toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jacquet, Q.; Perez, A.; Batuk, D.; Van Tendeloo, G.; Rousse, G.; Tarascon, J.-M. url  doi
openurl 
  Title The Li3RuyNb1-yO4 (0 ≤y≤ 1) System: Structural Diversity and Li Insertion and Extraction Capabilities Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 12 Pages 5331-5343  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Searching for novel high-capacity electrode materials combining cationic and anionic redox processes is an ever-growing activity within the field of Li-ion batteries. In this respect, we report on the exploration of the Li3RuyNb1-yO4 (O <= y <= 1) system with an O/M ratio of 4 to maximize the number of oxygen lone pairs, responsible for the anionic redox. We show that this system presents a very rich crystal chemistry with the existence of four structural types, which derive from the rocksalt structure but differ in their cationic arrangement, creating either zigzag, helical, jagged chains or clusters. From an electrochemical standpoint, these compounds are active on reduction via a classical cationic insertion process. The oxidation process is more complex, because of the instability of the delithiated phase. Our results promote the use of the rich Li3MO4 family as a viable platform for a better understanding of the relationships between structure and anionic redox activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000404493100036 Publication Date 2017-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 17 Open Access Not_Open_Access  
  Notes The authors thank Paul Pearce, Alexis Grimaud, Matthieu Saubanere, and Marie-Liesse Doublet for fruitful discussions, Vivian Nassif for her help in neutron diffraction experiment at the D1B diffractometer at ILL, and Dominique Foix for XPS analysis. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Q.J. thanks the ANR “Deli-Redox” for Ph.D. funding. J.-M.T. and D.B. acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC Grant -Project 670116-ARPEMA. Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:147506 Serial 4776  
Permanent link to this record
 

 
Author Niu, H.; Pitcher, M.J.; Corkett, A.J.; Ling, S.; Mandal, P.; Zanella, M.; Dawson, K.; Stamenov, P.; Batuk, D.; Abakumov, A.M.; Bull, C.L.; Smith, R.I.; Murray, C.A.; Day, S.J.; Slater, B.; Cora, F.; Claridge, J.B.; Rosseinsky, M.J. url  doi
openurl 
  Title Room Temperature Magnetically Ordered Polar Corundum GaFeO3 Displaying Magnetoelectric Coupling Type A1 Journal article
  Year 2017 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 139 Issue 4 Pages 1520-1531  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The polar corundum structure type offers a route to new room temperature multiferroic materials, as the partial LiNbO3-type cation ordering that breaks inversion symmetry may be combined with long-range magnetic ordering of high spin d(5) cations above room temperature in the AFeO(3) system. We report the synthesis of a polar corundum GaFeO3 by a high-pressure, high-temperature route and demonstrate that its polarity arises from partial LiNbO3 -type cation ordering by complementary use of neutron, X-ray, and electron diffraction methods. In situ neutron diffraction shows that the polar corundum forms directly from AlFeO3-type GaFeO3 under the synthesis conditions. The A(3+)/Fe3+ cations are shown to be more ordered in polar corundum GaFeO3 than in isostructural ScFeO3. This is explained by DFT calculations which indicate that the extent of ordering is dependent on the configurational entropy available to each system at the very different synthesis temperatures required to form their corundum structures. Polar corundum GaFeO3 exhibits weak ferromagnetism at room temperature that arises from its Fe2O3-like magnetic ordering, which persists to a temperature of 408 K. We demonstrate that the polarity and magnetization are coupled in this system with a measured linear magnetoelectric coupling coefficient of 0.057 ps/m. Such coupling is a prerequisite for potential applications of polar corundum materials in multiferroic/magnetoelectric devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000393355600034 Publication Date 2016-12-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 12 Open Access OpenAccess  
  Notes This work was funded by the EPSRC under EP/N004884. We thank the STFC for provision of beam time at ISIS and Diamond Light Source. We thank the Materials Chemistry Consortium (EPSRC, EP/L000202) for access to computer time on the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). A.M.A. is grateful to the Russian Science Foundation (Grant 14-13-00680) for financial support. MJ.R is a Royal Society Research Professor. We wish to thank Dr. Ming Li (University of Nottingham, UK) for helpful discussion and advice. Original data is available at the University of Liverpool's DataCat repository at DOI: 10.17638/datacat.liverpool.ac.uk/235. The supporting crystallographic information file may also be obtained from FIZ Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (e-mail: crysdata@fiz-karlsruhe.de), on quoting the deposition number CSD-432419. Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @c:irua:147507 Serial 4777  
Permanent link to this record
 

 
Author Wang, W.; Kim, H.-H.; Van Laer, K.; Bogaerts, A. pdf  url
doi  openurl
  Title Streamer propagation in a packed bed plasma reactor for plasma catalysis applications Type A1 Journal article
  Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 334 Issue Pages 2467-2479  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A packed bed dielectric barrier discharge (DBD) is widely used for plasma catalysis applications, but the exact plasma characteristics in between the packing beads are far from understood. Therefore, we study here these plasma characteristics by means of fluid modelling and experimental observations using ICCD imaging, for packing materials with different dielectric constants. Our study reveals that a packed bed DBD reactor in dry air at atmospheric pressure may show three types of discharges, i.e. positive restrikes, filamentary microdischarges, which can also be localized between two packing beads, and surface discharges (so-called surface ionization

waves). Restrikes between the dielectric surfaces result in the formation of filamentary microdischarges, while surface charging creates electric field components parallel to the dielectric surfaces, leading to the formation of surface discharges. A transition in discharge mode occurs from surface discharges to local filamentary discharges between the packing beads when the dielectric constant of the packing rises from 5 to 1000. This may have implications for the efficiency of plasma catalytic gas treatment, because the catalyst activation may be limited by constraining the discharge to the contact points of the beads. The production of reactive species occurs most in the positive restrikes, the surface discharges and the local microdischarges in between the beads, and is less significant in the longer filamentary microdischarges. The faster streamer propagation and discharge development with higher dielectric constant of the packing beads leads to a faster production of reactive species. This study is of great interest for plasma catalysis, where packing beads with different dielectric constants are often used as supports for the catalytic materials. It allows us to better understand how different packing materials can influence the performance of packed bed plasma reactors for environmental applications.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000418533400246 Publication Date 2017-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 36 Open Access Not_Open_Access: Available from 10.01.2020  
  Notes We acknowledge financial support from the Fund for Scientific Research Flanders (FWO) (grant nos G.0217.14 N, G.0254.14 N and G.0383.16 N), the TOP-BOF project of the University of Antwerp, the European Marie Skłodowska-Curie Individual Fellowship “GlidArc” within Horizon2020 (Grant No. 657304) and the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders). This research was carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions – Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb.ac.be/), and supported by the Belgian Science Policy Office (BELSPO). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:147864 Serial 4800  
Permanent link to this record
 

