm particles of 950 𝑘𝑔/𝑚3 2.94 

For 2 kg of 1 mm particles of 450 𝑘𝑔/𝑚3 4.58 

For 2 kg of 1 mm particles of 950 𝑘𝑔/𝑚3 3.78 



For 2 kg of 1 mm particles of 1800 𝑘𝑔/𝑚3 4.81 

For 2 kg of 2 mm particles of 950 𝑘𝑔/𝑚3 5.61 

 

5.1.2 Kovacevic et al. data 

Kovacevic et al. produced a wide arrange of experimental data parallel to the CFD 

simulations by Niyogi et al., which have been divided here into subsets according to the 

experimental design. The experimental results enable us to account for all variables relevant 

to the angular momentum model. Thus, significant correlations can be inferred between the 

average solids azimuthal velocity at different solids loadings, particle diameters, and particle 

densities, all at distinct inlet gas velocities in the range of 55 m/s to 110 m/s.  

Since Kovacevic et al. only reported maximum solids azimuthal velocity values and some 

radial profiles for the solids azimuthal velocity. The Supplementary Material describes the 

data post-processing procedure to find the average solids azimuthal velocity required to 

validate the angular momentum model.  

 

5.1.2.1 For different solids loadings 

This dataset corresponds to average solids azimuthal velocity measurements of 1.5 mm 

particles HDPE (950 𝑘𝑔/𝑚3) at different inlet gas velocities for three different solids 

loadings. The 5.4 kg solids loading corresponds to the maximum solids loading for HDPE 

1.5 mm particles for this vortex chamber, as stated by the authors [18]. The models were 

fitted to the second injection velocity of 70 𝑚/𝑠, enumerated from left to right, featured in 

Figure 8Figure 8. 
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Figure 8 Gas injection velocity vs. Average solids azimuthal velocity for 1.5 mm HDPE for 

different solids loadings and gas injection velocities. The asterisks correspond to the fitted 

points. 

Table 3Table 3 presents the wall-bed drag coefficients fitted for each solids loading.  

Table 3 Fitted wall-bed drag coefficients for different solids loadings for the dataset of 

Kovacevic et al. 

Solids loading, 𝑘𝑔 
Fitted 𝐶𝑓  value, ∗ 10−3 

Ergun’s model 
3 3.25 

4 2.88 

5.4 3.27 

 

Here the angular momentum model and the angular momentum combined with the radial 

drag model are not truly independent. Kovacevic et al. only gave information about bed edge 

radii for three solids loadings at a gas injection of 110 m/s. The bed edge radius does vary 

significantly for different gas injection velocities, so it could not be used to find an 

independent expression for 
𝑟𝑏𝑅  at the fitted point. Instead, it was fitted using the predicted bed 

edge radius from Ergun’s model. 

Table 4 Predicted average void fraction for different solids loadings for the dataset of 

Kovacevic et al. 

Solids loading, 𝑘𝑔 
Average void fraction 

Ergun’s model 
3 0.4723 

4 0.4935 



5.4 0.5581 

 

Table 5 Predicted average bed height for different solids loadings for the dataset of 

Kovacevic et al. 

Solids loading, 𝑘𝑔 
Average bed height, 𝑚𝑚 

Ergun’s model 
3 37.94 

4 54.51 

5.4 91.24 

 

The predictions for average bed voidage and average bed heights for different solid loadings 

are given in Table 4Table 4 and Table 5Table 5, respectively. These results are well within 

reason, given that an increase in solids loading should be accompanied by an increase in bed 

voidage and bed height if the injection velocity stays constant. 

Lastly, a particular non-monotonic relationship between the solids loading and 𝐶𝑓  can be seen 

to develop. A suspected 𝐶𝑓  local minimum appears for a solids loading of 4 kg for Ergun’s 
radial drag model. This minimum could be a striking feature since minimizing wall-bed drag 

coefficients would maximize the average solids azimuthal velocity and average solids bed 

centrifugal acceleration and, in turn, benefit specific vortex chamber processes and the 

overall PI potential. However, more data is needed to locate this local minimum properly.  

The parity plots for all three solids loadings are virtually identical, as shown in Figure 

9Figure 9. 

 

Figure 9 Parity plot for the average solids azimuthal velocity for 1.5 mm HDPE particles. 

The asterisks are the fitted data points. The dashed lines represent a ±10% margin of error. 
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Regarding Figure 9Figure 9, the relative errors for the average solids azimuthal velocity lie 

in the range of -5.98% and 5.26% for all three solids loadings. One can see that the last data 

points on each subset tend to produce more positive relative errors. A plausible explanation 

comes from what happens after surpassing the linear proportionality region between the inlet 

gas velocity and the average solids azimuthal velocity. Typically, further increases in inlet 

gas velocity after this region produce diminishing returns in solids azimuthal velocities, as 

observed by Gonzalez-Quiroga et al. [1] and Rosales-Trujillo et al. [20], until reaching a 

certain plateau where if the inlet gas velocity is increased further only marginal gains in the 

solids azimuthal velocity will be observed. Additionally, this is more apparent for heavier 

beds, suggesting a correlation between gas injection velocity and solids loading with the 

angular momentum transfer efficiency between the incoming gas and the solids bed. 

 

5.1.2.2 For different particle diameters 

This dataset corresponds to average solids azimuthal velocity measurements of 2 kg of HDPE 

particles (950 𝑘𝑔/𝑚3) at different inlet gas velocities for three different particle diameters. 

Since the bare angular momentum model does not consider the particle diameter by itself, it 

cannot be validated by this dataset nor discern any meaningful relationship. Therefore, the 

angular momentum model will only be considered with Ergun’s radial drag model. The 

model was fitted to the second injection velocity of 70 𝑚/𝑠, enumerated from left to right, 

featured in Figure 10Figure 10. 

