toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sels, D.; Sorée, B.; Groeseneken, G. openurl 
  Title 2-D rotational invariant multi sub band Schrödinger-Poisson solver to model nanowire transistors Type A1 Journal article
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages 85-88  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Pisa University Press Place of Publication Pisa Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title 14th International Workshop on Computational Electronics  
  Series Volume Series Issue Edition  
  ISSN 978-1-4244-9381-4 ISBN Additional Links UA library record  
  Impact Factor Times cited (up) Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:91699 Serial 6  
Permanent link to this record
 

 
Author Sorée, B.; Pham, A.-T.; Sels, D.; Magnus, W. isbn  openurl
  Title The junctionless nanowire transistor Type H3 Book chapter
  Year 2011 Publication Abbreviated Journal  
  Volume Issue Pages ?  
  Keywords H3 Book chapter; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Pan Stanford Place of Publication S.l. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9789814364027 Additional Links UA library record  
  Impact Factor Times cited (up) Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:93074 Serial 1754  
Permanent link to this record
 

 
Author Magnus, W.; Carrillo-Nunez, H.; Sorée, B. isbn  openurl
  Title Transport in nanostructures Type H3 Book chapter
  Year 2011 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords H3 Book chapter; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Pan Stanford Place of Publication S.l. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9789814364027 Additional Links UA library record  
  Impact Factor Times cited (up) Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:93075 Serial 3724  
Permanent link to this record
 

 
Author Reyntjens, P.D.; Tiwari, S.; van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. url  doi
openurl 
  Title Ab-initio study of magnetically intercalated platinum diselenide : the impact of platinum vacancies Type A1 Journal article
  Year 2021 Publication Materials Abbreviated Journal Materials  
  Volume 14 Issue 15 Pages 4167  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We study the magnetic properties of platinum diselenide (PtSe2) intercalated with Ti, V, Cr, and Mn, using first-principle density functional theory (DFT) calculations and Monte Carlo (MC) simulations. First, we present the equilibrium position of intercalants in PtSe2 obtained from the DFT calculations. Next, we present the magnetic groundstates for each of the intercalants in PtSe2 along with their critical temperature. We show that Ti intercalants result in an in-plane AFM and out-of-plane FM groundstate, whereas Mn intercalant results in in-plane FM and out-of-plane AFM. V intercalants result in an FM groundstate both in the in-plane and the out-of-plane direction, whereas Cr results in an AFM groundstate both in the in-plane and the out-of-plane direction. We find a critical temperature of <0.01 K, 111 K, 133 K, and 68 K for Ti, V, Cr, and Mn intercalants at a 7.5% intercalation, respectively. In the presence of Pt vacancies, we obtain critical temperatures of 63 K, 32 K, 221 K, and 45 K for Ti, V, Cr, and Mn-intercalated PtSe2, respectively. We show that Pt vacancies can change the magnetic groundstate as well as the critical temperature of intercalated PtSe2, suggesting that the magnetic groundstate in intercalated PtSe2 can be controlled via defect engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000682047700001 Publication Date 2021-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.654 Times cited (up) Open Access OpenAccess  
  Notes Approved Most recent IF: 2.654  
  Call Number UA @ admin @ c:irua:180540 Serial 6966  
Permanent link to this record
 

 
Author Tiwari, S.; Vanherck, J.; Van de Put, M.L.; Vandenberghe, W.G.; Sorée, B. url  doi
openurl 
  Title Computing Curie temperature of two-dimensional ferromagnets in the presence of exchange anisotropy Type A1 Journal article
  Year 2021 Publication Physical review research Abbreviated Journal  
  Volume 3 Issue 4 Pages 043024  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We compare three first-principles methods of calculating the Curie temperature in two-dimensional (2D) ferromagnetic materials (FM), modeled using the Heisenberg model, and propose a simple formula for estimating the Curie temperature with high accuracy that works for all common 2D lattice types. First, we study the effect of exchange anisotropy on the Curie temperature calculated using the Monte Carlo (MC), the Green's function, and the renormalized spin-wave (RNSW) methods. We find that the Green's function method overestimates the Curie temperature in high-anisotropy regimes compared to the MC method, whereas the RNSW method underestimates the Curie temperature compared to the MC and the Green's function methods. Next, we propose a closed-form formula for calculating the Curie temperature of 2D FMs, which provides an estimate of the Curie temperature that is greatly improved over the mean-field expression for magnetic material screening. We apply the closed-form formula to predict the Curie temperature 2D magnets screened from the C2DB database and discover several high Curie temperature FMs, with Fe2F2 and MoI2 emerging as the most promising 2D ferromagnets. Finally, by comparing to experimental results for CrI3, CrCl3, and CrBr3, we conclude that for small effective anisotropies, the Green's-function-based equations are preferable, while for larger anisotropies, MC-based results are more predictive.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000707506500001 Publication Date 2021-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182522 Serial 6975  
Permanent link to this record
 