 
Author Heijkers, S.; Bogaerts, A. pdf  url
doi  openurl
  Title CO2Conversion in a Gliding Arc Plasmatron: Elucidating the Chemistry through Kinetic Modeling Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 41 Pages 22644-22655  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract By means of chemical kinetics modeling, it is possible to elucidate the main dissociation mechanisms of CO2 in a gliding arc plasmatron (GAP). We obtain good agreement between the calculated and experimental conversions and energy efficiencies, indicating that the model can indeed be used to study the underlying mechanisms. The calculations predict that vibration-induced dissociation is the main dissociation mechanism of CO2, but it occurs mainly from the lowest vibrational levels because of fast thermalization of the vibrational distribution. Based on these findings, we propose ideas for improving the performance of the GAP, but testing of these ideas in the simulations reveals that they do not always lead to significant enhancement, because of other side effects, thus illustrating the complexity of the process. Nevertheless, the model allows more insight into the underlying mechanisms to be obtained and limitations to be identified.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000413617900007 Publication Date 2017-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 6 Open Access OpenAccess  
  Notes Federaal Wetenschapsbeleid, IAP/7 ; Fonds Wetenschappelijk Onderzoek, G.0383.16N ; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:147436 Serial 4801  
Permanent link to this record
 

 
Author Winckelmans, N.; Altantzis, T.; Grzelczak, M.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Bals, S. url  doi
openurl 
  Title Multimode Electron Tomography as a Tool to Characterize the Internal Structure and Morphology of Gold Nanoparticles Type A1 Journal article
  Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 122 Issue 122 Pages 13522-13528  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Three dimensional (3D) characterization of structural defects in nanoparticles by transmission electron microscopy is far from straightforward. We propose the use of a dose-efficient approach, so-called multimode tomography, during which tilt series of low and high angle annular dark field scanning transmission electron microscopy projection images are acquired simultaneously. In this manner, not only reliable information can be obtained concerning the shape of the nanoparticles, but also the twin planes can be clearly visualized in 3D. As an example, we demonstrate the application of this approach to identify the position of the seeds with respect to the twinning planes in anisotropic gold nanoparticles synthesized using a seed mediated growth approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000437811500036 Publication Date 2018-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 23 Open Access OpenAccess  
  Notes S.B. and N.W. acknowledge funding from the European Research Council under the Seventh Framework Program (FP7), ERC Grant No. 335078 COLOURATOM. S.B. and T.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0369.15N and G.0218.14N) and a postdoctoral research grant to T.A. L.M.L.-M. and M.G. acknowledge funding from the Spanish Ministerio de Economía y Competitividad (grant MAT2013-46101-R). L.M.L.-M. and S.B. acknowledge funding from the European Commission (grant EUSMI 731019). (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 4.536  
  Call Number EMAT @ emat @c:irua:148164UA @ admin @ c:irua:148164 Serial 4807  
Permanent link to this record
 

 
Author Gorbanev, Y.; Verlackt, C.C.W.; Tinck, S.; Tuenter, E.; Foubert, K.; Cos, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Combining experimental and modelling approaches to study the sources of reactive species induced in water by the COST RF plasma jet Type A1 Journal article
  Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 20 Issue 4 Pages 2797-2808  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The vast biomedical potential of cold atmospheric pressure plasmas (CAPs) is governed by the formation of reactive species. These biologically active species are formed upon the interaction of CAPs with the surroundings. In biological milieu, water plays an essential role. The development of biomedical CAPs thus requires understanding of the sources of the reactive species in aqueous media exposed to the plasma. This is especially important in case of the COST RF plasma jet, which is developed as a reference microplasma system. In this work, we investigated the formation of the OH radicals, H atoms and H2O2 in aqueous solutions exposed to the COST plasma jet. This was done by combining experimental and modelling approaches. The liquid phase species were analysed using UV-Vis spectroscopy and spin trapping with hydrogen isotopes and electron paramagnetic resonance (EPR) spectroscopy. The discrimination between the species formed from the liquid phase and the gas phase molecules was performed by EPR and 1H-NMR analyses of the liquid samples. The concentrations of the reactive species in the gas phase plasma were obtained using a zero-dimensional (0D) chemical kinetics computational model. A three-dimensional (3D) fluid dynamics model was developed to provide information on the induced humidity in the plasma effluent. The comparison of the experimentally obtained trends for the formation of the species as a function of the feed gas and effluent humidity with the modelling results suggest that all reactive species detected in our system are mostly formed in the gas phase plasma inside the COST jet, with minor amounts arising from the plasma effluent humidity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000423505500066 Publication Date 2018-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 23 Open Access OpenAccess  
  Notes We are grateful to Volker Schulz-von der Gathen (Experimental Physics II: Application Oriented Plasma Physics, Ruhr-Universita¨t Bochum, Germany) for providing the COST RF plasma jet. We thank our colleagues at the University of Antwerp: Gilles Van Loon (Mechanical Workshop), Karen Leyssens (Research group PLASMANT), and Sylvia Dewilde (Department of Biomedical Sciences) for their help with the equipment. This work was funded by the European Marie Sklodowska-Curie Individual Fellowship ‘LTPAM’ within Horizon2020 (grant no. 657304). Stefan Tinck thanks the Fund for Scientific Research – Flanders (FWO) for supporting his work (grant no. 0880.212.840). Approved Most recent IF: 4.123  
  Call Number PLASMANT @ plasmant @c:irua:148365 Serial 4808  
Permanent link to this record
 

 
Author Yang, Z.; Altantzis, T.; Bals, S.; Tendeloo, G.V.; Pileni, M.-P. url  doi
openurl 
  Title Do Binary Supracrystals Enhance the Crystal Stability? Type A1 Journal article
  Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 122 Issue 122 Pages 13515-13521  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We study the oxygen thermal stability of two binary

systems. The larger particles are magnetic amorphous Co (7.2 nm) or

Fe3O4 (7.5 nm) nanocrystals, whereas the smaller ones (3.7 nm) are

Au nanocrystals. The nanocrystal ordering as well as the choice of the

magnetic nanoparticles very much influence the stability of the binary

system. A perfect crystalline structure is obtained with the Fe3O4/Au

binary supracrystals. For the Co/Au binary system, oxidation of Co

results in the chemical transformation from Co to CoO, where the size

of the amorphous Co nanoparticles increases from 7.2 to 9.8 nm in

diameter. During the volume expansion of the Co nanoparticles, Au

nanoparticles within the binary assemblies coalesce and are at the

origin of the instability of the binary nanoparticle supracrystals. On the

other hand, for the Fe3O4/Au binary system, the oxidation of Fe3O4 to

γ-Fe2O3 does not lead to a size change of the nanoparticles, which

maintains the stability of the binary nanoparticle supracrystals. A similar behavior is observed for an AlB2-type Co−Ag binary

system: The crystalline structure is maintained, whereas in disordered assemblies, coalescence of Ag nanocrystals is observed.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000437811500035 Publication Date 2018-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 5 Open Access OpenAccess  
  Notes The research leading to these results has been supported by an Advanced Grant of the European Research Council under Grant 267129. The authors appreciate financial support by the European Union under the Framework 7 program under a contract for an Integrated Infrastructure Initiative (Reference No. 262348 ESMI). S.B. acknowledges funding from ERC Starting Grant COLOURATOMS (335078). T.A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO, Belgium). (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ecas_sara Approved Most recent IF: 4.536  
  Call Number EMAT @ emat @c:irua:149388UA @ admin @ c:irua:149388 Serial 4812  
Permanent link to this record
 