 

Figure 10 Gas injection velocity vs. Average solids azimuthal velocity for 2 kg of HDPE for 

different particle diameters and gas injection velocities. The asterisks correspond to the 

fitted points. 

 



Table 6 Fitted wall-bed drag coefficients for different particle diameters for the dataset of 

Kovacevic et al. 

Particle diameter, 𝑚𝑚 
Fitted 𝐶𝑓  value, ∗ 10−3 

Ergun’s model 
1 3.6333 

1.5 4.7257 

2 5.4358 

 

Table 6Table 6 presents the wall-bed drag coefficients fitted for each particle diameter. A 

monotonically increasing tendency is evident on 𝐶𝑓  for Ergun’s model. This tendency is 

aligned with the notion that bigger particles tend to produce more stable, although slower, 

rotating beds according to their Stokes number. 

Table 7 Predicted average void fraction for different particle diameters for the dataset of 

Kovacevic et al. 

Particle diameter, 𝑚𝑚 
Average void fraction 

Ergun’s model 
1 0.4834  

1.5 0.4838 

2 0.4745 

 

Table 8 Predicted average bed heights for different particle diameters for the dataset of 

Kovacevic et al. 

Particle diameter, 𝑚𝑚 
Average bed height, 𝑚𝑚 

Ergun’s model 
1 25.20  

1.5 25.22 

2 24.75 

 

The predictions for average bed voidage and average bed heights for different particle 

diameters are given in Table 7Table 7 and Table 8Table 8, respectively. These findings 

agree with Niyogi et al. [19], who found the same bed height and voidage behavior as 

predicted here. Their simulations hardly changed the bed height for different particle 

diameters at the same solids loading. Conversely, the bed tends to be bubbly and diffuse for 

lower particle diameters, so identifying the bed edge radius becomes much more 

complicated. 

The parity plot for Ergun’s radial drag model is shown in Figure 11Figure 11. 
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Figure 11 Parity plot for the average solids azimuthal velocity for 2 kg of HDPE particles. 

The asterisks are the fitted data points. The dashed lines represent a ±10% margin of error. 

Regarding Figure 11Figure 11, the relative errors for the average solids azimuthal velocity 

lie in the range of -5.66% and 4.92%. Kovacevic et al. also provided two radial profiles for 

two different particle densities of 2 mm particles at the maximum solids loading allowed for 

these conditions. The solids in question are HDPE (950 𝑘𝑔/𝑚3) and PC (1240 𝑘𝑔/𝑚3) and 

their maximum solids loadings are 5.5 kg and 5.8 kg, respectively. Since they only provided 

radial profiles for a set of parameters not coincident with any of the previous datasets, no 

relationship 𝐶𝑓  vs. 𝑣𝑖𝑛  nor parity plot can be constructed. However, the two fitted 𝐶𝑓  values 

are given here for reference in Table 9Table 9 using Ergun’s model.  

Table 9 Fitted 𝐶𝑓  values for two datapoints extracted from Kovacevic et al. [18], using the 

developed angular momentum model and Ergun’s radial drag model. 

Solid particles Fitted 𝐶𝑓  value, ∗ 10−3 
For 5.5 kg of 2 mm particles of 950 𝑘𝑔/𝑚3 3.8594 
For 5.8 kg of 2 mm particles of 1240 𝑘𝑔/𝑚3 5.7500 

 

5.1.3 Gonzalez-Quiroga et al. data 

The work of Gonzalez-Quiroga et al. contains average azimuthal velocity data for two 

different particles at various solids loadings and injection velocities. The solid particles in 

question are crushed walnut shells (0.53 𝑚𝑚, 700 𝑘𝑔/𝑚3) and monodispersed aluminum 

spheres (0.5 𝑚𝑚, 2700 𝑘𝑔/𝑚3) both of which classify as 1g-Geldart B-type particles. These 

particle properties, coupled with a relatively small chamber diameter (80 mm) and high 

injection velocities in the range of 82 𝑚/𝑠 and 126 𝑚/𝑠, produce relatively dense and 

uniform rotating solids beds. 



 

Figure 12 Gas injection velocity vs. Average solids azimuthal velocity for Aluminum 

spheres and Walnut shells at different solids loadings and gas injection velocities. The 

error bars correspond to twice the standard deviation from 3 measurements by Gonzalez-

Quiroga et al. The asterisks correspond to the fitted points. 

Both models were fitted to their second injection velocity, enumerated from left to right, as 

shown in Figure 12Figure 12. These conditions correspond to (91.38 m/s, 10.7 g) for 

aluminum spheres and (92.15 m/s, 7.88 g) for walnut shells, respectively. This dataset is 

particular because each datapoint corresponds to a different solids loading and inlet gas 

velocity. According to Gonzalez-Quiroga et al. [1], the error bars correspond to twice the 

standard deviation of the experimental data. At the same time, all three models predict 

azimuthal velocity values well within that range. 

Table 10Table 10 shows the wall-bed drag coefficients at the fitted points. These values are 

certainly higher than the ones obtained for the other datasets, which implies a correlation 

between 𝐶𝑓  and certain parameters of this dataset. This correlation will be explored further 

in Section 5.3. 

Table 10 Fitted wall-bed drag coefficients for aluminum spheres and walnut shells for the 

dataset of Gonzalez-Quiroga. 

