|
Abstract |
Supersonic flows provide a high thermodynamic
nonequilibrium, which is crucial for energy-efficient conversion of
CO 2 in microwave plasmas and are therefore of great interest.
However, the effect of the flow on the chemical reactions is poorly
understood. In this work, we present a combined flow and plasma
chemical kinetics model of a microwave CO 2 plasma in a Laval
nozzle setup. The effects of the flow field on the different dissociation
and recombination mechanisms, the vibrational distribution, and the
vibrational transfer mechanism are discussed. In addition, the effect
of experimental parameters, like position of power deposition, outlet
pressure, and specific energy input, on the CO 2 conversion and
energy efficiency is examined. The short residence time of the gas in
the plasma region, the shockwave, and the maximum critical heat,
and thus power, that can be added to the flow to avoid thermal
choking are the main obstacles to reaching high energy efficiencies. |
|