 
Author Verlackt, C.C.W.; Van Boxem, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Transport and accumulation of plasma generated species in aqueous solution Type A1 Journal article
  Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 20 Issue 10 Pages 6845-6859  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The interaction between cold atmospheric pressure plasma and liquids is receiving increasing attention for various applications. In particular, the use of plasma-treated liquids (PTL) for biomedical applications is of growing importance, in particular for sterilization and cancer treatment. However, insight into the

underlying mechanisms of plasma–liquid interactions is still scarce. Here, we present a 2D fluid dynamics model for the interaction between a plasma jet and liquid water. Our results indicate that the formed reactive species originate from either the gas phase (with further solvation) or are formed at the liquid interface. A clear increase in the aqueous density of H2O2, HNO2/NO2- and NO3-

is observed as a function of time, while the densities of O3, HO2/O2- and ONOOH/ONOO- are found to quickly reach a maximum due to chemical reactions in solution. The trends observed in our model correlate well with experimental observations from the literature.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000429286100009 Publication Date 2018-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 35 Open Access OpenAccess  
  Notes The authors thank Petr Luke`s (Institute of Plasma Physics AS CR, Czech Republic) and Yury Gorbanev (UAntwerp, group PLASMANT) for the fruitful discussions regarding the chemistry in the model and the plasma–liquid interactions. Approved Most recent IF: 4.123  
  Call Number PLASMANT @ plasmant @c:irua:149557 Serial 4908  
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Claes, N.; Solís, D.M.; Taboada, J.M.; Bals, S.; Liz-Marzán, L.M.; Grzelczak, M. pdf  url
doi  openurl
  Title Reversible Clustering of Gold Nanoparticles under Confinement Type A1 Journal article
  Year 2018 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 57 Issue 57 Pages 3183-3186  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A limiting factor of solvent-induced nanoparticle self-assembly is the need for constant sample dilution in assembly/disassembly cycles. Changes in the nanoparticle concentration alter the kinetics of the subsequent assembly process, limiting optical signal recovery. Herein, we show that upon confining hydrophobic nanoparticles in permeable silica nanocapsules, the number of nanoparticles participating in cyclic aggregation remains constant despite bulk changes in solution, leading to highly reproducible plasmon band shifts at different solvent compositions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000426759900031 Publication Date 2018-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 53 Open Access OpenAccess  
  Notes L.M.L.-M. and M.G. acknowledge funding from the Spanish MINECO (Grant #MAT2013-46101R). N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). D.M.S., and J.M.T, acknowledge funding from the European Regional Development Fund (ERDF) and the Spanish MINECO (Projects TEC2017-85376-C2-1-R, TEC2017-85376-C2-2-R), and from the ERDF and the Galician Regional Government under agreement for funding the Atlantic Research Center for Information and Communication Technologies (AtlantTIC). (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 11.994  
  Call Number EMAT @ emat @c:irua:149558UA @ admin @ c:irua:149558 Serial 4911  
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C. pdf  url
doi  openurl
  Title Modelling molecular adsorption on charged or polarized surfaces: a critical flaw in common approaches Type A1 Journal article
  Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 20 Issue 13 Pages 8456-8459  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A number of recent computational material design studies based on density functional theory (DFT) calculations have put forward a new class of materials with electrically switchable chemical characteristics that can be exploited in the development of tunable gas storage and electrocatalytic applications. We find systematic flaws in almost every computational study of gas adsorption on polarized or charged surfaces, stemming from an improper and unreproducible treatment of periodicity, leading to very large errors of up to 3 eV in some cases. Two simple corrective procedures that lead to consistent results are proposed, constituting a crucial course correction to the research in the field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000428779700007 Publication Date 2018-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 8 Open Access OpenAccess  
  Notes K. M. B. is funded as PhD fellow (aspirant) of the FWO-Flanders (Research Foundation – Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government – department EWI. Approved Most recent IF: 4.123  
  Call Number PLASMANT @ plasmant @c:irua:150357 Serial 4916  
Permanent link to this record
 

 
Author Xia, C.; Winckelmans, N.; Prins, P.T.; Bals, S.; Gerritsen, H.C.; de Mello Donegá, C. url  doi
openurl 
  Title Near-Infrared-Emitting CuInS2/ZnS Dot-in-Rod Colloidal Heteronanorods by Seeded Growth Type A1 Journal article
  Year 2018 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 140 Issue 140 Pages 5755-5763  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Synthesis protocols for anisotropic CuInX2 (X = S, Se, Te)-based heteronanocrystals (HNCs) are scarce due to the difficulty in balancing the reactivities of multiple precursors and the high solid-state diffusion rates of the cations involved in the CuInX2 lattice. In this work, we report a multistep seeded growth synthesis protocol that yields colloidal wurtzite CuInS2/ZnS dot core/rod shell HNCs with photoluminescence in the NIR (∼800 nm). The wurtzite CuInS2 NCs used as seeds are obtained by topotactic partial Cu+ for In3+ cation exchange in template Cu2–xS NCs. The seed NCs are injected in a hot solution of zinc oleate and hexadecylamine in octadecene, 20 s after the injection of sulfur in octadecene. This results in heteroepitaxial growth of wurtzite ZnS primarily on the Sulfur-terminated polar facet of the CuInS2 seed NCs, the other facets being overcoated only by a thin (∼1 monolayer) shell. The fast (∼21 nm/min) asymmetric axial growth of the nanorod proceeds by addition of [ZnS] monomer units, so that the polarity of the terminal (002) facet is preserved throughout the growth. The delayed injection of the CuInS2 seed NCs is crucial to allow the concentration of [ZnS] monomers to build up, thereby maximizing the anisotropic heteroepitaxial growth rates while minimizing the rates of competing processes (etching, cation exchange, alloying). Nevertheless, a mild etching still occurred, likely prior to the onset of heteroepitaxial overgrowth, shrinking the core size from 5.5 to ∼4 nm. The insights provided by this work open up new possibilities in designing multifunctional Cu-chalcogenide based colloidal heteronanocrystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000431600000016 Publication Date 2018-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 43 Open Access OpenAccess  
  Notes Chenghui Xia acknowledges China Scholarship Council (CSC) for financial support (NO. 201406330055). S.B and N.W. acknowledge funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under Grant Number ECHO.712.014.001. The authors thank Xiaobin Xie and Da Wang for some TEM measurements, Donglong Fu for XRD measurements, Christina H. M. van Oversteeg for ICP-OES measurements, and Chun-Che Lin for suggestions regarding the synthesis. ECAS_Sara (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @c:irua:150362UA @ admin @ c:irua:150362 Serial 4917  
Permanent link to this record
 