Solid particles 

Fitted 𝐶𝑓  

value, ∗ 10−3 
Ergun’s model 

Aluminum spheres (10.7 𝑔, 0.5 𝑚𝑚, 2700 𝑘𝑔/𝑚3) 8.53 



Walnut shells (7.88 𝑔, 0.53 𝑚𝑚, 700 𝑘𝑔/𝑚3) 7.92 

 

Table 11 Predicted average void fractions for aluminum spheres and walnut shells for the 

dataset of Gonzalez-Quiroga. 

Solid particles 

Average void 

fraction 

Ergun’s model 
Aluminum spheres (10.7 𝑔, 0.5 𝑚𝑚, 2700 𝑘𝑔/𝑚3) 0.5651 

Walnut shells (7.88 𝑔, 0.53 𝑚𝑚, 700 𝑘𝑔/𝑚3) 0.5943 

 

The predictions for average bed voidage for aluminum spheres and walnut shells are given 

in Table 11Table 11. According to Gonzalez-Quiroga et al., the void fractions for aluminum 

and walnut particles for an injection velocity of 101 m/s are 0.70 and 0.79, respectively. 

Although the models correctly predict walnut shells having a greater void fraction than 

aluminum spheres, the prediction error is too large. This discrepancy may stem from the 

invalidity of the radial drag formula on Equation (48)(48) for the set of parameters and 

conditions of this dataset, possibly due to the small chamber radius or that the two solid 

particles considered are 1g-Geldart B-type. 

Gonzalez-Quiroga et al. reported radially and azimuthally averaged solids azimuthal 

velocities instead of radially averaged solids azimuthal velocities at an arbitrary azimuthal 

angle. The latter method corresponds to the one used by Kovacevic et al. and Niyogi et al., 

which could cause some comparison issues if the gradients in the azimuthal direction are too 

large. However, both groups of authors assure that their rotating beds are dense and uniformly 

distributed, so these gradients should be sufficiently low. 

Table 12 Predicted average bed heights for aluminum spheres and walnut shells for the 

dataset of Gonzalez-Quiroga. 

Solid particles 

Average bed 

height, 𝑚𝑚 

Ergun’s model 
Aluminum spheres (10.7 𝑔, 0.5 𝑚𝑚, 2700 𝑘𝑔/𝑚3) 2.494 

Walnut shells (7.88 𝑔, 0.53 𝑚𝑚, 700 𝑘𝑔/𝑚3) 8.201 

 

Table 12Table 12 shows the predictions for average bed height for aluminum spheres and 

walnut shells. The experimental average bed heights for aluminum and walnut particles are 

around 4 mm and 6 mm, respectively [1]. Thus, the predicted average bed heights are also 

off from the experimental values, an outcome expected by the intimate relationship between 

the average bed height and the average void fraction in the angular momentum model. The 

parity plots for both models are virtually identical, as shown in Figure 13Figure 13. 
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Figure 13 Parity plot for the average solids azimuthal velocity for aluminum spheres and 

walnut shells at various solids loadings and gas injection velocities. The dashed lines 

represent a ±10% margin of error. 

Regarding Figure 13Figure 13, the relative errors for the average solids azimuthal velocity 

lie in the range of -2.1% and 9.0% for aluminum spheres, while in the range of -1.0% and 

11.8% for walnut shells. Thus, the model exhibits a relatively high dispersion in its 

predictions for walnut shells, while it appears reasonably accurate for aluminum spheres. It 

can be surmised that the walnut shells rotating beds are beyond the linear proportionality 

region between the inlet gas velocity and the average azimuthal velocity of particles, possibly 

due to their relatively low solid density and Stokes number. On the other hand, aluminum 

rotating beds seem entirely predictable still, possibly due to their higher solid density and, 

thus, higher Stokes number. 

5.1.4 Full parity plot 

A parity plot containing all the predicted values, excluding the fitted pairs, is shown in Figure 

14Figure 14. The angular momentum model with a coupled radial drag model is robust 

enough to analyze and predict rotating solids beds in vortex chambers, including diverse 

particle types, chamber design, and hydrodynamic conditions, responding well within 

acceptable engineering tolerances. 



 

Figure 14 Parity plot for the average solids azimuthal velocity for all studied datasets. The 

studied range covers average solids azimuthal velocities from 1 m/s to 13 m/s. The dashed 

lines represent a ±10% margin of error. 

5.2 Sensitivity analysis 
Figure 15Figure 15 shows the complete sensitivity analysis for the dataset of Niyogi et al., 

with the implementation of Ergun’s radial drag model. 



 



 

 



 

Figure 15 Sensitivity analysis of the average bed height, average void fraction, and 

average solids angular velocities for ceteris paribus changes to each input variable. The 

asterisks are the fitted data point. 

The domain of each variable is limited to the immediate vicinity of the experimental data of 

Niyogi et al. for a rotating solids bed of HDPE particles; average particle diameter of 1 mm; 

solids loading of 2 kg; inlet gas velocity of 54.17 m/s; merged wall-bed drag coefficient of  3.7806 ∗ 10−3; average bed height of 26.10 mm; and average solids azimuthal velocity of 

5.84 m/s (See Table 1Table 1).Table 1 Datasets. Only the points of operation used to fit the 

model are shownTable 1 Datasets. Only the points of operation used to fit the model are 

shown. Variations of around ±20% of the reference value are induced to each variable in a 

ceteris paribus fashion, only evaluating states close to the variable’s original stationary value 
and assuming the other variables stay constant. One can observe from Figure 15Figure 15 

the following tendencies relative to the solids bed average angular velocity 𝜔𝑠: 
• A monotonically increasing trend for 𝑣𝑖𝑛 , 𝐿𝑅, 𝐼0, and 𝐼𝑁. 

