|
Record |
Links |
|
Author |
Yang, Z.; Altantzis, T.; Bals, S.; Tendeloo, G.V.; Pileni, M.-P. |
|
|
Title |
Do Binary Supracrystals Enhance the Crystal Stability? |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
The journal of physical chemistry: C : nanomaterials and interfaces |
Abbreviated Journal |
J Phys Chem C |
|
|
Volume |
122 |
Issue |
122 |
Pages |
13515-13521 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
We study the oxygen thermal stability of two binary
systems. The larger particles are magnetic amorphous Co (7.2 nm) or
Fe3O4 (7.5 nm) nanocrystals, whereas the smaller ones (3.7 nm) are
Au nanocrystals. The nanocrystal ordering as well as the choice of the
magnetic nanoparticles very much influence the stability of the binary
system. A perfect crystalline structure is obtained with the Fe3O4/Au
binary supracrystals. For the Co/Au binary system, oxidation of Co
results in the chemical transformation from Co to CoO, where the size
of the amorphous Co nanoparticles increases from 7.2 to 9.8 nm in
diameter. During the volume expansion of the Co nanoparticles, Au
nanoparticles within the binary assemblies coalesce and are at the
origin of the instability of the binary nanoparticle supracrystals. On the
other hand, for the Fe3O4/Au binary system, the oxidation of Fe3O4 to
γ-Fe2O3 does not lead to a size change of the nanoparticles, which
maintains the stability of the binary nanoparticle supracrystals. A similar behavior is observed for an AlB2-type Co−Ag binary
system: The crystalline structure is maintained, whereas in disordered assemblies, coalescence of Ag nanocrystals is observed. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000437811500035 |
Publication Date |
2018-01-30 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1932-7447 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
4.536 |
Times cited |
5 |
Open Access |
OpenAccess |
|
|
Notes |
The research leading to these results has been supported by an Advanced Grant of the European Research Council under Grant 267129. The authors appreciate financial support by the European Union under the Framework 7 program under a contract for an Integrated Infrastructure Initiative (Reference No. 262348 ESMI). S.B. acknowledges funding from ERC Starting Grant COLOURATOMS (335078). T.A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO, Belgium). (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ecas_sara |
Approved |
Most recent IF: 4.536 |
|
|
Call Number |
EMAT @ emat @c:irua:149388UA @ admin @ c:irua:149388 |
Serial |
4812 |
|
Permanent link to this record |