 
Author Heyne, M.H.; de Marneffe, J.-F.; Nuytten, T.; Meersschaut, J.; Conard, T.; Caymax, M.; Radu, I.; Delabie, A.; Neyts, E.C.; De Gendt, S. pdf  url
doi  openurl
  Title The conversion mechanism of amorphous silicon to stoichiometric WS2 Type A1 Journal article
  Year 2018 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 6 Issue 15 Pages 4122-4130  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The deposition of ultra-thin tungsten films and their related 2D chalcogen compounds on large area dielectric substrates by gas phase reactions is challenging. The lack of nucleation sites complicates the adsorption of W-related precursors and subsequent sulfurization usually requires high temperatures. We propose here a technique in which a thin solid amorphous silicon film is used as reductant for the gas phase precursor WF6 leading to the conversion to metallic W. The selectivity of the W conversion towards the underlying dielectric surfaces is demonstrated. The role of the Si surface preparation, the conversion temperature, and Si thickness on the formation process is investigated. Further, the in situ conversion of the metallic tungsten into thin stoichiometric WS2 is achieved by a cyclic approach based on WF6 and H2S pulses at the moderate temperature of 450 1C, which is much lower than usual oxide sulfurization processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000430538000036 Publication Date 2018-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 4 Open Access OpenAccess  
  Notes This work was supported throughout a strategic fundamental research grant for M. H. by the agency Flanders innovation & entrepreneurship (VLAIO). Approved Most recent IF: 5.256  
  Call Number PLASMANT @ plasmant @c:irua:150968 Serial 4921  
Permanent link to this record
 

 
Author Wang, W.; Snoeckx, R.; Zhang, X.; Cha, M.S.; Bogaerts, A. pdf  url
doi  openurl
  Title Modeling Plasma-based CO2and CH4Conversion in Mixtures with N2, O2, and H2O: The Bigger Plasma Chemistry Picture Type A1 Journal article
  Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 122 Issue 16 Pages 8704-8723  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Because of the unique properties of plasma technology, its use in gas conversion applications is gaining significant interest around the globe. Plasma-based CO2 and CH4 conversion has become a major research area. Many investigations have already been performed regarding the single-component gases, that is, CO2 splitting and CH4 reforming, as well as for two-component mixtures, that is, dry reforming of methane

(CO2/CH4), partial oxidation of methane (CH4/O2), artificial photosynthesis (CO2/H2O), CO2 hydrogenation (CO2/H2), and even first steps toward the influence of N2 impurities have been taken, that is, CO2/N2 and CH4/N2. In this Feature Article we briefly discuss the advances made in literature for these different steps from a plasma chemistry modeling point of view. Subsequently, we present a comprehensive plasma chemistry set, combining the knowledge gathered in this field so far and supported with extensive experimental data. This set can be used for chemical kinetics plasma modeling for all possible combinations of CO2, CH4, N2, O2, and H2O to investigate the bigger picture of the underlying plasmachemical pathways for these mixtures in a dielectric barrier discharge plasma. This is extremely valuable

for the optimization of existing plasma-based CO2 conversion and CH4 reforming processes as well as for investigating the influence of N2, O2, and H2O on these processes and even to support plasma-based multireforming processes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000431151200002 Publication Date 2018-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 28 Open Access OpenAccess  
  Notes Federaal Wetenschapsbeleid, IAP/7 ; King Abdullah University of Science and Technology; H2020 Marie Sklodowska-Curie Actions, 657304 ; Fonds Wetenschappelijk Onderzoek, G.0217.14N G.0383.16N G.0254.14N ; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:150969 Serial 4922  
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Van Alphen, S.; Michielsen, I.; Meynen, V.; Cool, P.; Bogaerts, A. pdf  url
doi  openurl
  Title A packed-bed DBD micro plasma reactor for CO 2 dissociation: Does size matter? Type A1 Journal article
  Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 348 Issue Pages 557-568  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract DBD plasma reactors are of great interest for environmental and energy applications, such as CO2 conversion, but they suffer from limited conversion and especially energy efficiency. The introduction of packing materials has been a popular subject of investigation in order to increase the reactor performance. Reducing the discharge gap of the reactor below one millimetre can enhance the plasma performance as well. In this work, we combine both effects and use a packed-bed DBD micro plasma reactor to investigate the influence of gap size reduction, in combination with a packing material, on the conversion and efficiency of CO2 dissociation. Packing materials used in this work were SiO2, ZrO2, and Al2O3 spheres as well as glass wool. The results are compared to a regular size reactor as a benchmark. Reducing the discharge gap can greatly increase the CO2 conversion, although at a lower energy efficiency. Adding a packing material further increases the conversion when keeping a constant residence time, but is greatly dependent on the material composition, gap and sphere size used. Maximum conversions of 50–55% are obtained for very long residence times (30 s and higher) in an empty reactor or with certain packing material combinations, suggesting a balance in CO2 dissociation and recombination reactions. The maximum energy efficiency achieved is 4.3%, but this is for the regular sized reactor at a short residence time (7.5 s). Electrical characterization is performed to reveal some trends in the electrical behaviour of the plasma upon reduction of the discharge gap and addition of a packing material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000434467000055 Publication Date 2018-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 22 Open Access Not_Open_Access: Available from 03.05.2020  
  Notes We acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund for Scientific Research (FWO; Grant Number: G.0254.14N) and an IOF-SBO (SynCO2Chem) project from the University of Antwerp. Approved Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:151238 Serial 4956  
Permanent link to this record
 

 
Author Pearce, P.E.; Rousse, G.; Karakulina, O.M.; Hadermann, J.; Van Tendeloo, G.; Foix, D.; Fauth, F.; Abakumov, A.M.; Tarascon, J.-M. pdf  url
doi  openurl
  Title β-Na1.7IrO3: A Tridimensional Na-Ion Insertion Material with a Redox Active Oxygen Network Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue 10 Pages 3285-3293  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The revival of the Na-ion battery concept has prompted an intense search for new high capacity Na-based positive electrodes. Recently, emphasis has been placed on manipulating Na-based layered compounds to trigger the participation of the anionic network. We further explored this direction and show the feasibility of achieving anionic-redox activity in three-dimensional Na-based compounds. A new 3D β-Na1.7IrO3 phase was synthesized in a two-step process, which involves first the electrochemical removal of Li from β-Li2IrO3 to produce β-IrO3, which is subsequently reduced by electrochemical Na insertion. We show that β-Na1.7IrO3 can reversibly uptake nearly 1.3 Na+ per formula unit through an uneven voltage profile characterized by the presence of four plateaus related to structural transitions. Surprisingly, the β-Na1.7IrO3 phase was found to be stable up to 600 °C, while it could not be directly synthesized via conventional synthetic methods. Although these Na-based iridate phases are of limited practical interest, they help to understand how introducing highly polarizable guest ions (Na+) into host rocksalt-derived oxide structures affects the anionic redox mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000433403800014 Publication Date 2018-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 6 Open Access OpenAccess  
  Notes The authors thank A. Perez for fruitful discussions and his valuable help in synchrotron XRD experiment and Matthieu Courty for carrying out the DSC measurements. The authors also greatly thank Matthieu Saubanère and Marie-Liesse Doublet for valuable discussions on theoretical aspects of this work. This work is based on experiments performed on the Materials Science and Powder Diffraction Beamline at ALBA synchrotron (Proposal 2016091814), Cerdanyola del Vallès, E- 08290 Barcelona, Spain. J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant- Project 670116-ARPEMA. G.R. acknowledges funding from ANR DeliRedox. O.M.K., J.H., and A.M.A. are grateful to FWO Vlaanderen for financial support under Grant G040116N. Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:152048 Serial 4996  
Permanent link to this record
 