• A monotonically decreasing trend for 𝑀𝑠, 𝐶𝑓,𝑜𝑤 , 𝐶𝑓,𝑒𝑤 , 𝑘, 𝑅, 𝛾, 𝑑𝑝, and 𝜌𝑠. 
These qualitative findings are all in accordance with previous research [11][14][18][19] 

[25][34][35][36]. Notably, increasing the value of the chamber design parameters 𝐿𝑅, 𝐼0, 𝐼𝑁 

implies a greater gas mass flow rate while maintaining a constant inlet velocity. This, of 



course, also increases the inlet gas angular momentum and produces faster and denser beds, 

as expected. 

Using Gibilaro’s drag model instead of Ergun’s produces similar trends as the ones shown 

here, though predicting, on average, more compact and shallow rotating beds than Ergun’s 
model, as said before. 

The angular momentum model can also offer insight into the sensitivity of 𝜔𝑠 to perturbations 

in hydrodynamic variables and design parameters. Figure 15Figure 15 shows that marginal 

changes in 𝐶𝑓,𝑒𝑤  produce large variations in 𝜔𝑠; and that marginal changes in 𝐶𝑓,𝑜𝑤  produce 

relatively small variations in 𝜔𝑠. Figure 16Figure 16 illustrates this situation from a more 

global perspective. 

 

Figure 16 Sensitivity analysis for angular resistances for ceteris paribus changes to each of 

them. 

Figure 16Figure 16 reveals that end wall braking effects on the solids bed are around one 

order of magnitude greater than the outer wall and gas injection, according to the proposed 

angular momentum model. Such bias is covered by Smulsky [13], who describes the 

characteristic flow pattern as “weighted rotated layers”: a flow pattern where the end walls 

of the vortex device take a more prominent role in the solids bed development in comparison 

to the outer wall-centric “rotated layers”, more appropriate for cyclonic devices instead. This 

disproportion between ℛ𝑒𝑤  and ℛ𝑜𝑤  can be potentially exploited by applying the Pareto 

principle to the improvement and enhancement of conventional vortex chamber design, 



considering first and foremost the optimization alternatives that promote a reduction in ℛ𝑒𝑤  

over the other alternatives. 

Remarkably, the same qualitative tendencies presented in this section arise for Kovacevic et 

al. and Gonzalez-Quiroga et al. experiments, which is proof of the consistency and well-

behavior of the angular momentum balance model. The numerical assumption of the 

expansion factor at the gas injection 𝑘 being equal to 0.1 does change the absolute value of 

the outer wall resistance ℛ𝑜𝑤 , but, as seen in Figure 15Figure 15, the solids bed average 

velocity is minimally affected by its value. Nevertheless, the actual value of the outer wall 

drag coefficient 𝐶𝑓,𝑜𝑤  should be very sensitive to 𝑘’s value, so a more appropriate way to 
determine the expansion factor at the gas injection 𝑘 for a broad variety of vortex chamber 

parameters and operating conditions should be developed. 

5.3 Wall-bed drag coefficient analysis 

The proposed angular momentum balance model contains the following improvement 

opportunities: 

• The model does not consider the hydrodynamic effects caused by variations in the 

chimney’s and end walls’ geometry. This is relevant for beds composed of finer solid 
particles, such as 1g-Geldart A- and C-type particles, which are considerably more 

sensitive to the chimney’s dimensions and typology than coarser particle beds. Fine 

particle beds in a vortex chamber are typically rarefied and non-homogeneous, with no 

clear bed edge [18] and, generally, low Stokes numbers. These conditions promote a more 

fluid-like behavior and, thus, a propensity to be affected and entrained by the vortex core 

and both the chimney’s and end walls’ low-pressure zones and near-wall jet phenomena. 

Nevertheless, the case is not the same for 1g-Geldart D- and B-type particles, given that 

these particles produce relatively dense and uniformly distributed beds. Therefore, the 

freeboard pressure drop could be modeled with Volchkov’s model of hydraulic 
resistances [37]. Additionally, the thickness of the outlet gas annular flow through the 

chimney could be modeled via Goldshtik’s minimal outgoing kinetic energy flux rule [6]. 

• The model does not consider non-conventional variations in the geometry and 

configuration of inlet gas slits, with possibly a few exceptions (see Section 5.4). This is 

because the model does not consider in detail the mechanisms and modes of interaction 

between inlet gas jets and the rotating solids bed, which makes it impossible to generate 

radial and azimuthal profiles of relevant solids bed variables (𝜔𝑠 , 𝜀𝑔,𝑢𝑟) and, thus, 

analyze variations of inlet gas slits. Furthermore, the angular momentum model seems to 

underestimate the influence on bed hydrodynamics of the inlet slit angle 𝛾. This comes 

at odds with a vortex chamber predictor-response screening statistical analysis [38] that 

highlighted the inlet slit angle as one of the most important parameters regarding the gas 

pressure drop and fluidization quality of a GSVR solids bed. Still, the research mentioned 

was performed with Euler-Euler simulations of low-diameter vortex chambers with 

chimney screens to prevent particle entrainment. Hence, a more general comparative 

study should be undertaken to gauge the influence of each design parameter and operating 

condition on performance. 



We could not find state-of-the-art regarding the effect of different wall materials and surface 

coatings on the solids bed performance in a vortex chamber. However, a method by Ortiz-

Vidal et al. [39] estimates the wall drag coefficient for biphasic gas-liquid pipe flows in 

various flow regimes. The study proposes a modified Reynolds number that includes 

hydrodynamic data of each phase, including the void fraction. 

