|
Record |
Links |
|
Author |
Jacquet, Q.; Perez, A.; Batuk, D.; Van Tendeloo, G.; Rousse, G.; Tarascon, J.-M. |
|
|
Title |
The Li3RuyNb1-yO4 (0 ≤y≤ 1) System: Structural Diversity and Li Insertion and Extraction Capabilities |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Chemistry of materials |
Abbreviated Journal |
Chem Mater |
|
|
Volume |
29 |
Issue |
12 |
Pages |
5331-5343 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Searching for novel high-capacity electrode materials combining cationic and anionic redox processes is an ever-growing activity within the field of Li-ion batteries. In this respect, we report on the exploration of the Li3RuyNb1-yO4 (O <= y <= 1) system with an O/M ratio of 4 to maximize the number of oxygen lone pairs, responsible for the anionic redox. We show that this system presents a very rich crystal chemistry with the existence of four structural types, which derive from the rocksalt structure but differ in their cationic arrangement, creating either zigzag, helical, jagged chains or clusters. From an electrochemical standpoint, these compounds are active on reduction via a classical cationic insertion process. The oxidation process is more complex, because of the instability of the delithiated phase. Our results promote the use of the rich Li3MO4 family as a viable platform for a better understanding of the relationships between structure and anionic redox activity. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000404493100036 |
Publication Date |
2017-06-27 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0897-4756 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
9.466 |
Times cited |
17 |
Open Access |
Not_Open_Access |
|
|
Notes |
The authors thank Paul Pearce, Alexis Grimaud, Matthieu Saubanere, and Marie-Liesse Doublet for fruitful discussions, Vivian Nassif for her help in neutron diffraction experiment at the D1B diffractometer at ILL, and Dominique Foix for XPS analysis. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Q.J. thanks the ANR “Deli-Redox” for Ph.D. funding. J.-M.T. and D.B. acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC Grant -Project 670116-ARPEMA. |
Approved |
Most recent IF: 9.466 |
|
|
Call Number |
EMAT @ emat @c:irua:147506 |
Serial |
4776 |
|
Permanent link to this record |