 
Author Huygh, S.; Bogaerts, A.; Bal, K.M.; Neyts, E.C. pdf  url
doi  openurl
  Title High Coke Resistance of a TiO2Anatase (001) Catalyst Surface during Dry Reforming of Methane Type A1 Journal Article
  Year 2018 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 122 Issue 17 Pages 9389-9396  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract The resistance of a TiO2 anatase (001) surface to coke formation was studied in the context of dry reforming of methane using density functional theory (DFT) calculations. As carbon atoms act as precursors for coke formation, the resistance to coke formation can be measured by the carbon coverage of the surface. This is related to the stability of different CHx (x = 0−3) species and their rate of hydrogenation and dehydrogenation on the TiO2 surface. Therefore, we studied the reaction mechanisms and their corresponding rates as a function of the temperature for the dehydrogenation of the species on the surface. We found that the stabilities of C and CH are significantly lower than those of CH3 and CH2. The hydrogenation rates of the different species are significantly higher than the dehydrogenation rates in a temperature range of 300−1000 K. Furthermore, we found that dehydrogenation of CH3, CH2, and CH will only occur at appreciable rates starting from 600, 900, and 900 K, respectively. On the basis of these results, it is clear that the anatase (001) surface has a high coke resistance, and it is thus not likely that the surface will become poisoned by coke during dry reforming of methane. As the rate limiting step in dry reforming is the dissociative adsorption of CH4, we studied an alternative approach to thermal catalysis. We found that the temperature threshold for dry reforming is at least 700 K. This threshold temperature may be lowered by the use of plasma-catalysis, where the appreciable rates of adsorption of plasma-generated CHx radicals result in bypassing the rate limiting step of the reaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000431723700014 Publication Date 2018-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 1 Open Access OpenAccess  
  Notes Federaal Wetenschapsbeleid, IAP/7 ; Fonds Wetenschappelijk Onderzoek, G.0217.14N ; Onderzoeksfonds, Universiteit Antwerpen, 32249 ; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:151529c:irua:152816 Serial 5000  
Permanent link to this record
 

 
Author Peters, J.L.; Altantzis, T.; Lobato, I.; Jazi, M.A.; van Overbeek, C.; Bals, S.; Vanmaekelbergh, D.; Sinai, S.B. url  doi
openurl 
  Title Mono- and Multilayer Silicene-Type Honeycomb Lattices by Oriented Attachment of PbSe Nanocrystals: Synthesis, Structural Characterization, and Analysis of the Disorder Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue 30 Pages 4831-4837  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystal (NC) solids are commonly prepared from nonpolar organic NC suspensions. In many cases, the capping on the NC surface is preserved and forms a barrier between the NCs. More recently, superstructures with crystalline connections between the NCs, implying the removal of the capping, have been reported, too. Here, we present large-scale uniform superstructures of attached PbSe NCs with a silicene-type honeycomb geometry, resulting from solvent evaporation under nearly reversible conditions. We also prepared multilayered silicene honeycomb structures by using larger amounts of PbSe NCs. We show that the two-dimensional silicene superstructures can be seen as a crystallographic slice from a 3-D simple cubic structure. We describe the disorder in the silicene lattices in terms of the nanocrystals position and their atomic alignment. The silicene honeycomb sheets are large enough to be used in transistors and optoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000440105500042 Publication Date 2018-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 33 Open Access OpenAccess  
  Notes The authors acknowledge funding from the European Commission (Grant EUSMI 731019). S.B. acknowledges funding from the European Research Council (Grant 335078 COLOURATOM). T.A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO). The authors acknowledge financial support from the European Commission under the Horizon 2020 Programme by means of the Grant Agreement No. 731019 EUSMI. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ecas_sara Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:152997UA @ admin @ c:irua:152997 Serial 5011  
Permanent link to this record
 

 
Author Barreca, D.; Gri, F.; Gasparotto, A.; Altantzis, T.; Gombac, V.; Fornasiero, P.; Maccato, C. url  doi
openurl 
  Title Insights into the Plasma-Assisted Fabrication and Nanoscopic Investigation of Tailored MnO2Nanomaterials Type A1 Journal Article
  Year 2018 Publication Inorganic Chemistry Abbreviated Journal Inorg Chem  
  Volume 57 Issue 23 Pages 14564-14573  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Among transition metal oxides, MnO2 is of considerable importance for various technological end-uses,from heterogeneous catalysis to gas sensing, owing to its

structural flexibility and unique properties at the nanoscale. In this work, we demonstrate the successful fabrication of supported MnO2 nanomaterials by a catalyst-free, plasmaassisted process starting from a fluorinated manganese(II)

molecular source in Ar/O2 plasmas. A thorough multitechnique characterization aimed at the systematic investigation of material structure, chemical composition, and

morphology revealed the formation of F-doped, oxygendeficient, MnO2-based nanomaterials, with a fluorine content tunable as a function of growth temperature (TG). Whereas phase-pure β-MnO2 was obtained for 100 °C ≤ TG ≤ 300 °C, the formation of mixed phase MnO2 + Mn2O3 nanosystems took place at 400 °C. In addition, the system nano-organization could be finely tailored, resulting in a controllable evolution from wheat-ear columnar arrays to high aspect ratio pointed-tip nanorod assemblies. Concomitantly, magnetic force microscopy analyses suggested the formation of spin domains with features dependent on material morphology. Preliminary tests in Vislight activated photocatalytic degradation of rhodamine B aqueous solutions pave the way to possible applications of the target materials in wastewater purification.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000452344400016 Publication Date 2018-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited Open Access Not_Open_Access  
  Notes The present work was financially supported by Padova University DOR 2016−2018 and P-DiSC #03BIRD2016- UNIPD projects. T.A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO). Thanks are also due to Prof. Sara Bals (EMAT, University of Antwerp, Belgium) and to Dr. Giorgio Carraro (Department of Chemical Sciences, Padova University, Italy) for valuable support and experimental assistance. Approved Most recent IF: 4.857  
  Call Number EMAT @ emat @c:irua:156245 Serial 5147  
Permanent link to this record
 

 
Author Hasanli, N.; Gauquelin, N.; Verbeeck, J.; Hadermann, J.; Hayward, M.A. url  doi
openurl 
  Title Small-moment paramagnetism and extensive twinning in the topochemically reduced phase Sr2ReLiO5.5 Type A1 Journal article
  Year 2018 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 47 Issue 44 Pages 15783-15790  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Reaction of the cation-ordered double perovskite Sr2ReLiO6 with dilute hydrogen at 475 degrees C leads to the topochemical deintercalation of oxide ions from the host lattice and the formation of a phase of composition Sr2ReLiO5.5, as confirmed by thermogravimetric and EELS data. A combination of neutron and electron diffraction data reveals the reduction process converts the -Sr2O2-ReLiO4-Sr2O2-ReLiO4- stacking sequence of the parent phase into a -Sr2O2-ReLiO3-Sr2O2-ReLiO4-, partially anion-vacant ordered sequence. Furthermore a combination of electron diffraction and imaging reveals Sr2ReLiO5.5 exhibits extensive twinning – a feature which can be attributed to the large, anisotropic volume expansion of the material on reduction. Magnetisation data reveal a strongly reduced moment of (eff) = 0.505(B) for the d(1) Re6+ centres in the phase, suggesting there remains a large orbital component to the magnetism of the rhenium centres, despite their location in low symmetry coordination environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000450208000019 Publication Date 2018-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.029 Times cited Open Access Not_Open_Access  
  Notes Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award “Oxford Solid State Chemistry BAG to probe composition-structure-property relationships in solids” (EE13284). Experiments at the ISIS pulsed neutron facility were supported by a beam time allocation from the STFC. NH acknowledges funding from the “State Programme on Education of Azerbaijani Youth Abroad in 2007-2015” by the Ministry of Education of Azerbaijan. J. V. and N. G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. Approved Most recent IF: 4.029  
  Call Number EMAT @ emat @c:irua:155771 Serial 5137  
Permanent link to this record
 