In addition, Goldshtik conducted an experiment [21] that proves the validity of the quadratic 

drag formula for vortex chambers and estimates a drag coefficient value for multiple gas inlet 

velocities and the number of inlet slits on a vortex chamber. These are his conclusions: 

➢ The quadratic drag formula is valid for the hydrodynamic modeling of vortex 

chambers, even though it tends to overestimate the magnitude of the wall resistance 

to the flow in most cases. This may be useful for conservative computations and first 

approximations to the desired hydrodynamic variables if the proposed angular 

momentum model is implemented, which would predict, in general, slower and less 

compact solids beds than experiments produce. 

➢ The recommended monophasic wall drag coefficient is (5 ± 0.3) ∗ 10−3, found by 

analyzing a large amount of experimental data of monophasic water flow in a vortex 

chamber. A value of 𝟓 ∗ 𝟏𝟎−𝟑 is also suggested as a rough approximation for gas-

fluid biphasic flows on the condition that the flow density takes both phases into 

account appropriately.  

The Muschelknautz cyclone hydrodynamic model also recommends a wall-bed drag 

coefficient of 𝟓 ∗ 𝟏𝟎−𝟑 for hydraulically smooth cyclones in a wide range of typical cyclone 

operating conditions [22]. Additionally, Anderson et al. estimated a wall-bed drag coefficient 

value of  𝟑 ∗ 𝟏𝟎−𝟑 for use in their vortex chamber angular momentum model [11], based on 

experimental results obtained from gas-solid horizontal pipe flows in the pneumatic transport 

regime. One can observe that all the recommended 𝐶𝑓  values are of the same order of 

magnitude, just as the fitted 𝐶𝑓  results of previous sections. This proves the model produces 

consistent and accurate results even for very different design parameters and operating 

conditions. Moreover, Muschelknautz recommended 𝐶𝑓  value may also elucidate the 

hydrodynamic and typological closeness between cyclones and vortex chamber devices, 

which may prove to be an essential starting point for inferences and conjectures on the 

behavior of vortex chamber devices while being supported by a much more mature and 

technically consolidated technology such as the cyclone. 

Smulsky [13] suggested Prandtl’s formula for the average drag coefficient of turbulent flow 

on a flat plate as a first approximation to the vortex chamber wall-bed drag coefficient. The 

formula is given in Equation 60. 𝐶𝑓 = 0.077𝑅𝑒𝜃0.2  (60) 

Where the azimuthal Reynolds number for the gas at the injection is defined in Equation 61. 



𝑅𝑒𝜃 = 𝜌𝑔(𝑣𝑖𝑛 𝑐𝑜𝑠 𝛾)𝑅𝜇𝑔  (61) 

The wall-bed drag coefficients predicted by this formula are shown in Table 13Table 13, 

along with the fitted 𝐶𝑓  values for each dataset. 

Table 13 Predicted wall-bed drag coefficients for all validated datasets. 

 

The predicted values are moderately close to the fitted values: as can be seen, both are of the 

same order of magnitude and have relative errors between 1.4% and 65.8%. However, 

Prandtl’s formula proves to be insufficient to estimate the experimental 𝐶𝑓  value on most 

conditions, given that it does not consider relevant parameters and operating variables that 

affect 𝐶𝑓’s magnitude in complex ways and only considers the inlet gas velocity in its 
calculation, a variable that, as has been said, does not alter 𝐶𝑓’s value in any significant way 
in the linear proportionality region of operation. Nonetheless, Prandtl’s formula is the only 
tool to correlate the wall drag coefficient with the vortex chamber radius, which will prove 

instrumental for scale-up modeling. 

Datasets 
Fitted 𝑪𝒇 ∗ 𝟏𝟎−𝟑 

Smulsky 𝑪𝒇 ∗ 𝟏𝟎−𝟑 
Gonzalez-

Quiroga et al. 

Aluminum particles 8.53 6.47 

Walnut Shells 7.92 6.46 

Kovacevic et 

al. 

HDPE (multiple 𝑑𝑝) 
For 1 mm 3.63 

4.64 

For 1.5 mm 4.72 

For 2 mm 5.43 

HDPE (multiple 𝑀𝑠) For 3 kg 3.25 

For 4 kg 2.88 

For 5.4 kg 3.27 

Multiple 𝜌𝑠 For HDPE (950 𝑘𝑔𝑚3) 3.85 

4.32 
For Polycarbonate (1240 𝑘𝑔𝑚3) 5.75 

Niyogi et al. 

Multiple 𝜌𝑠 For 450 
𝑘𝑔𝑚3 4.58 

4.88 

For 950 
𝑘𝑔𝑚3 3.78 

For 1800 
𝑘𝑔𝑚3 4.81 

Multiple 𝑑𝑝 
For 0.5 mm 2.94 

For 2 mm 5.61 

heeft opmaak



The fitted wall-bed drag coefficients in Table 13Table 13 can be visualized in Figure 

17Figure 17 to better gauge the qualitative tendencies upon the variation of each input 

variable. 

 

 

Figure 17 Bar diagram for the wall-bed drag coefficient behavior. 

From Figure 17Figure 17, one can observe the following: 

• 𝐶𝑓  is strongly independent of the inlet gas velocity for 1g-Geldart B-type and D-type 

particles in a wide range of operating conditions. 