 
Author Vanderveken, F.; Mulkers, J.; Leliaert, J.; Van Waeyenberge, B.; Sorée, B.; Zografos, O.; Ciubotaru, F.; Adelmann, C. pdf  url
doi  openurl
  Title Confined magnetoelastic waves in thin waveguides Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 5 Pages 054439  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The characteristics of confined magnetoelastic waves in nanoscale ferromagnetic magnetostrictive waveguides have been investigated by a combination of analytical and numerical calculations. The presence of both magnetostriction and inverse magnetostriction leads to the coupling between confined spin waves and elastic Lamb waves. Numerical simulations of the coupled system have been used to extract the dispersion relations of the magnetoelastic waves as well as their mode profiles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000627548800003 Publication Date 2021-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:177607 Serial 6976  
Permanent link to this record
 

 
Author Osca, J.; Moors, K.; Sorée, B.; Serra, L. pdf  doi
openurl 
  Title Fabry-Perot interferometry with gate-tunable 3D topological insulator nanowires Type A1 Journal article
  Year 2021 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 32 Issue 43 Pages 435002  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Three-dimensional topological insulator (3D TI) nanowires display remarkable magnetotransport properties that can be attributed to their spin-momentum-locked surface states such as quasiballistic transport and Aharonov-Bohm oscillations. Here, we focus on the transport properties of a 3D TI nanowire with a gated section that forms an electronic Fabry-Perot (FP) interferometer that can be tuned to act as a surface-state filter or energy barrier. By tuning the carrier density and length of the gated section of the wire, the interference pattern can be controlled and the nanowire can become fully transparent for certain topological surface-state input modes while completely filtering out others. We also consider the interplay of FP interference with an external magnetic field, with which Klein tunneling can be induced, and transverse asymmetry of the gated section, e.g. due to a top-gated structure, which displays an interesting analogy with Rashba nanowires. Due to its rich conductance phenomenology, we propose a 3D TI nanowire with gated section as an ideal setup for a detailed transport-based characterization of 3D TI nanowire surface states near the Dirac point, which could be useful towards realizing 3D TI nanowire-based topological superconductivity and Majorana bound states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000682173800001 Publication Date 2021-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited (up) Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.44  
  Call Number UA @ admin @ c:irua:180487 Serial 6990  
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. url  doi
openurl 
  Title Magnetic order and critical temperature of substitutionally doped transition metal dichalcogenide monolayers Type A1 Journal article
  Year 2021 Publication npj 2D Materials and Applications Abbreviated Journal  
  Volume 5 Issue 1 Pages 54  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations, we investigate the magnetic order in two-dimensional (2D) transition-metal-dichalcogenide (TMD) monolayers: MoS2, MoSe2, MoTe2, WSe2, and WS2 substitutionally doped with period four transition-metals (Ti, V, Cr, Mn, Fe, Co, Ni). We uncover five distinct magnetically ordered states among the 35 distinct TMD-dopant pairs: the non-magnetic (NM), the ferromagnetic with out-of-plane spin polarization (Z FM), the out-of-plane polarized clustered FMs (clustered Z FM), the in-plane polarized FMs (X-Y FM), and the anti-ferromagnetic (AFM) state. Ni and Ti dopants result in an NM state for all considered TMDs, while Cr dopants result in an anti-ferromagnetically ordered state for all the TMDs. Most remarkably, we find that Fe, Mn, Co, and V result in an FM ordered state for all the TMDs, except for MoTe2. Finally, we show that V-doped MoSe2 and WSe2, and Mn-doped MoS2, are the most suitable candidates for realizing a room-temperature FM at a 16-18% atomic substitution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000650635200004 Publication Date 2021-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-7132 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179063 Serial 7001  
Permanent link to this record
 