 
Author Zhou, Y.; Che, F.; Liu, M.; Zou, C.; Liang, Z.; De Luna, P.; Yuan, H.; Li, J.; Wang, Z.; Xie, H.; Li, H.; Chen, P.; Bladt, E.; Quintero-Bermudez, R.; Sham, T.-K.; Bals, S.; Hofkens, J.; Sinton, D.; Chen, G.; Sargent, E.H. pdf  url
doi  openurl
  Title Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons Type A1 Journal article
  Year 2018 Publication Nature chemistry Abbreviated Journal Nat Chem  
  Volume 10 Issue 10 Pages 974-980  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The electrochemical reduction of CO2 to multi-carbon products has attracted much attention because it provides an avenue to the synthesis of value-added carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the efficiency of CO2 conversion to C-2 products remains below that necessary for its implementation at scale. Modifying the local electronic structure of copper with positive valence sites has been predicted to boost conversion to C-2 products. Here, we use boron to tune the ratio of Cu delta+ to Cu-0 active sites and improve both stability and C-2-product generation. Simulations show that the ability to tune the average oxidation state of copper enables control over CO adsorption and dimerization, and makes it possible to implement a preference for the electrosynthesis of C-2 products. We report experimentally a C-2 Faradaic efficiency of 79 +/- 2% on boron-doped copper catalysts and further show that boron doping leads to catalysts that are stable for in excess of similar to 40 hours while electrochemically reducing CO2 to multi-carbon hydrocarbons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000442395200013 Publication Date 2018-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-4330; 1755-4349 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 25.87 Times cited 700 Open Access OpenAccess  
  Notes ; This work was supported financially by funding from TOTAL S.A., the Ontario Research Fund: Research Excellence Program, the Natural Sciences and Engineering Research Council of Canada, the CIFAR Bio-Inspired Solar Energy programme, a University of Toronto Connaught grant, the Ministry of Science, Natural Science Foundation of China (21471040, 21271055 and 21501035), the Innovation-Driven Plan in Central South University project (2017CX003), a project from State Key Laboratory of Powder Metallurgy in Central South University, the Thousand Youth Talents Plan of China and Hundred Youth Talents Program of Hunan and the China Scholarship Council programme. This work benefited from the soft X-ray microcharacterization beamline at CLS, sector 20BM at the APS and the Ontario Centre for the Characterisation of Advanced Materials at the University of Toronto. H.Y. acknowledges financial support from the Research Foundation-Flanders (FWO postdoctoral fellowship). C.Z. acknowledges support from the International Academic Exchange Fund for Joint PhD Students from Tianjin University. P.D.L. acknowledges financial support from the Natural Sciences and Engineering Research Council in the form of the Canada Graduate Scholarship-Doctoral award. S.B. and E.B. acknowledge financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS). The authors thank B. Zhang, N. Wang, C. T. Dinh, T. Zhuang, J. Li and Y. Zhao for fruitful discussions, as well as Y. Hu and Q. Xiao from CLS, and Z. Finfrock and M. Ward from APS for their help during the course of study. Computations were performed on the SOSCIP Consortium's Blue Gene/Q computing platform. SOSCIP is funded by the Federal Economic Development Agency of Southern Ontario, the Province of Ontario, IBM Canada, Ontario Centres of Excellence, Mitacs and 15 Ontario academic member institutions. ; ecas_sara Approved Most recent IF: 25.87  
  Call Number UA @ lucian @ c:irua:153693UA @ admin @ c:irua:153693 Serial 5091  
Permanent link to this record
 

 
Author Vermeiren, V.; Bogaerts, A. pdf  url
doi  openurl
  Title Supersonic Microwave Plasma: Potential and Limitations for Energy-Efficient CO2Conversion Type A1 Journal Article
  Year 2018 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 122 Issue 45 Pages 25869-25881  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Supersonic flows provide a high thermodynamic

nonequilibrium, which is crucial for energy-efficient conversion of

CO 2 in microwave plasmas and are therefore of great interest.

However, the effect of the flow on the chemical reactions is poorly

understood. In this work, we present a combined flow and plasma

chemical kinetics model of a microwave CO 2 plasma in a Laval

nozzle setup. The effects of the flow field on the different dissociation

and recombination mechanisms, the vibrational distribution, and the

vibrational transfer mechanism are discussed. In addition, the effect

of experimental parameters, like position of power deposition, outlet

pressure, and specific energy input, on the CO 2 conversion and

energy efficiency is examined. The short residence time of the gas in

the plasma region, the shockwave, and the maximum critical heat,

and thus power, that can be added to the flow to avoid thermal

choking are the main obstacles to reaching high energy efficiencies.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000451101400016 Publication Date 2018-11-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 5 Open Access Not_Open_Access  
  Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:155412 Serial 5070  
Permanent link to this record
 

 
Author Serrano-Sevillano, J.; Reynaud, M.; Saracibar, A.; Altantzis, T.; Bals, S.; van Tendeloo, G.; Casas-Cabanas, M. url  doi
openurl 
  Title Enhanced electrochemical performance of Li-rich cathode materials through microstructural control Type A1 Journal article
  Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 20 Issue 20 Pages 23112-23122  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The microstructural complexity of Li-rich cathode materials has so far hampered understanding the critical link between size, morphology and structural defects with both capacity and voltage fadings that this family of materials exhibits. Li2MnO3 is used here as a model material to extract reliable structure–property

relationships that can be further exploited for the development of high-performing and long-lasting Li-rich oxides. A series of samples with microstructural variability have been prepared and thoroughly characterized using the FAULTS software, which allows quantification of planar defects and extraction of

average crystallite sizes. Together with transmission electron microscopy (TEM) and density functional theory (DFT) results, the successful application of FAULTS analysis to Li2MnO3 has allowed rationalizing the synthesis conditions and identifying the individual impact of concurrent microstructural features on

both voltage and capacity fadings, a necessary step for the development of high-capacity Li-ion cathode materials with enhanced cycle life.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000445220500071 Publication Date 2018-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 36 Open Access OpenAccess  
  Notes This work was supported by the Spanish Ministerio de la Economı´a y de la Competitividad through the project IONSTORE (MINECO ref. ENE2016-81020-R). The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3). JSS and AS are grateful for computing time provided by the Spanish i2Basque Centers. MR acknowledges the Spanish State for its financial support through her post-doctoral grant Juan de la Cierva – Formacio´n (MINECO ref. FJCI-2014-19990) and her international mobility grant Jose´ Castillejos (MECD ref. CAS15/00354). S. B. acknowledges funding from the European Research Council (ERC starting grant #335078 Colouratom) and T. A. a postdoctoral grant from the Research Foundation Flanders (FWO). (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ecas_sara Approved Most recent IF: 4.123  
  Call Number EMAT @ emat @c:irua:154782UA @ admin @ c:irua:154782 Serial 5062  
Permanent link to this record
 