• 𝐶𝑓  is strongly dependent on the VC radius, taking considerably greater values, on average, 

for low VC radii and vice versa. This could be explained by increasing the average bed 

centrifugal acceleration by decreasing the chamber radius, which slows the rotating solids 

bed significantly through increased contact with the chamber’s outer wall. 
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0,0000 1,0000 2,0000 3,0000 4,0000 5,0000 6,0000 7,0000 8,0000 9,0000

DATASET

Cf * 10-3

Walnut GQ Aluminum GQ

Niyogi 0.5 mm 2 kg 950 kg/m^3 Niyogi 1 mm 2 kg 450 kg/m^3

Niyogi 1 mm 2 kg 950 kg/m^3 Niyogi 1 mm 2 kg 1800 kg/m^3

Niyogi 2 mm 2 kg 950 kg/m^3 Kovacevic 1 mm 2 kg 950 kg/m^3

Kovacevic 1.5 mm 2 kg 950 kg/m^3 Kovacevic 2 mm 2 kg 950 kg/m^3

Kovacevic 1.5 mm 3 kg 950 kg/m^3 Kovacevic 1.5 mm 4 kg 950 kg/m^3

Kovacevic 1.5 mm 5.4 kg 950 kg/m^3 Kovacevic 2 mm 5.5 kg 950 kg/m^3

Kovacevic 2 mm 5.8 kg 1240 kg/m^3



• 𝐶𝑓  increases monotonically as the particle diameter increases. This dependency is very 

strong, accounting for the almost constant correlation between the average solids angular 

velocity and the particle diameter. 

• 𝐶𝑓  describes a positive concavity behavior concerning the solids loading, having a local 

minimum somewhere before the maximum solids capacity of the bed at the given 

conditions. 

• 𝐶𝑓  possesses a local minimum, as well, concerning particle density. This seems to depend 

strongly on the nearness to the bed’s maximum solids capacity. Kovacevic et al. [14] 

found that the GSVR maximum solids capacity increases when the solids density 

increases and vice versa; thus, beds near or far from their maximum solids capacity 

produce higher 𝐶𝑓  values than more “intermediate” beds. 
• For beds analyzed at their maximum solids capacity, 𝐶𝑓  seems to increase monotonically 

with particle density. 

Considering the previous results, the authors conjecture that the wall drag coefficient for a 

gas-solid flow in a vortex chamber must depend on at least three independent factors: 

• A special formulation of the azimuthal Reynolds number 𝑅𝑒𝜃∗, where the voidage 

fraction and additional solid phase data is included. This is in direct reference to the 

Cyclone body Reynolds number used for the Muschelknautz hydrodynamic model 

[22], where additional geometric and kinetic variables are introduced to the 

adimensional number; and to Ortiz-Vidal et al. [39], who devised a way to include 

more phenomenological information about the gas-liquid flow on the adimensional 

number, including the voidage fraction. 

• The Swirl ratio 𝑆, as the geometrical factor that condenses the most information about 

the vortex intensity, general vortex chamber injection geometry, and gas residence 

time, according to Rosales-Trujillo et al. [20] and Gonzalez-Quiroga [1]. 

• A superficial parameter that describes the gas-solid flow interaction with the walls, 

defined here as 𝐾𝑤𝑎𝑙𝑙 . This may include the relative wall roughness 𝑘𝑠 𝑅⁄  and some 

other granular material parameters, such as Coulomb’s dynamic friction coefficient, 
and angle of repose, among others. 

The correlation in functional form is given in Equation 62: 𝐶𝑓 = 𝑓(𝑅𝑒𝜃∗ , 𝑆, 𝐾𝑤𝑎𝑙𝑙) (62) 

One can also surmise further and assume an additive decomposition of 𝐶𝑓 , by analogy to the 

Muschelknautz cyclone model [22], presented in Equation 63: 𝐶𝑓 = 𝐶𝑓,𝑔 + 𝐶𝑓,𝑠 (63) 

Where 𝐶𝑓,𝑔 corresponds to the gas contribution to the total wall-bed drag coefficient, and 𝐶𝑓,𝑠 
corresponds to the solids bed contribution to the total wall-bed drag coefficient. The gas 

contribution to the wall-bed drag coefficient may be determined using the azimuthal 



Reynolds number for the gas at the injection 𝑅𝑒𝜃, the Swirl Ratio, and the relative wall 

roughness 𝑘𝑠 𝑅⁄ . It is presented in functional form in Equation 64: 𝐶𝑓,𝑔 = 𝑓(𝑅𝑒𝜃, 𝑆, 𝑘𝑠 𝑅⁄ ) (64) 

The contribution of solids to the wall drag coefficient would be more complex. A relatively 

straightforward way where all of the observations in Figure 17Figure 17 may be validated 

is by making 𝐶𝑓,𝑠 a function of the reciprocal of the total amount of particles present in the 

solids bed 𝑁, and the ratio of solids loading over maximum solids capacity at the operating 

condition 𝑀𝑠/𝑀𝑠𝑚𝑎𝑥. By definition, in Equation 65: 𝑁 = 𝑀𝑠𝜌𝑠 𝜋6 𝑑𝑝3 (65) 

A correlation for 𝐶𝑓,𝑠 can be construed, given in Equation 66: 

𝐶𝑓,𝑠 = 𝑓 (𝑁−1, 𝑀𝑠𝑀𝑠𝑚𝑎𝑥) = 𝑓 [( 𝑀𝑠𝜌𝑠 𝜋6 𝑑𝑝3)
−1 , 𝑀𝑠𝑀𝑠𝑚𝑎𝑥] (66) 

These tentative correlations, and others, will be explored and validated in subsequent 

investigations. 

5.3.1 Angular momentum attenuation 

One significant hydrodynamic quantity that helps describe the complicated mechanics of 

angular momentum transfer between gas and solid phases is the Attenuation 𝜒. According to 

Kuzmin [6], it can be defined for the gas phase at the outer wall boundary in Equation 67: 𝜒𝑜𝑤 = 𝛤𝑅𝛤𝑖𝑛 (67) 

This quantity can be understood as a measure of the inlet gas angular momentum 

instantaneously transferred to the solids bed and outer wall at the periphery. This way, the 

less attenuation, the more the inlet gas angular momentum is dissipated at the outer wall 

boundary. Likewise, the quantity 1 − 𝜒𝑜𝑤  is analogous to an angular momentum transfer 

efficiency at the outer wall boundary. Other authors, such as Volchkov et al. [37], have 

treated this quantity as a normalized circulation for the gas phase. This notion extends the 

attenuation’s definition to the entire solids bed. 