 
Author Raymenants, E.; Bultynck, O.; Wan, D.; Devolder, T.; Garello, K.; Souriau, L.; Thiam, A.; Tsvetanova, D.; Canvel, Y.; Nikonov, D.E.; Young, I.A.; Heyns, M.; Sorée, B.; Asselberghs, I.; Radu, I.; Couet, S.; Nguyen, V.D. url  doi
openurl 
  Title Nanoscale domain wall devices with magnetic tunnel junction read and write Type A1 Journal article
  Year 2021 Publication Nature Electronics Abbreviated Journal  
  Volume 4 Issue 6 Pages 392-398  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The manipulation of fast domain wall motion in magnetic nanostructures could form the basis of novel magnetic memory and logic devices. However, current approaches for reading and writing domain walls require external magnetic fields, or are based on conventional magnetic tunnel junctions (MTJs) that are not compatible with high-speed domain wall motion. Here we report domain wall devices based on perpendicular MTJs that offer electrical read and write, and fast domain wall motion via spin-orbit torque. The devices have a hybrid free layer design that consists of platinum/cobalt (Pt/Co) or a synthetic antiferromagnet (Pt/Co/Ru/Co) into the free layer of conventional MTJs. We show that our devices can achieve good tunnelling magnetoresistance readout and efficient spin-transfer torque writing that is comparable to current magnetic random-access memory technology, as well as domain wall depinning efficiency that is similar to stand-alone materials. We also show that a domain wall conduit based on a synthetic antiferromagnet offers the potential for reliable domain wall motion and faster write speed compared with a device based on Pt/Co. Domain wall devices based on perpendicular magnetic tunnel junctions with a hybrid free layer design can offer electrical read and write, and fast domain wall motion driven via spin-orbit torque.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000665011500005 Publication Date 2021-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2520-1131 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179673 Serial 7003  
Permanent link to this record
 

 
Author Sethu, K.K.V.; Ghosh, S.; Couet, S.; Swerts, J.; Sorée, B.; De Boeck, J.; Kar, G.S.; Garello, K. doi  openurl
  Title Optimization of tungsten beta-phase window for spin-orbit-torque magnetic random-access memory Type A1 Journal article
  Year 2021 Publication Physical Review Applied Abbreviated Journal Phys Rev Appl  
  Volume 16 Issue 6 Pages 064009  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Switching induced by spin-orbit torque (SOT) is being vigorously explored, as it allows the control of magnetization using an in-plane current, which enables a three-terminal magnetic-tunnel-junction geometry with isolated read and write paths. This significantly improves the device endurance and the read stability, and allows reliable subnanosecond switching. Tungsten in the beta phase, beta-W, has the largest reported antidamping SOT charge-to-spin conversion ratio (theta(AD) approximate to -60%) for heavy metals. However, beta-W has a limitation when one is aiming for reliable technology integration: the beta phase is limited to a thickness of a few nanometers and enters the alpha phase above 4 nm in our samples when industry-relevant deposition tools are used. Here, we report our approach to extending the range of beta-W, while simultaneously improving the SOT efficiency by introducing N and O doping of W. Resistivity and XRD measurements confirm the extension of the beta phase from 4 nm to more than 10 nm, and transport characterization shows an effective SOT efficiency larger than -44.4% (reaching approximately -60% for the bulk contribution). In addition, we demonstrate the possibility of controlling and enhancing the perpendicular magnetic anisotropy of a storage layer (Co-Fe-B). Further, we integrate the optimized W(O, N) into SOT magnetic random-access memory (SOT-MRAM) devices and project that, for the same thickness of SOT material, the switching current decreases by 25% in optimized W(O, N) compared with our standard W. Our results open the path to using and further optimizing W for integration of SOT-MRAM technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000729005800002 Publication Date 2021-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.808 Times cited (up) Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.808  
  Call Number UA @ admin @ c:irua:184832 Serial 7007  
Permanent link to this record
 

 
Author van Duijn, F.; Osca, J.; Sorée, B. url  doi
openurl 
  Title Skyrmion elongation, duplication, and rotation by spin-transfer torque under spatially varying spin current Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 104 Issue 9 Pages 094426  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of the spatially varying spin current on a skyrmion is numerically investigated. It is shown that an inhomogeneous current density induces an elongation of the skyrmion. This elongation can be controlled using current pulses of different strength and duration. Long current pulses lead to a splitting that forms two replicas of the initial skyrmion while for short pulses the elongated skyrmion relaxes back to its initial circular state through rotation in the MHz-GHz frequency range. The frequency is dependent on the strength of the damping coefficient.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704236000002 Publication Date 2021-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:182467 Serial 7018  
Permanent link to this record
 