 
Author Fuchs, J.; Aghaei, M.; Schachel, T.D.; Sperling, M.; Bogaerts, A.; Karst, U. pdf  url
doi  openurl
  Title Impact of the Particle Diameter on Ion Cloud Formation from Gold Nanoparticles in ICPMS Type A1 Journal article
  Year 2018 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 90 Issue 17 Pages 10271-10278  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The unique capabilities of microsecond dwell time (DT) single-particle inductively coupled plasma mass spectrometry (spICPMS) were utilized to characterize the cloud of ions generated from the introduction of suspensions of gold nanoparticles (AuNPs) into the plasma. A set of narrowly distributed particles with diameters ranging from 15.4 to 100.1 nm was synthesized and characterized according to established protocols. Statistically significant numbers of the short transient spICPMS events were evaluated by using 50 μs DT for their summed intensity, maximum intensity, and duration, of which all three were found to depend on the particle diameter. The summed intensity increases from 10 to 1661 counts and the maximum intensity from 6 to 309 counts for AuNPs with diameters from 15.4 to 83.2 nm. The event duration rises from 322 to 1007 μs upon increasing AuNP diameter. These numbers represent a comprehensive set of key data points of the ion clouds generated in ICPMS from AuNPs. The extension of event duration is of high interest to appoint the maximum possible particle number concentration at which separation of consecutive events in spICPMS can still be achieved. Moreover, the combined evaluation of all above-mentioned ion cloud characteristics can explain the regularly observed prolonged single-particle events. The transport and ionization behavior of AuNPs in the ICP was also computationally modeled to gain insight into the size-dependent signal generation. The simulated data reveals that the plasma temperature, and therefore the point of ionization of the particles, is the same for all diameters. However, the maximum number density of Au+, as well as the extent of the ion cloud, depends on the particle diameter, in agreement with the experimental data, and it provides an adequate explanation for the observed ion cloud characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000444060600028 Publication Date 2018-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 5 Open Access OpenAccess  
  Notes We thank Dr. Harald Rösner from the Institute of Materials Physics of the University of Münster for the TEM imaging. Approved Most recent IF: 6.32  
  Call Number PLASMANT @ plasmant @c:irua:153651 Serial 5057  
Permanent link to this record
 

 
Author Li, K.; Liu, J.-L.; Li, X.-S.; Lian, H.-Y.; Zhu, X.; Bogaerts, A.; Zhu, A.-M. pdf  url
doi  openurl
  Title Novel power-to-syngas concept for plasma catalytic reforming coupled with water electrolysis Type A1 Journal article
  Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 353 Issue Pages 297-304  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We propose a novel Power to Synthesis Gas (P2SG) approach, composed of two high-efficiency and renewable electricity-driven units, i.e., plasma catalytic reforming (PCR) and water electrolysis (WE), to produce high quality syngas from CH4, CO2 and H2O. As WE technology is already commercial, we mainly focus on the PCR unit, consisting of gliding arc plasma and Ni-based catalyst, for oxidative dry reforming of methane. An energy efficiency of 78.9% and energy cost of 1.0 kWh/Nm3 at a CH4 conversion of 99% and a CO2 conversion of 79% are obtained. Considering an energy efficiency of 80% for WE, the P2SG system yields an overall energy efficiency of 79.3% and energy cost of 1.8 kWh/Nm3. High-quality syngas is produced without the need for posttreatment units, featuring the ideal stoichiometric number of 2, with concentration of 94.6 vol%, and a desired CO2 fraction of 1.9 vol% for methanol synthesis. The PCR unit has the advantage of fast response to adapting to fluctuation of renewable electricity, avoiding local hot spots in the catalyst bed and coking, in contrast to conventional catalytic processes. Moreover, pure O2 from the WE unit is directly utilized by the PCR unit for oxidative dry reforming of methane, and thus, no air separation unit, like in conventional processes, is required. This work demonstrates the viability of the P2SG approach for large-scale energy storage of renewable electricity via electricity-to-fuel conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000441527900029 Publication Date 2018-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 7 Open Access OpenAccess  
  Notes This project is supported by the National Natural Science Foundation of China (11705019, 11475041), the Fundamental Research Funds for the Central Universities (DUT16QY49, DUT16LK16) and the Fund for Scientific Research Flanders (FWO; grant G.0383.16N). Approved Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:153059 Serial 5049  
Permanent link to this record
 

 
Author Gorbanev, Y.; Privat-Maldonado, A.; Bogaerts, A. pdf  url
doi  openurl
  Title Analysis of Short-Lived Reactive Species in Plasma–Air–Water Systems: The Dos and the Do Nots Type A1 Journal Article
  Year 2018 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 90 Issue 22 Pages 13151-13158  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This Feature addresses the analysis of the reactive species generated by nonthermal atmospheric

pressure plasmas, which are widely employed in industrial and biomedical research, as well as first

clinical applications. We summarize the progress in detection of plasma-generated short-lived

reactive oxygen and nitrogen species in aqueous solutions, discuss the potential and limitations of

various analytical methods in plasma−liquid systems, and provide an outlook on the possible future

research goals in development of short-lived reactive species analysis methods for a general

nonspecialist audience.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000451246100002 Publication Date 2018-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 17 Open Access Not_Open_Access  
  Notes European Commission, 743151 ; This work was supported by the European Marie Sklodowska- Curie Individual Fellowship within Horizon2020 (“LTPAM”, Grant No. 743151). Approved Most recent IF: 6.32  
  Call Number PLASMANT @ plasmant @c:irua:156301 Serial 5152  
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C. pdf  url
doi  openurl
  Title Overcoming Old Scaling Relations and Establishing New Correlations in Catalytic Surface Chemistry: Combined Effect of Charging and Doping Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 123 Issue 10 Pages 6141-6147  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Optimization of catalytic materials for a given application is greatly constrained by linear scaling relations. Recently, however, it has been demonstrated that it is possible to reversibly modulate the chemisorption of molecules on nanomaterials by charging (i.e., injection or removal of electrons) and hence reversibly and selectively modify catalytic activity beyond structure−activity correlations. The fundamental physical relation between the properties of the material, the charging process, and the chemisorption energy, however, remains unclear, and a systematic exploration and optimization of charge-switchable sorbent materials is not yet possible. Using hybrid DFT calculations of CO2 chemisorption on hexagonal boron nitride nanosheets with several types of defects and dopants, we here reveal the existence of fundamental correlations between the electron affinity of a material and charge-induced chemisorption, show how defect engineering can be used to modulate the strength and efficiency of the adsorption process, and demonstrate that excess electrons stabilize many topological defects. We then show how these insights could be exploited in the development of new electrocatalytic materials and the synthesis of doped nanomaterials. Moreover, we demonstrate that calculated chemical properties of charged materials are highly sensitive to the employed computational methodology because of the self-interaction error, which underlines the theoretical challenge posed by such systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000461537400035 Publication Date 2019-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 5 Open Access Not_Open_Access: Available from 21.02.2020  
  Notes Fonds Wetenschappelijk Onderzoek, 11V8915N ; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:158117 Serial 5160  
Permanent link to this record
 