Substituting Equation (23)(23) on Equation (67)(67) yields Equation 68: 

𝜒𝑜𝑤 = √1 + 2𝛼′𝐶𝑓,𝑜𝑤𝑘�̅�𝐿𝑅𝛤𝑖𝑛�̇�𝑔 − 1𝛼′𝐶𝑓,𝑜𝑤𝑘�̅�𝐿𝑅𝛤𝑖𝑛�̇�𝑔  
(68) 
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One can see similar expressions on the numerator and denominator. Letting an arbitrary 

variable 𝑧 be on Equation 69: 𝑧 = 𝛼′𝐶𝑓,𝑜𝑤𝑘�̅�𝐿𝑅𝛤𝑖𝑛�̇�𝑔  (69) 

Then, substituting Equation (69)(69) in Equation (68)(68) yields Equation 70: 

⇒ 𝜒𝑜𝑤 = √1 + 2𝑧 − 1𝑧  (70) 

This is the general function for gas-phase attenuation at the outer wall of a vortex chamber. 

Figure 18Figure 18 shows its behavior for 𝑧 ≥ 0. 

 

Figure 18 General behavior of the gas phase attenuation in a vortex chamber. 

The outer wall attenuation seems to experience rapid changes in the interval 0 ≤ 𝑧 ≤ 5, after 

which it decays moderately slowly, finally reaching zero at infinity. The attenuation values 

for the datasets analyzed in this paper are found in Table 14Table 14 for each fitted 

datapoint. 

Table 14 Attenuation values for all analyzed datasets. 

Datasets Attenuation 

Gonzalez-

Quiroga et 

al. 

Aluminum particles 0.25 

Walnut Shells 0.45 

Kovacevic et 

al. 
HDPE (multiple 𝑑𝑝) 

For 1 mm 0.57 

For 1.5 mm 0.52 

For 2 mm 0.49 
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The 

general tendency here is that denser and bigger particles in a highly loaded solids bed rotating 

in a small vortex chamber have a lower outer wall attenuation than other rotating beds. Of 

course, this does not imply that the resulting beds are necessarily faster and more compact 

but that the angular momentum transfer efficiency is the greatest for these kinds of beds, 

which is aligned with previous research for CFBs and centrifugal fluidized beds 

[12][24][25][40]. 

5.4 Outlook 
The previous sections discussed an angular momentum balance model for the GSVR. As it 

stands, the model’s formulation only involved key measurable hydrodynamic quantities for 

the solids bed, like the average solids bed angular velocity 𝜔, the average void fraction 𝜀𝑔, 

and the average inner bed edge radius 𝑟𝑏 . However, the proposed model is capable of 

quantifying and gauging the sensitivity of other output variables of interest, like the 

following: 

• Average solids azimuthal velocity 

• Average solids centrifugal acceleration 

• Average gas-solid azimuthal slip velocity 

• Average solids fraction 

• Radial profile of the gas azimuthal velocity 

The model may also help to solve design-type problems regarding what value a certain 

geometric parameter or particle property should take to produce a determined solids bed. 

This inverse procedure is fundamental for vortex chamber PI potential and scalability, given 

the considerable computational hurdles involved in CFD parametric studies, even for 2D 

analyses [25] [38]. Thus, there is a great incentive to study other vortex chamber typologies 

and explore improvement opportunities to conventional vortex chamber design with the 

proposed model, taking advantage of its simplicity and robustness. 

HDPE (multiple 𝑀𝑠) For 3 kg 0.58 

For 4 kg 0.61 

For 5.4 kg 0.61 

Multiple 𝜌𝑠 For HDPE (950 𝑘𝑔𝑚3) 0.58 

For Polycarbonate (1240 𝑘𝑔𝑚3) 0.51 

Niyogi et al. 

Multiple 𝜌𝑠 For 450 
𝑘𝑔𝑚3 0.69 

For 950 
𝑘𝑔𝑚3 0.56 

For 1800 
𝑘𝑔𝑚3 0.42 

Multiple 𝑑𝑝 
For 0.5 mm 0.63 

For 2 mm 0.49 



For example, one can consider a monolayer of coarse particles rotating alongside the solids 

bed at the outer wall, acting as a buffer between both in such a way that minimizes the outer 

wall resistance ℛ𝑜𝑤  of the solids bed, increasing the bed’s azimuthal velocity and 
acceleration [1], [12]. One can also consider secondary gas injection at an end wall, first 

proposed by Anderson et al. as early as 1972 [11], which vastly increases the inlet angular 

momentum available to the solids bed and reduces the end wall resistance ℛ𝑒𝑤  and particle 

entrainment through the chimney. Another way to improve vortex chamber performance may 

lie in modifying inlet slit geometry such that a change in inlet slit area and shape (and a 

consequent change in inlet angular momentum) is accompanied by a great decrease in end 

wall resistance ℛ𝑒𝑤  and increase in solids bed uniformity. Additionally, a change in the outer 

wall geometry from a circular to a polygonal shape may induce a beneficial Coandă effect 
near the gas flow at the outer wall, one that can, in principle, push out particles approaching 

the outer wall and, thus, reduce the outer wall resistance ℛ𝑜𝑤  by decreasing particle-wall 

friction and collisions. One can even consider rotating end walls with the proposed model, 

such as the novel STARVOC reactor [41] that combines the advantages of both RFB and 

vortex chamber technologies into a single compact and efficient contactor. Lastly, ultrasound 

and magnetic levitation techniques (for paramagnetic particle beds) can be analyzed and 

implemented on the VC walls to counteract bed nonuniformities; improve mixing, heat, and 

mass transfer; and reduce wall-particle contact times, analogous to the action of Vibrating 

Fluidized Beds (VFB) [42]; and consequently, producing faster and more uniform rotating 

beds. 

