|
Record |
Links |
|
Author |
Fuchs, J.; Aghaei, M.; Schachel, T.D.; Sperling, M.; Bogaerts, A.; Karst, U. |
|
|
Title |
Impact of the Particle Diameter on Ion Cloud Formation from Gold Nanoparticles in ICPMS |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Analytical chemistry |
Abbreviated Journal |
Anal Chem |
|
|
Volume |
90 |
Issue |
17 |
Pages |
10271-10278 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
The unique capabilities of microsecond dwell time (DT) single-particle inductively coupled plasma mass spectrometry (spICPMS) were utilized to characterize the cloud of ions generated from the introduction of suspensions of gold nanoparticles (AuNPs) into the plasma. A set of narrowly distributed particles with diameters ranging from 15.4 to 100.1 nm was synthesized and characterized according to established protocols. Statistically significant numbers of the short transient spICPMS events were evaluated by using 50 μs DT for their summed intensity, maximum intensity, and duration, of which all three were found to depend on the particle diameter. The summed intensity increases from 10 to 1661 counts and the maximum intensity from 6 to 309 counts for AuNPs with diameters from 15.4 to 83.2 nm. The event duration rises from 322 to 1007 μs upon increasing AuNP diameter. These numbers represent a comprehensive set of key data points of the ion clouds generated in ICPMS from AuNPs. The extension of event duration is of high interest to appoint the maximum possible particle number concentration at which separation of consecutive events in spICPMS can still be achieved. Moreover, the combined evaluation of all above-mentioned ion cloud characteristics can explain the regularly observed prolonged single-particle events. The transport and ionization behavior of AuNPs in the ICP was also computationally modeled to gain insight into the size-dependent signal generation. The simulated data reveals that the plasma temperature, and therefore the point of ionization of the particles, is the same for all diameters. However, the maximum number density of Au+, as well as the extent of the ion cloud, depends on the particle diameter, in agreement with the experimental data, and it provides an adequate explanation for the observed ion cloud characteristics. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000444060600028 |
Publication Date |
2018-09-04 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0003-2700 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
6.32 |
Times cited |
5 |
Open Access |
OpenAccess |
|
|
Notes |
We thank Dr. Harald Rösner from the Institute of Materials Physics of the University of Münster for the TEM imaging. |
Approved |
Most recent IF: 6.32 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:153651 |
Serial |
5057 |
|
Permanent link to this record |