 
Author Bizindavyi, J.; Verhulst, A.S.; Sorée, B.; Vandenberghe, W.G. url  doi
openurl 
  Title Thermodynamic equilibrium theory revealing increased hysteresis in ferroelectric field-effect transistors with free charge accumulation Type A1 Journal article
  Year 2021 Publication Communications Physics Abbreviated Journal  
  Volume 4 Issue 1 Pages 86  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract At the core of the theoretical framework of the ferroelectric field-effect transistor (FeFET) is the thermodynamic principle that one can determine the equilibrium behavior of ferroelectric (FERRO) systems using the appropriate thermodynamic potential. In literature, it is often implicitly assumed, without formal justification, that the Gibbs free energy is the appropriate potential and that the impact of free charge accumulation can be neglected. In this Article, we first formally demonstrate that the Grand Potential is the appropriate thermodynamic potential to analyze the equilibrium behavior of perfectly coherent and uniform FERRO-systems. We demonstrate that the Grand Potential only reduces to the Gibbs free energy for perfectly non-conductive FERRO-systems. Consequently, the Grand Potential is always required for free charge-conducting FERRO-systems. We demonstrate that free charge accumulation at the FERRO interface increases the hysteretic device characteristics. Lastly, a theoretical best-case upper limit for the interface defect density D-FI is identified. The ferroelectric field-effect transistor, which has attracted much attention for application as both a highly energy-efficient logic device and a non-volatile memory device, has often been studied within the framework of equilibrium thermodynamics. Here, the authors theoretically demonstrate the importance of utilizing the correct thermodynamic potential and investigate the impact of free charge accumulation on the equilibrium performance of ferroelectric-based systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000645913400001 Publication Date 2021-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2399-3650 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179005 Serial 7031  
Permanent link to this record
 

 
Author Osca, J.; Sorée, B. doi  openurl
  Title Torque field and skyrmion motion by spin transfer torque in a quasi-2D interface in presence of strong spin-orbit interaction Type A1 Journal article
  Year 2021 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 130 Issue 13 Pages 133903  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the torque field and skyrmion motion at an interface between a ferromagnet hosting a skyrmion and a material with a strong spin-orbit interaction. We analyze both semiconductor materials and topological insulators using a Hamiltonian model that includes a linear term. The spin torque-inducing current is considered to flow in the single band limit; therefore, a quantum model of current is used. Skyrmion motion due to spin transfer torque proves to be more difficult in the presence of a spin-orbit interaction in the case where only interface in-plane currents are present. However, edge effects in narrow nanowires can be used to drive the skyrmion motion and to exert a limited control on its motion direction. We also show the differences and similarities between torque fields due to electric current in the many and single band limits. Published under an exclusive license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000755090400003 Publication Date 2021-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited (up) Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:186452 Serial 7034  
Permanent link to this record
 

 
Author Vanderveken, F.; Tyberkevych, V.; Talmelli, G.; Sorée, B.; Ciubotaru, F.; Adelmann, C. url  doi
openurl 
  Title Lumped circuit model for inductive antenna spin-wave transducers Type A1 Journal article
  Year 2022 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 12 Issue 1 Pages 3796-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We derive a lumped circuit model for inductive antenna spin-wave transducers in the vicinity of a ferromagnetic medium. The model considers the antenna's Ohmic resistance, its inductance, as well as the additional inductance due to the excitation of ferromagnetic resonance or spin waves in the ferromagnetic medium. As an example, the additional inductance is discussed for a wire antenna on top of a ferromagnetic waveguide, a structure that is characteristic for many magnonic devices and experiments. The model is used to assess the scaling properties and the energy efficiency of inductive antennas. Issues related to scaling antenna transducers to the nanoscale and possible solutions are also addressed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000826474600050 Publication Date 2022-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited (up) Open Access OpenAccess  
  Notes Approved Most recent IF: 4.6  
  Call Number UA @ admin @ c:irua:190001 Serial 7180  
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Temst, K.; Vandenberghe, W.G.; Sorée, B. doi  openurl
  Title Atomistic modeling of spin and electron dynamics in two-dimensional magnets switched by two-dimensional topological insulators Type A1 Journal article
  Year 2023 Publication Physical review applied Abbreviated Journal  
  Volume 19 Issue 1 Pages 014040-14049  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract To design fast memory devices, we need material combinations that can facilitate fast read and write operations. We present a heterostructure comprising a two-dimensional (2D) magnet and a 2D topological insulator (TI) as a viable option for designing fast memory devices. We theoretically model the spin-charge dynamics between 2D magnets and 2D TIs. Using the adiabatic approximation, we combine the nonequi-librium Green's function method for spin-dependent electron transport and a time-quantified Monte Carlo method for simulating magnetization dynamics. We show that it is possible to switch a magnetic domain of a ferromagnet using the spin torque from spin-polarized edge states of a 2D TI. We show further that the switching of 2D magnets by TIs is strongly dependent on the interface exchange (Jint), and an opti-mal interface exchange, is required for efficient switching. Finally, we compare experimentally grown Cr compounds and show that Cr compounds with higher anisotropy (such as CrI3) result in a lower switching speed but a more stable magnetic order.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000920227500002 Publication Date 2023-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited (up) Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.6; 2023 IF: 4.808  
  Call Number UA @ admin @ c:irua:194312 Serial 7283  
Permanent link to this record
 