 
Author Gorbanev, Y.; Van der Paal, J.; Van Boxem, W.; Dewilde, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Reaction of chloride anion with atomic oxygen in aqueous solutions: can cold plasma help in chemistry research? Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 21 Issue 8 Pages 4117-4121  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric plasma in contact with solutions has many applications, but its chemistry contains many unknowns such as the undescribed reactions with solutes. By combining experiments and modelling, we report the first direct demonstration of the reaction of chloride with oxygen atoms in aqueous solutions exposed to cold plasma.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000461722500001 Publication Date 2019-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 4 Open Access Not_Open_Access: Available from 31.01.2020  
  Notes H2020 Marie Skłodowska-Curie Actions, 743151 ; Fonds Wetenschappelijk Onderzoek, 11U5416N ; Approved Most recent IF: 4.123  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:157688 Serial 5167  
Permanent link to this record
 

 
Author Saniz, R.; Sarmadian, N.; Partoens, B.; Batuk, M.; Hadermann, J.; Marikutsa, A.; Rumyantseva, M.; Gaskov, A.; Lamoen, D. pdf  url
doi  openurl
  Title First-principles study of CO and OH adsorption on in-doped ZnO surfaces Type A1 Journal article
  Year 2019 Publication The journal of physics and chemistry of solids Abbreviated Journal J Phys Chem Solids  
  Volume 132 Issue Pages 172-181  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present a first-principles computational study of CO and OH adsorption on non-polar ZnO (10¯10) surfaces doped with indium. The calculations were performed using a model ZnO slab. The position of the In dopants was varied from deep bulk-like layers to

the surface layers. It was established that the preferential location of the In atoms is at the surface by examining the dependence of

the defect formation energy as well as the surface energy on In location. The adsorption sites on the surface of ZnO and the energy

of adsorption of CO molecules and OH-species were determined in connection to In doping. It was found that OH has higher

bonding energy to the surface than CO. The presence of In atoms at the surface of ZnO is favorable for CO adsorption, resulting

in an elongation of the C-O bond and in charge transfer to the surface. The effect of CO and OH adsorption on the electronic

and conduction properties of surfaces was assessed. We conclude that In-doped ZnO surfaces should present a higher electronic

response upon adsorption of CO.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000472124700023 Publication Date 2019-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3697 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.059 Times cited 7 Open Access Not_Open_Access: Available from 26.04.2021  
  Notes FWO-Vlaanderen, G0D6515N ; ERA.Net RUS Plus, 096 ; VSC; HPC infrastructure of the University of Antwerp; FWO-Vlaanderen; Flemish Government-department EWI; Approved Most recent IF: 2.059  
  Call Number EMAT @ emat @UA @ admin @ c:irua:159656 Serial 5170  
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Bal, Km.; Michielsen, I.; Neyts, Ec.; Meynen, V.; Cool, P.; Bogaerts, A. pdf  url
doi  openurl
  Title How process parameters and packing materials tune chemical equilibrium and kinetics in plasma-based CO2 conversion Type A1 Journal article
  Year 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 372 Issue Pages 1253-1264  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma (catalysis) reactors are increasingly being used for gas-based chemical conversions, providing an alternative method of energy delivery to the molecules. In this work we explore whether classical concepts such as

equilibrium constants, (overall) rate coefficients, and catalysis exist under plasma conditions. We specifically

investigate the existence of a so-called partial chemical equilibrium (PCE), and how process parameters and

packing properties influence this equilibrium, as well as the overall apparent rate coefficient, for CO2 splitting in

a DBD plasma reactor. The results show that a PCE can be reached, and that the position of the equilibrium, in

combination with the rate coefficient, greatly depends on the reactor parameters and operating conditions (i.e.,

power, pressure, and gap size). A higher power, higher pressure, or smaller gap size enhance both the equilibrium constant and the rate coefficient, although they cannot be independently tuned. Inserting a packing

material (non-porous SiO2 and ZrO2 spheres) in the reactor reveals interesting gap/material effects, where the

type of material dictates the position of the equilibrium and the rate (inhibition) independently. As a result, no

apparent synergistic effect or plasma-catalytic behaviour was observed for the non-porous packing materials

studied in this reaction. Within the investigated parameters, equilibrium conversions were obtained between 23

and 71%, while the rate coefficient varied between 0.027 s−1 and 0.17 s−1. This method of analysis can provide

a more fundamental insight in the overall reaction kinetics of (catalytic) plasma-based gas conversion, in order

to be able to distinguish plasma effects from true catalytic enhancement.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000471670400116 Publication Date 2019-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 3 Open Access Not_Open_Access: Available from 05.05.2021  
  Notes European Fund for Regional Development; FWOFWO, G.0254.14N ; University of Antwerp; FWO-FlandersFWO-Flanders, 11V8915N ; The authors acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund for Scientific Research (FWO; Grant Number: G.0254.14N), a TOP-BOF project and an IOF-SBO (SynCO2Chem) project from the University of Antwerp. K. M. B. was funded as a PhD fellow (aspirant) of the FWOFlanders (Fund for Scientific Research-Flanders), Grant 11V8915N. Approved Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159979 Serial 5171  
Permanent link to this record
 

 
Author Bogaerts, A.; Yusupov, M.; Razzokov, J.; Van der Paal, J. pdf  url
doi  openurl
  Title Plasma for cancer treatment: How can RONS penetrate through the cell membrane? Answers from computer modeling Type A1 Journal article
  Year 2019 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng  
  Volume Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma is gaining increasing interest for cancer

treatment, but the underlying mechanisms are not yet fully

understood. Using computer simulations at the molecular

level, we try to gain better insight in how plasma-generated

reactive oxygen and nitrogen species (RONS) can

penetrate through the cell membrane. Specifically, we

compare the permeability of various (hydrophilic and

hydrophobic) RONS across both oxidized and nonoxidized cell membranes. We also study pore formation,

and how it is hampered by higher concentrations of

cholesterol in the cell membrane, and we illustrate the

much higher permeability of H2O2 through aquaporin

channels. Both mechanisms may explain the selective

cytotoxic effect of plasma towards cancer cells. Finally, we

also discuss the synergistic effect of plasma-induced

oxidation and electric fields towards pore formation.

Keywords plasma medicine, cancer treatment, computer

modelling, cell membrane, reactive oxygen and nitrogen

species
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000468848400004 Publication Date 2019-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.712 Times cited 5 Open Access Not_Open_Access: Available from 23.05.2020  
  Notes We acknowledge financial support from the Research Foundation–Flanders (FWO; Grant Nos. 1200216N and 11U5416N). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. We are also very thankful to R. Cordeiro for the very interesting discussions. Approved Most recent IF: 1.712  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159977 Serial 5172  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: