|
Record |
Links |
|
Author |
Pearce, P.E.; Rousse, G.; Karakulina, O.M.; Hadermann, J.; Van Tendeloo, G.; Foix, D.; Fauth, F.; Abakumov, A.M.; Tarascon, J.-M. |
|
|
Title |
β-Na1.7IrO3: A Tridimensional Na-Ion Insertion Material with a Redox Active Oxygen Network |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Chemistry of materials |
Abbreviated Journal |
Chem Mater |
|
|
Volume |
30 |
Issue |
10 |
Pages |
3285-3293 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
The revival of the Na-ion battery concept has prompted an intense search for new high capacity Na-based positive electrodes. Recently, emphasis has been placed on manipulating Na-based layered compounds to trigger the participation of the anionic network. We further explored this direction and show the feasibility of achieving anionic-redox activity in three-dimensional Na-based compounds. A new 3D β-Na1.7IrO3 phase was synthesized in a two-step process, which involves first the electrochemical removal of Li from β-Li2IrO3 to produce β-IrO3, which is subsequently reduced by electrochemical Na insertion. We show that β-Na1.7IrO3 can reversibly uptake nearly 1.3 Na+ per formula unit through an uneven voltage profile characterized by the presence of four plateaus related to structural transitions. Surprisingly, the β-Na1.7IrO3 phase was found to be stable up to 600 °C, while it could not be directly synthesized via conventional synthetic methods. Although these Na-based iridate phases are of limited practical interest, they help to understand how introducing highly polarizable guest ions (Na+) into host rocksalt-derived oxide structures affects the anionic redox mechanism. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000433403800014 |
Publication Date |
2018-05-22 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0897-4756 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
9.466 |
Times cited |
6 |
Open Access |
OpenAccess |
|
|
Notes |
The authors thank A. Perez for fruitful discussions and his valuable help in synchrotron XRD experiment and Matthieu Courty for carrying out the DSC measurements. The authors also greatly thank Matthieu Saubanère and Marie-Liesse Doublet for valuable discussions on theoretical aspects of this work. This work is based on experiments performed on the Materials Science and Powder Diffraction Beamline at ALBA synchrotron (Proposal 2016091814), Cerdanyola del Vallès, E- 08290 Barcelona, Spain. J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant- Project 670116-ARPEMA. G.R. acknowledges funding from ANR DeliRedox. O.M.K., J.H., and A.M.A. are grateful to FWO Vlaanderen for financial support under Grant G040116N. |
Approved |
Most recent IF: 9.466 |
|
|
Call Number |
EMAT @ emat @c:irua:152048 |
Serial |
4996 |
|
Permanent link to this record |