 
Author Deylgat, E.; Chen, E.; Fischetti, M.V.; Sorée, B.; Vandenberghe, W.G. pdf  doi
openurl 
  Title Image-force barrier lowering in top- and side-contacted two-dimensional materials Type A1 Journal article
  Year 2022 Publication Solid state electronics Abbreviated Journal Solid State Electron  
  Volume 198 Issue Pages 108458-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We compare the image-force barrier lowering (IFBL) and calculate the resulting contact resistance for four different metal-dielectric-two-dimensional (2D) material configurations. We analyze edge contacts in three different geometries (a homogeneous dielectric throughout, including the 2D layer; a homogeneous dielectric surrounding the 2D layer, both ungated and back gated) and also a top-contact assuming a homogeneous dielectric. The image potential energy of each configuration is determined and added to the Schottky energy barrier which is calculated assuming a textbook Schottky potential. For each configuration, the contact resistivity is calculated using the WKB approximation and the effective mass approximation using either SiO2 or HfO2 as the surrounding dielectric. We obtain the lowest contact resistance of 1 k Omega mu m by n-type doping an edge contacted transition metal-dichalcogenide (TMD) monolayer, sandwiched between SiO2 dielectric, with similar to 1012 cm-2 donor atoms. When this optimal configuration is used, the contact resistance is lowered by a factor of 50 compared to the situation when the IFBL is not considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000876289800003 Publication Date 2022-09-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1101 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.7 Times cited (up) Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.7  
  Call Number UA @ admin @ c:irua:191556 Serial 7312  
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. pdf  doi
openurl 
  Title Ab initio modeling of few-layer dilute magnetic semiconductors Type P1 Proceeding
  Year 2021 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 27-29, 2021, Dallas, TX Abbreviated Journal  
  Volume Issue Pages 141-145  
  Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We present a computational model to model the magnetic structure of two-dimensional (2D) dilute-magnetic-semiconductors (DMS) both the monolayers and multilayers using first-principles density functional theory (DFT), as well as their magnetic phase transition as a function of temperature using Monte-Carlo simulations. Using our method, we model the magnetic structure of bulk, bilayer, and monolayer MoS2 substitutionally doped with Fe atoms. We find that the out-of-plane interaction in bilayer MoS2 is weakly ferromagnetic, whereas in bulk MoS2 it is strongly anti-ferromagnetic. Finally, we show that the magnetic order is more robust in bilayer Fe-doped MoS2 compared to the monolayer and results in a room-temperature FM at an atomic substitution of 14-16%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000766985400034 Publication Date 2021-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-6654-0685-7 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited (up) Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:187291 Serial 7401  
Permanent link to this record
 

 
Author Reyntjens, P.D.; Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. pdf  doi
openurl 
  Title Ab-initio study of magnetically intercalated Tungsten diselenide Type P1 Proceeding
  Year 2020 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 23-OCT 06, 2020 Abbreviated Journal  
  Volume Issue Pages 97-100  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the effect of intercalation of third row transition metals (Co, Cr, Fe, Mn, Ti and V) in the layers of WSe2. Using density functional theory (DFT), we investigate the structural stability. We also compute the DFT energies of various magnetic spin configurations. Using these energies, we construct a Heisenberg Hamiltonian and perform a Monte Carlo study on each WSe2 + intercalant system to estimate the Curie or Neel temperature. We find ferromagnetic ground states for Ti and Cr intercalation, with Curie temperatures of 31K and 225K, respectively. In Fe-intercalated WSe2, we predict that antiferromagnetic ordering is present up to 564K. For V intercalation, we find that the system exhibits a double phase transition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000636981000025 Publication Date 2020-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-4-86348-763-5 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited (up) Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178345 Serial 7402  
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. pdf  doi
openurl 
  Title Carrier transport in a two-dimensional topological insulator nanoribbon in the presence of vacancy defects Type P1 Proceeding
  Year 2018 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 24-26, 2018, Austin, TX Abbreviated Journal  
  Volume Issue Pages 92-96  
  Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We model transport through two-dimensional topological insulator (TI) nanoribbons. To model the quantum transport, we employ the non-equilibrium Green's function approach. With the presented approach, we study the effect of lattice imperfections on the carrier transport. We observe that the topologically protected edge states of TIs are robust against a high percentage (2%) of vacancy defects. We also investigate tunneling of the edge states in two decoupled TI nanoribbons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000516619300024 Publication Date 2018-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-5386-6790-3; 1946-1577; 978-1-5386-6791-0 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:181281 Serial 7579  
Permanent link to this record
 

 
Author Doevenspeck, J.; Zografos, O.; Gurunarayanan, S.; Lauwereins, R.; Raghavan, P.; Sorée, B. url  doi
openurl 
  Title Design and simulation of plasmonic interference-based majority gate Type A1 Journal article
  Year 2017 Publication AIP advances Abbreviated Journal  
  Volume 7 Issue 6 Pages 065116  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Major obstacles in current CMOS technology, such as the interconnect bottleneck and thermal heat management, can be overcome by employing subwavelength-scaled light in plasmonic waveguides and devices. In this work, a plasmonic structure that implements the majority (MAJ) gate function is designed and thoroughly studied through simulations. The structure consists of three merging waveguides, serving as the MAJ gate inputs. The information of the logic signals is encoded in the phase of transmitted surface plasmon polaritons (SPP). SPPs are excited at all three inputs and the phase of the output SPP is determined by theMAJof the input phases. The operating dimensions are identified and the functionality is verified for all input combinations. This is the first reported simulation of a plasmonic MAJ gate and thus contributes to the field of optical computing at the nanoscale. (C) 2017 Author(s).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404621200036 Publication Date 2017-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152632 Serial 7764  
Permanent link to this record
 

 
Author Duflou, R.; Ciubotaru, F.; Vaysset, A.; Heyns, M.; Sorée, B.; Radu, I.P.; Adelmann, C. url  doi
openurl 
  Title Micromagnetic simulations of magnetoelastic spin wave excitation in scaled magnetic waveguides Type A1 Journal article
  Year 2017 Publication Applied physics letters Abbreviated Journal  
  Volume 111 Issue 19 Pages 192411  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the excitation of spin waves in scaled magnetic waveguides using the magnetoelastic effect. In uniformly magnetized systems, normal strains parallel or perpendicular to the magnetization direction do not lead to spin wave excitation since the magnetoelastic torque is zero. Using micromagnetic simulations, we show that the nonuniformity of the magnetization in submicron waveguides due to the effect of the demagnetizing field leads to the excitation of spin waves for oscillating normal strains both parallel and perpendicular to the magnetization. The excitation by biaxial normal in-plane strain was found to be much more efficient than that by uniaxial normal out-of-plane strain. For narrow waveguides with a width of 200 nm, the excitation efficiency of biaxial normal in-plane strain was comparable to that of shear strain. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414975500027 Publication Date 2017-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152599 Serial 8247  
Permanent link to this record
 

 
Author Reyntjens, P.; Van de Put, M.; Vandenberghe, W.G.; Sorée, B. pdf  doi
openurl 
  Title Ultrascaled graphene-capped interconnects : a quantum mechanical study Type P1 Proceeding
  Year 2023 Publication Proceedings of the IEEE ... International Interconnect Technology Conference T2 – IEEE International Interconnect Technology Conference (IITC) / IEEE, Materials for Advanced Metallization Conference (MAM), MAY 22-25, 2023, Dresden, Germany Abbreviated Journal  
  Volume Issue Pages 1-3  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract In this theoretical study, we assess the impact of a graphene capping layer on the resistivity of defective, extremely scaled interconnects. We investigate the effect of graphene capping on the electronic transport in ultrascaled interconnects, in the presence of grain boundary defects in the metal layer. We compare the results obtained using our quantum mechanical model to a simple parallel-conductor model and find that the parallel-conductor model does not capture the effect of the graphene cap correctly. At 0.5 nm metal thickness, the parallel-conductor model underestimates the conductivity by 3.0% to 4.0% for single-sided and double sided graphene capping, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001027381700006 Publication Date 2023-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 979-83-503-1097-9 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited (up) Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198343 Serial 8949  
Permanent link to this record
 

 
Author Deylgat, E.; Chen, E.; Sorée, B.; Vandenberghe, W.G. pdf  doi
openurl 
  Title Quantum transport study of contact resistance of edge- and top-contacted two-dimensional materials Type P1 Proceeding
  Year 2023 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 27-29, 2023, Kobe, Japan Abbreviated Journal  
  Volume Issue Pages 45-48  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract We calculate the contact resistance for an edge- and top-contacted 2D semiconductor. The contact region consists of a metal contacting a monolayer of MoS2 which is otherwise surrounded by SiO2. We use the quantum transmitting boundary method to compute the contact resistance as a function of the 2D semiconductor doping concentration. An effective mass Hamiltonian is used to describe the properties of the various materials. The electrostatic potentials are obtained by solving the Poisson equation numerically. We incorporate the effects of the image-force barrier lowering on the Schottky barrier and examine the impact on the contact resistance. At low doping concentrations, the contact resistance of the top contact is lower compared to edge contact, while at high doping concentrations, the edge contact exhibits lower resistance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001117703800012 Publication Date 2023-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-4-86348-803-8 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202839 Serial 9079  
Permanent link to this record
 

 
Author Lauwens, J.; Kerkhofs, L.; Sala, A.; Sorée, B. pdf  doi
openurl 
  Title Superconductor-semiconductor hybrid capacitance with a nonlinear charge-voltage profile Type A1 Journal article
  Year 2024 Publication Journal of physics: D: applied physics Abbreviated Journal  
  Volume 57 Issue 2 Pages 025301-25309  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electronic devices that work in the quantum regime often employ hybrid nanostructures to bring about a nonlinear behaviour. The nonlinearity that these can provide has proven to be useful, in particular, for applications in quantum computation. Here we present a hybrid device that acts as a capacitor with a nonlinear charge-voltage relation. The device consists of a nanowire placed between the plates of a coplanar capacitor, with a co-parallel alignment. At low temperatures, due to the finite density of states on the nanowire, the charge distribution in the capacitor is uneven and energy-dependent, resulting in a charge-dependent effective capacitance. We study this system analytically and numerically, and show that the nonlinearity of the capacitance is significant enough to be utilized in circuit quantum electrodynamics. The resulting nonlinearity can be switched on, modulated, and switched off by an external potential, thus making this capacitive device highly versatile for uses in quantum computation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001082883200001 Publication Date 2023-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200300 Serial 9099  
Permanent link to this record
 

 
Author Vermeulen, B.B.; Raymenants, E.; Pham, V.T.; Pizzini, S.; Sorée, B.; Wostyn, K.; Couet, S.; Nguyen, V.D.; Temst, K. url  doi
openurl 
  Title Towards fully electrically controlled domain-wall logic Type A1 Journal article
  Year 2024 Publication AIP advances Abbreviated Journal  
  Volume 14 Issue 2 Pages 025030-25035  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Utilizing magnetic tunnel junctions (MTJs) for write/read and fast spin-orbit-torque (SOT)-driven domain-wall (DW) motion for propagation, enables non-volatile logic and majority operations, representing a breakthrough in the implementation of nanoscale DW logic devices. Recently, current-driven DW logic gates have been demonstrated via magnetic imaging, where the Dzyaloshinskii-Moriya interaction (DMI) induces chiral coupling between perpendicular magnetic anisotropy (PMA) regions via an in-plane (IP) oriented region. However, full electrical operation of nanoscale DW logic requires electrical write/read operations and a method to pattern PMA and IP regions compatible with the fabrication of PMA MTJs. Here, we study the use of a Hybrid Free Layer (HFL) concept to combine an MTJ stack with DW motion materials, and He+ ion irradiation to convert the stack from PMA to IP. First, we investigate the free layer thickness dependence of 100-nm diameter HFL-MTJ devices and find an optimal CoFeB thickness, from 7 to 10 angstrom, providing high tunneling magnetoresistance (TMR) readout and efficient spin-transfer torque (STT) writing. We then show that high DMI materials, like Pt/Co, can be integrated into an MTJ stack via interlayer exchange coupling with the CoFeB free layer. In this design, DMI values suitable for SOT-driven DW motion are measured by asymmetric bubble expansion. Finally, we demonstrate that He+ irradiation reliably converts the coupled free layers from PMA to IP. These findings offer a path toward the integration of fully electrically controlled DW logic circuits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001163573400005 Publication Date 2024-02-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:203823 Serial 9109  
Permanent link to this record
 

