|
Record |
Links |
|
Author |
Bogaerts, A.; Yusupov, M.; Razzokov, J.; Van der Paal, J. |
|
|
Title |
Plasma for cancer treatment: How can RONS penetrate through the cell membrane? Answers from computer modeling |
Type |
A1 Journal article |
|
Year |
2019 |
Publication |
Frontiers of Chemical Science and Engineering |
Abbreviated Journal |
Front Chem Sci Eng |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Plasma is gaining increasing interest for cancer
treatment, but the underlying mechanisms are not yet fully
understood. Using computer simulations at the molecular
level, we try to gain better insight in how plasma-generated
reactive oxygen and nitrogen species (RONS) can
penetrate through the cell membrane. Specifically, we
compare the permeability of various (hydrophilic and
hydrophobic) RONS across both oxidized and nonoxidized cell membranes. We also study pore formation,
and how it is hampered by higher concentrations of
cholesterol in the cell membrane, and we illustrate the
much higher permeability of H2O2 through aquaporin
channels. Both mechanisms may explain the selective
cytotoxic effect of plasma towards cancer cells. Finally, we
also discuss the synergistic effect of plasma-induced
oxidation and electric fields towards pore formation.
Keywords plasma medicine, cancer treatment, computer
modelling, cell membrane, reactive oxygen and nitrogen
species |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000468848400004 |
Publication Date |
2019-03-22 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2095-0179 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
1.712 |
Times cited |
5 |
Open Access |
Not_Open_Access: Available from 23.05.2020
|
|
|
Notes |
We acknowledge financial support from the Research Foundation–Flanders (FWO; Grant Nos. 1200216N and 11U5416N). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. We are also very thankful to R. Cordeiro for the very interesting discussions. |
Approved |
Most recent IF: 1.712 |
|
|
Call Number |
PLASMANT @ plasmant @UA @ admin @ c:irua:159977 |
Serial |
5172 |
|
Permanent link to this record |