The proposed model can also help in scale-up procedures, as the inclusion of relevant VC 

geometric parameters, such as chamber diameter, chamber length, and slit number, enable 

scaling chamber dimensions and solids loadings while maintaining the same overall bed 

behavior and vortex chamber performance. This is a significant corollary, given that no other 

quantitative scale-up method has been found in vortex chamber literature. At the same time, 

common approaches solely constrain themselves to CFD and experiments at lab-scale 

operation. Considering the significant cost, computational time and power, and validation 

procedures needed to verify similarity and predict vortex chamber scale-up outcomes, this 

technology has still not seen commercial deployment. Predictability and controllability of a 

centrifugal contactor are a priority as with any other industrial equipment. For instance, the 

proposed model is capable of determining the chamber diameter 𝐷 necessary to produce a 

desired average solids angular velocity 𝜔𝑠 by selecting specific parameters like the desired 

centrifugal field intensity 𝐺, inlet gas velocity 𝑣𝑖𝑛 , aspect ratio 
𝐿𝑅𝑅 , solids loading 𝑀𝑠, and slit 

number 𝐼𝑁, as well as providing graphs detailing correlations between these parameters 

around a single point of operation. 

While the previous prospects look promising, improvements must be made to the model. A 

consensus needs to be reached facing a standard definition of the vortex chamber average 

inner bed edge radius and fluidization criteria, which are necessary to compute the average 

solids azimuthal velocity and acts as a reference frame to compare different 𝐶𝑓  values for 

widely different bed conditions and chamber sizes. Niyogi et al. [19] proposed a criterion 



defining the location of the inner bed edge radius where the static pressure reached a 

sustained minimum value. They used it to calculate average azimuthal velocities despite 

having direct measurements of the average inner bed edge radius. This could be a promising 

and easy-to-implement criterion, given the difficulties regarding the location of an actual 

inner bed edge radius for dilute or unstable beds. Additionally, the results and conjectures 

regarding the gas injection expansion factor 𝑘 and wall-bed drag coefficient 𝐶𝑓  need to be 

validated with a greater and broader selection of input data while also considering a 

continuous mode of operation for the vortex chamber. Moreover, improving the model to 

consider different inlet slit geometries and sinusoidal solids bed velocity profiles may be the 

key to optimizing the performance and design of the vortex chamber, albeit with an inevitable 

increase in complexity and computational cost. 

 

6 CONCLUSION 
An angular momentum model was formulated for the GSVR following the works of various 

authors. Literature reports many attempts to develop a simple yet reliable analytical approach 

to vortex chamber cold hydrodynamics, but none could provide a systematic and tractable 

2D method that considered the whole solids bed and accounted for key quantities like solids 

azimuthal velocity, inner bed edge radius, and void fraction. The proposed model is based on 

angular momentum balances over the solids bed, from the gas inlet slits to the inner bed edge 

region, while considering the gas flow and solids bed motion as a biphasic flow. Elaborating 

upon results from previous authors, important hydrodynamic parameters were introduced, 

such as wall-bed drag coefficients for the outer wall and end walls 𝐶𝑓,𝑜𝑤 , 𝐶𝑓,𝑒𝑤 , and the gas 

injection expansion factor 𝑘, along with some insights into their inferred correlations to 

relevant flow variables and operation parameters. Furthermore, a method to close the 

proposed non-linear algebraic equations was developed based on well-known gas-solid drag 

equations, highlighting the applicability of Ergun’s model and Gibilaro’s model in a 

simplified radial force balance on the solids bed. Finally, the model culminated in the novel 

definition of angular momentum resistances that describe the influence of the three most 

essential solids bed boundaries: the gas inlets, the outer wall, and the end walls, with their 

respective analogs for gas-only GVU flows. 

The model was validated with three independent sets of batch operation GSVR data for 1g-

Geldart B-type and D-type particles, out of which two datasets were experiment-based, and 

one was CFD-based. Caution was had regarding how flow variables were measured for each 

dataset and input into the model, most notably, the inner bed edge radius for each condition. 

Parity plots and average solids azimuthal velocity vs. gas injection velocity plots were 

presented for relevant subsets of each dataset, with particular attention to the merged wall-

bed drag coefficient’s sensitivity to changes in gas injection velocity, solids loading, particle 

diameter, particle density, and chamber radius. The results were significant enough to 

ascertain the independence of 𝐶𝑓  to the gas injection velocity in the studied operational range, 

more data is needed to gauge its dependence on other operational parameters. Still, qualitative 



monotonic dependencies could be constructed for most of them, all of which agree with 

known research on vortex chamber hydrodynamics. 

In conclusion, the proposed model predicted a vast quantity of one-on-one/ceteris paribus 

correlations between operational parameters and three key flow variables, relationships that 

make physical and mathematical sense and strongly match experimental and CFD-based 

vortex chamber literature. This concise and comprehensive quality of the model, along with 

its capability to predict end wall braking effects being one order of magnitude greater than 

outer wall and gas injection braking effects, make the angular momentum model a useful tool 

to predict vortex chamber performance, analyze and compare different vortex chamber 

typologies and improvement opportunities to vortex chamber operation, and potentially aid 

in future scale-up endeavors with minimal uncertainty and computational complexity. 
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