 
Author Sorée, B.; Magnus, W.; Szepieniec, M.; Vandenbreghe, W.; Verhulst, A.; Pourtois, G.; Groeseneken, G.; de Gendt, S.; Heyns, M. openurl 
  Title Novel device concepts for nanotechnology : the nanowire pinch-off FET and graphene tunnelFET Type A2 Journal article
  Year 2010 Publication ECS transactions Abbreviated Journal  
  Volume 28 Issue Pages 15-26  
  Keywords A2 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We explain the basic operation of a nanowire pinch-off FET and graphene nanoribbon tunnelFET. For the nanowire pinch-off FET we construct an analytical model to obtain the threshold voltage as a function of radius and doping density. We use the gradual channel approximation to calculate the current-voltage characteristics of this device and we show that the nanowire pinch-off FET has a subthreshold slope of 60 mV/dec and good ION and ION/IOFF ratios. For the graphene nanoribbon tunnelFET we show that an improved analytical model yields more realistic results for the transmission probability and hence the tunneling current. The first simulation results for the graphene nanoribbon tunnelFET show promising subthreshold slopes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1938-5862 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:89510 Serial 2375  
Permanent link to this record
 

 
Author Sorée, B.; Magnus, W. doi  openurl
  Title Quantized conductance without reservoirs : method of the nonequilibrium statistical operator Type A1 Journal article
  Year 2007 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume 6 Issue 1/3 Pages 255-258  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We introduce a generalized non-equilibrium statistical operator (NSO) to study a current-carrying system. The NSO is used to derive a set of quantum kinetic equations based on quantum mechanical balance equations. The quantum kinetic equations are solved self-consistently together with Poissons equation to solve a general transport problem. We show that these kinetic equations can be used to rederive the Landauer formula for the conductance of a quantum point contact, without any reference to reservoirs at different chemical potentials. Instead, energy dissipation is taken into account explicitly through the electron-phonon interaction. We find that both elastic and inelastic scattering are necessary to obtain the Landauer conductance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000208473600062 Publication Date 2007-01-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.526 Times cited (up) Open Access  
  Notes Approved Most recent IF: 1.526; 2007 IF: NA  
  Call Number UA @ lucian @ c:irua:89506 Serial 2769  
Permanent link to this record
 

 
Author Van de Put, M.; Thewissen, M.; Magnus, W.; Sorée, B.; Sellier, J.M. openurl 
  Title Spectral force approach to solve the time-dependent Wigner-Liouville equation Type P1 Proceeding
  Year 2014 Publication 2014 International Workshop On Computational Electronics (iwce) Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Ieee Place of Publication New york Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-4799-5433-9 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited (up) Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:122221 Serial 3071  
Permanent link to this record
 

 
Author Verreck, D.; Van de Put, M.L.; Verhulst, A.S.; Sorée, B.; Magnus, W.; Dabral, A.; Thean, A.; Groeseneken, G. url  doi
openurl 
  Title 15-band spectral envelope function formalism applied to broken gap tunnel field-effect transistors Type P1 Proceeding
  Year 2015 Publication 18th International Workshop On Computational Electronics (iwce 2015) Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract A carefully chosen heterostructure can significantly boost the performance of tunnel field-effect transistors (TFET). Modelling of these hetero-TFETs requires a quantum mechanical (QM) approach with an accurate band structure to allow for a correct description of band-to-band-tunneling. We have therefore developed a fully QM 2D solver, combining for the first time a full zone 15-band envelope function formalism with a spectral approach, including a heterostructure basis set transformation. Simulations of GaSb/InAs broken gap TFETs illustrate the wide body capabilities and transparant transmission analysis of the formalism.  
  Address  
  Corporate Author Thesis  
  Publisher Ieee Place of Publication New york Editor  
  Language Wos 000380398200055 Publication Date 2015-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-0-692-51523-5 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited (up) Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:134998 Serial 4131  
Permanent link to this record
 

 
Author Moors, K.; Sorée, B.; Magnus, W. url  openurl
  Title Analytic solution of Ando's surface roughness model with finite domain distribution functions Type P1 Proceeding
  Year 2015 Publication 18th International Workshop On Computational Electronics (iwce 2015) Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract Ando's surface roughness model is applied to metallic nanowires and extended beyond small roughness size and infinite barrier limit approximations for the wavefunction overlaps, such as the Prange-Nee approximation. Accurate and fast simulations can still be performed without invoking these overlap approximations by averaging over roughness profiles using finite domain distribution functions to obtain an analytic solution for the scattering rates. The simulations indicate that overlap approximations, while predicting a resistivity that agrees more or less with our novel approach, poorly estimate the underlying scattering rates. All methods show that a momentum gap between left- and right-moving electrons at the Fermi level, surpassing a critical momentum gap, gives rise to a substantial decrease in resistivity.  
  Address  
  Corporate Author Thesis  
  Publisher Ieee Place of Publication New york Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-0-692-51523-5 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited (up) Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:134996 Serial 4140  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: